

EMISSIONEN ÖSTERREICHISCHER GROSSFEUERUNGSANLAGEN 1990-2000

EMISSIONEN ÖSTERREICHISCHER GROSSFEUERUNGSANLAGEN 1990-2000

Michael Gager

BE-199

Wien, Mai 2002

Weitere Informationen zu Publikationen des Umweltbundesamtes finden Sie unter: http://www.ubavie.gv.at
Impressum
Medieninhaber und Herausgeber: Umweltbundesamt GmbH, Spittelauer Lände 5, A-1090 Wien Eigenvervielfältigung
© Umweltbundesamt GmbH, Wien, Mai 2002 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-622-6

INHALTSVERZEICHNIS

1	ZUSAMMENFASSUNG / SUMMARY	7
2	EINLEITUNG	13
3	GROSSFEUERUNGSANLAGEN IN ÖSTERREICH	15
4	EMISSIONEN ÖSTERREICHISCHER GROSSFEUERUNGSANLAGEN.	17
4.1	Gesamtemissionen der Großfeuerungsanlagen ab 50 MW _{th}	17
4.1.1	Schwefeldioxid (SO ₂)	17
4.1.2	Stickoxide (NO _x)	19
4.1.3	Kohlenmonoxid (CO)	20
4.1.4	Staub	21
4.2	Einzelemissionen der Großfeuerungsanlagen	22
4.2.1	Großfeuerungsanlagen über 300 MW der Kraftwerke und Industrie	
4.2.2	Großfeuerungsanlagen der Raffinerie	24
5	ANHANG: DATENLAGE	27

1 ZUSAMMENFASSUNG / SUMMARY

Der vorliegende Bericht präsentiert die Ergebnisse der jährlichen Inventur des Umweltbundesamtes für Dampfkesselanlagen in Österreich für die Jahre 1990 bis 2000. Ziel dieser Inventur ist es unter anderem, den Verpflichtungen der Großfeuerungsanlagen-Richtlinie (88/609/EWR) bezüglich der Berichterstattung von Emissionsdaten nachkommen zu können.

Datenlage und Aktualität

Jeder Betreiber einer Dampfkesselanlage, deren Brennstoffwärmeleistung 2 MW überschreitet, ist gemäß §10 Abs. 7 Luftreinhaltegesetz für Kesselanlagen (LRG-K)¹ verpflichtet, jährlich eine Emissionserklärung an die zuständige Behörde zu übermitteln. Das Umweltbundesamt ersucht jährlich in einem Schreiben an die zuständigen Behörden (im allgemeinen die Bezirksbehörden) um die Übermittlung einer Kopie der Emissionserklärung. Diesem Ersuchen wurde jedoch in einer Reihe von Fällen nur sehr schleppend nachgekommen. Trotz mehrmaliger Nachforderungen konnte der vorliegende Datenstand erst im Mai 2002 erreicht werden.

Großfeuerungsanlagen in Österreich

Als Großfeuerungsanlagen werden in diesem Bericht Dampfkesselanlagen mit einer thermischen Brennstoffwärmeleistung von 50 MW_{th} oder mehr bezeichnet. In Österreich berichtet 74 Großfeuerungsanlagen, davon 19 Anlagen mit einer Brennstoffwärmeleistung von über 300 MW_{th}. Etwa die Hälfte der Großfeuerungsanlagen sind kalorische Kraftwerke zur Strom- und/oder Wärmeerzeugung; sie decken rund drei Viertel der installierten Brennstoffwärmeleistung der Großfeuerungsanlagen ab. Die Industrie macht rund 16 % der installierten Brennstoffwärmeleistung der Großfeuerungsanlagen aus, die Raffinerie nicht ganz 10 %.

Die nach Brennstoffwärmeleistung größten Dampfkesselanlagen in Österreich sind die Kraftwerke Dürnrohr und Theiß mit mehr als 1.000 MW. Der größte Emittent von SO_2 und NO_x ist allerdings die Großfeuerungsanlage RS15 der Raffinerie Schwechat, die 2000 für 33,7 % der SO_2 - und 18,7 % der NO_x -Emissionen aller Großfeuerungsanlagen in Österreich verantwortlich war. Die folgende Aufstellung zeigt jene Großfeuerungsanlagen, die 2000 mehr als 500 Tonnen SO_2 bzw. NO_x emittierten, sowie deren Anteil an den Gesamtemissionen:

SO ₂	Tonnen	Anteil	NO _x	Tonnen	Anteil
OMV-Schwechat RS15	3172	33,7 %	OMV-Schwechat RS15	2129	18,7 %
Kraftwerk Voitsberg	1475	15,7 %	Kraftwerk Voitsberg	960	8,4 %
Fa. Jungbunzlauer	797	8,5 %	Kraftwerk Dürnrohr	810	7,1 %
Kraftwerk Dürnrohr	652	6,9 %	Kraftwerk Riedersbach 2	608	5,3 %
			FHKW Mellach	553	4,8 %
			PF Pöls, Laugenkessel	542	4,8 %

¹ BGBI.Nr. 380/1988

Emissionen der Großfeuerungsanlagen

Aufgrund der österreichischen Gesetzeslage liegen Daten für Dampfkesselanlagen nicht für das Kalenderjahr vor, sondern für die sogenannte Heizperiode (1. Oktober bis 30. September des Folgejahres). Im folgenden wird daher bei allen Emissionsangaben auf die sogenannte Heizperiode Bezug genommen. Für Jahre, in denen keine Emissionserklärungen vorliegen, werden die Daten des Vorjahres herangezogen. Durch verspätetes Einlangen von Emissionserklärungen können sich auch die Emissionen vorangegangener Jahre im Vergleich zum Vorgängerbericht (Ritter, Gugele & Moser, 2001) ändern.

Tabellen A und B zeigen, dass sowohl die SO₂- als auch die NO_x-Emissionen von Großfeuerungsanlagen in Österreich zwischen 1990 und 2000 deutlich zurückgegangen sind. Allerdings wurde der gesamte Rückgang in der ersten Hälfte der 90er Jahre erzielt (bis 1994 bzw. 1995). Seit dem Tiefstand Mitte der 90er Jahre sind die Emissionen wieder leicht gestiegen.

Schwefeldioxid: Die SO₂-Emissionen aus den Großfeuerungsanlagen haben sich seit 1990 halbiert, allerdings war die Entwicklung in den Sektoren recht unterschiedlich. Während im größten Sektor (den Kraftwerken) die SO₂-Emissionen um 64 % sanken, stiegen sie in der Raffinerie Schwechat um 23 %. Gründe für die Reduktion im Bereich der Kraftwerke sind der Umstieg auf schwefelärmere Brennstoffe (von Kohle bzw. Heizöl Schwer auf Erdgas) und die Installierung von Entschwefelungsanlagen. Im Bereich der Raffinerie wurden hingegen keine weiteren Maßnahmen zur Entschwefelung der Abgase getroffen. Außerdem wurden vermehrt schwefelhaltige Gase und Rückstände verfeuert, die bei der Produktion von schwefelarmen Brennund Treibstoffen anfallen. Dadurch stiegen die spezifischen SO₂-Emissionen² der Raffinerie in den 90er Jahren um mehr als ein Drittel, während jene der Kraftwerke und der Industrie beträchtlich sanken.

Tabelle A: SO₂-Emissionen von Großfeuerungsanlagen in Tonnen

	SO ₂ -Emissionen (Tonnen pro Heizperiode)											
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00
Kraftwerke	11.056	9.732	6.404	4.528	2.985	2.884	4.831	4.641	4.282	3.373	3.985	-64%
Raffinerie	2.786	1.974	2.652	3.364	3.092	3.013	3.068	3.591	3.524	3.502	3.428	23%
Industrie	3.774	4.269	4.014	3.181	2.185	2.088	1.727	1.508	2.029	1.847	2.010	-47%
	17 616	15 974	13 070	11 073	8 262	7 984	9 625	9 739	9 835	8 723	9 423	-47%

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Stickoxide: Die Reduktion der NO_x -Emissionen von 1990 bis 2000 (-32 %) ist nicht so ausgeprägt wie bei SO_2 . Wiederum sind es hauptsächlich die Kraftwerke, die zur Gesamtreduktion beigetragen haben. Allerdings konnten auch die Emissionen in der Raffinerie Schwechat reduziert werden (-31 %), während jene der Industrie stiegen (+6 %). Auch hier machte sich der Brennstoffwechsel und Investitionen in Entstickungsanlagen im Bereich der Kraftwerke bemerkbar. Außerhalb der Kraftwerksbranche existieren allerdings kaum Entstickungsanlagen. Dies drückt sich unter anderem darin aus, dass die NO_x -Emissionen pro eingesetzter Brennstoffeinheit (spezifische Emissionen) in der Raffinerie Schwechat fast dreimal so hoch sind wie in den Kraftwerken.

-

² Die spezifischen Emissionen sind die Emissionen pro eingesetzter Brennstoffeinheit (in Tonne pro Terajoule).

Tabelle B: NO_x-Emissionen von Großfeuerungsanlagen in Tonnen

		NO _x -Emissionen (Tonnen pro Heizperiode)										
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00
Kraftwerke	9.740	8.007	7.848	4.911	4.145	4.434	6.850	6.079	5.715	4.807	5.629	-42%
Raffinerie	4.326	4.384	4.138	3.665	3.374	3.343	3.221	3.511	3.184	3.197	2.977	-31%
Industrie	2.634	2.964	3.352	3.200	3.200	3.164	2.717	3.074	3.419	3.686	2.804	6%
	16 700	15 356	15 338	11 776	10 718	10 941	12 788	12 665	12 318	11 690	11 410	-32%

Im EWR-Abkommen verpflichtete sich Österreich zu einer schrittweisen Verringerung der jährlichen SO_2 -und NO_x -Emissionen aus bestehenden Großfeuerungsanlagen (das sind Anlagen, die vor dem 1. Juli 1987 genehmigt wurden). Die Verpflichtung umfasst eine 70 %ige Verminderung der SO_2 -Emissionen bis 2003 sowie eine Verringerung der NO_x -Emissionen um 40 % bis zum Jahr 1998. Das Basisjahr ist in beiden Fällen 1980, für das die Emissionen im EWR-Abkommen mit 90.000 Tonnen für SO_2 und 19.000 Tonnen für NO_x festgelegt wurden.

Abbildung A zeigt, dass Österreich die Verpflichtungen zur schrittweisen SO₂-Emissionsminderung bestehender Anlagen klar einhalten konnte. Das NO_x-Reduktionsziel hingegen konnte nur aufgrund der Tatsache, dass das Reduktionsziel nur für Altanlagen gilt, erreicht werden (siehe Abbildung B).

Abbildung A: SO₂-Emissionen österreichischer Großfeuerungsanlagen und EU Reduktionsziele

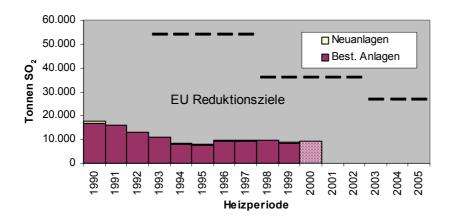
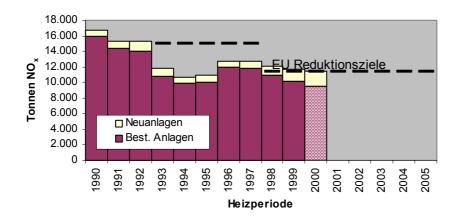



Abbildung B: NO_x-Emissionen österreichischer Großfeuerungsanlagen und EU Reduktionsziele

Summary

This report presents data for 1990 to 2000 of the annual steam boiler inventory of the Austrian Federal Environment Agency. The inventory is compiled in order to support the reporting requirements under the Large Combustion Plant Directive (88/609/EWR). Due to the legal basis in Austria, all emission data in this report are presented by "heating period", not by calendar year. The "heating period" is a "three-months-shifted" year starting on 1 October and ending on 30 September of the following year.

Tables A and B (see above) give an overview of SO_2 and NO_x emissions from steam boilers with a thermal capacity of 50 megawatt (MW) or more (large combustion plants) for the period from 1990 to 2000. SO_2 emissions from large combustion plants in Austria were around 9,400 tonnes in 2000, down 47 % from 1990.

All SO_2 reductions were achieved by 1995; since then emissions increased slightly. The trend is strongly influenced by emissions from power and district heating plants ("Kraftwerke" in Tables A and B), which reduced their emissions by 64 %. In contrast to that, SO_2 emissions from the refinery ("Raffinerie") were growing by 23 % between 1990 and 2000. The main reasons for the opposing trends are: (1) in the power and heat production a gradual shift from high to low sulphur fuels took place (from coal to natural gas), in addition several plants have installed de-sulphurisation equipment; (2) in the refinery no such equipment was installed, in addition increasingly high sulphur by-products from the production of low sulphur fuels have been used.

Austrian NO_x emissions from large combustion plants were about 11,400 tonnes in 2000, down 32 % from 1990. Again, this reduction was achieved in the first half of the 1990ies. Power and district heating plants account for the major part of emission reductions (-42 %), whereas industrial combustion plants increased their NOx emissions by 6 %. Again, the fuel switch to natural gas and investment into de-nitrification equipment are the main causes for the reductions in the heat and power industry between 1990 and 1994. Although NOx emissions from the refinery were reduced by 31 % between 1990 and 2000, the specific emissions (i.e. emissions per fuel unit) are still almost three times as high as in the heat and power industry.

Austria agreed to a 70 % reduction of SO_2 emissions from large combustion plants by 2003 and a 40 % reduction of NO_x emissions by 1998, both with 1980 as base year. Figures A and B (see above) illustrate that SO_2 emissions are well below the reduction targets, whereas the achievement of the NO_x emission target has been more tight.

2 EINLEITUNG

Ziel dieses Berichts: Dieser Bericht wurde vom Umweltbundesamt erstellt, um das Bundesministerium für Wirtschaft und Arbeit bei der Erfüllung der Berichtspflichten der *Richtlinie 88/609/EWG des Rates zur Begrenzung von Schadstoffemissionen von Großfeuerungsanlagen in die Luft* in deren geltender Fassung³ zu unterstützen. Diese Richtlinie hat eine generelle Verringerung der SO₂- und NO_x-Emissionen in der gesamten Europäischen Gemeinschaft zum Ziel. Zu diesem Zweck wurden verbindliche Reduktionsziele aus Großfeuerungsanlagen für die einzelnen Mitgliedsstaaten festgelegt. Mit dem Beitrittsvertrag zum EWR wurden auch für Österreich Reduktionsziele für Großfeuerungsanlagen festgelegt. Österreich vereinbarte dabei eine dreistufige Reduktion der SO₂-Emissionen um insgesamt 70 % bis zum Jahr 2003 auf der Basis von 1980. Bei den NO_x-Emissionen verpflichtete sich Österreich zu einer zweistufigen Reduktion um insgesamt 40 % bis zum Jahr 1998 auf der Basis von 1980.

Das Reduktionsziel bezieht sich nur auf bestehende Anlagen im Sinne der Großfeuerungsanlagen-Richtlinie (GFA-RL). Dies sind Anlagen mit einer Brennstoffwärmeleistung von 50 MW oder mehr, die vor dem 1. Juli 1987 genehmigt wurden. Damit fällt die überwiegende Zahl der Großfeuerungsanlagen unter den Altanlagenbegriff der GFA-Richtlinie, da nur vierzehn Anlagen von insgesamt etwa 70 als Neuanlagen identifiziert werden können.

Gemäß der Großfeuerungsanlagen-Richtlinie der EU ergeben sich folgende jährliche Berichtspflichten für die Mitgliedsstaaten:

- vollständige Aufstellung von SO₂- und NO_x-Emissionen
- Einzelaufstellung bei Raffinerien und Anlagen von mehr als 300 MW_{th}
- Gesamtaufstellung bei den übrigen Feuerungsanlagen ab 50 MW_{th}
- Beschreibung der Methoden und Ausgangsdaten zur Ermittlung der Emissionen (siehe Anhang)

Datengrundlage: Der vorliegende Bericht stützt sich im wesentlichen auf die jährliche Inventur von Dampfkesseln, und damit auf die Emissionserklärungen der Anlagenbetreiber. Gemäß §10 Abs. 7 Luftreinhaltegesetz für Kesselanlagen (LRG-K)⁴ ist jeder Betreiber einer Dampfkesselanlage, deren Brennstoffwärmeleistung 2 MW überschreitet, verpflichtet, jährliche Emissionserklärungen abzugeben. Die Emissionserklärungen enthalten Angaben über den Betreiber, die Dampfkesselanlage, den Brennstoffverbrauch, die Brennstoffart und die Emissionen an SO₂, NO_x, CO und Staub. Die Emissionserklärungen werden von den zuständigen Behörden (im Allgemeinen die Bezirksbehörden) eingefordert und vom Umweltbundesamt zentral in die sogenannte *Dampfkessel-Datenbank* (DKDB) übertragen, in der etwa 600 Dampfkesselanlagen erfasst sind.

Die Angaben der Betreiber von Großfeuerungsanlagen werden vom Umweltbundesamt stichprobenartig überprüft und bei Bedarf mit den Betreibern und der Behörde vervollständigt.

Für die diesjährige Berichtspflicht sind zum Stichtag 30. August leider wieder mehr Emissionserklärungen von wichtigen Anlagen ausgeblieben, als dies in den vergangenen Jahren der Fall war. Dies machte langwierige Nachrecherchen notwendig. Im Mai 2002 gingen schließlich die letzten Emissionserklärungen von insgesamt 19 Anlagen mit einer Brennstoffwärmeleistung über 300 MW im Amt ein. Auch von den Anlagen zwischen 50 und 300 MW langten viele Emissionserklärungen erst 2002 im Umweltbundesamt ein. Erst zu diesem Zeitpunkt konnte der aktuelle Datenstand erreicht werden.

³ Richtlinie 88/609/EWG des Rates vom 24. November 1988 zur Begrenzung von Schadstoffemissionen von Großfeuerungsanlagen in die Luft, ABI v 7. 12. 1988 Nr L 336, 1ff

geändert durch Richtlinie 94/66/EG des Rates vom 15. Dezember 1994 zur Änderung der Richtlinie 88/609/EWG, ABI v 24. 12. 1994 Nr L 337, 83 ff

⁴ BGBI.Nr. 380/1988

Der gegenständliche Bericht enthält Auswertungen und Analysen von Emissions- und Brennstoffdaten aus der Dampfkessel-Datenbank des Umweltbundesamtes für die Jahre 1990 bis 2000. Aufgrund der österreichischen Gesetzeslage liegen Daten für Dampfkesselanlagen nicht für das Kalenderjahr, sondern für die sogenannte Heizperiode vor. Die Heizperiode beginnt mit dem 1. Oktober und endet mit dem 30. September des Folgejahres, das heißt Daten für 2000 wurden von 1. Oktober 1999 bis 30 September 2000 erfasst.

In der Dampfkesseldatenbank des UBA sind auch Daten von Müllverbrennungsanlagen enthalten. Da diese allerdings nicht der Berichtspflicht unter der GFA-Richtlinie unterliegen, sind sie im vorliegenden Bericht nicht erfasst.

Aufbau des Berichts: Kapitel 3 behandelt Großfeuerungsanlagen in Österreich allgemein und stellt weiters Anlagen > 300 MW genauer dar.

In Kapitel 4 werden die Emissionsdaten der Dampfkessel-Datenbank des Umweltbundesamtes präsentiert. Dabei werden zunächst die Gesamtemissionen von SO₂, NO_x, CO und Staub aller Großfeuerungsanlagen gegliedert nach den Sektoren Kraftwerke, Industrie und Raffinerie präsentiert. Dann werden die Emissionen von SO₂ und NO_x der Raffinerie und der Großfeuerungsanlagen > 300 MW einzeln dargestellt. Damit wird den wesentlichen Erfordernissen der Berichtspflicht der GFA-Richtlinie nachgekommen.

Im Anhang (Kapitel 5) werden die Methoden und Ausgangsdaten dieses Berichts kurz beschrieben.

3 GROSSFEUERUNGSANLAGEN IN ÖSTERREICH

Großfeuerungsanlagen (das sind in diesem Bericht Dampfkesselanlagen mit einer Brennstoffwärmeleistung ab 50 MW) haben beträchtliche Auswirkungen auf die Umwelt. Allerdings wurden im Bereich der Großfeuerungsanlagen in den letzten Jahren zum Teil beträchtliche Erfolge im Zuge von Emissionsminderungsmaßnahmen erzielt.

In Österreich existieren 74 Großfeuerungsanlagen, davon 19 Anlagen > 300 MW $_{\rm th}$. Etwa die Hälfte aller Großfeuerungsanlagen sind kalorische Kraftwerke zur Strom- und/oder Wärmeerzeugung; sie decken rund drei Viertel der installierten Brennstoffwärmeleistung der Großfeuerungsanlagen ab. Die Industrie macht rund 16 % der installierten Brennstoffwärmeleistung der Großfeuerungsanlagen aus, die Raffinerie nicht ganz 10 %.

Die größten Dampfkesselanlagen in Österreich sind die Kraftwerke Dürnrohr und Theiß (AbHDE) mit über 1.000 MW Brennstoffwärmeleistung. Tabelle 1 listet alle Großfeuerungsanlagen über 300 MW in Österreich auf. Darunter befinden sich die zwei Kraftwerksblöcke der Raffinerie Schwechat und eine industrielle Großfeuerungsanlage.

Tabelle 1:	Großfeuerungsanlagen	über 300 MW _{+h}	(Stand 2002)

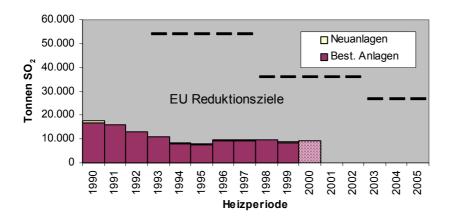
Bezirk	Anlage	Тур	Erstzulassung	MW _{th}	Hauptbrennstoff
Tulln	EVN/VKG, KW Dürnrohr	Kraftwerk	1987	1.758	Steinkohle
Krems	EVN, KW Theiß, AbHDE + M3	Kraftwerk	1994	1.233	Erdgas
Wien XI	WEW, KW Simmering BKW 1,2	Kraftwerk	1983	857	Erdgas
Wien XXII	WEW, KW Donaustadt, BKW 1,2	Kraftwerk	1976	812	Erdgas
Wien XI	WEW, KW Simmering, BKW 3	Kraftwerk	1962	800	Erdöl
Voitsberg	ÖDK, KW Voitsberg, Werk 3	Kraftwerk	1983	792	Braunkohle
Korneuburg	VKG, KW Korneuburg, Block II	Kraftwerk	1985	685	Erdgas
Graz	STEWEAG, KW Neud/Wernd	Kraftwerk	1970	648,9	Erdgas
Wien XXII	WEW, KW Leopoldau, GuDKW	Kraftwerk	1975	649	Erdgas
Wien Umgebung	OMV Schwechat RS14	Raffinerie	1981	596	Prozessgas
Graz	STEWEAG, FHKW Mellach	Kraftwerk	1986	543	Steinkohle
Wien Umgebung	OMV Schwechat RS15	Raffinerie	1981	482	Prozessgas
Linz	ESG Linz, Gesamtanl. Lunzerstr.	Kraftwerk	1997	412	Erdgas
Braunau	OKA, KW Riedersbach 2	Kraftwerk	1981	377,5	Braunkohle
Krems	EVN, KW Theiß, Maschine 2	Kraftwerk	1984	367	Erdgas
Wien XXIII	HBW, FHW Süd, Rosiwalgasse	Kraftwerk	1994	358	Erdgas
Wien III	HBW, FHKW Arsenal, HWK 1,2,3	Kraftwerk	1983	354	Erdöl
Judenburg	ÖDK, KW Zeltweg	Kraftwerk	1964	344	Steinkohle
Judenburg	PF Pöls, Laugenkessel 2	Industrie	1995	330	Erdgas

In drei Bundesländern (Burgenland, Tirol, Vorarlberg) existieren überhaupt keine Großfeuerungsanlagen. Sowohl SO_2 - als auch NO_x -Emissionen konzentrieren sich im Großraum Wien. Zum einen machen sich die Strom- und Fernheizwerke der Bundeshauptstadt bemerkbar, zum anderen schlagen aber auch die Emissionen der Raffinerie Schwechat durch. Allein die Großfeuerungsanlage RS15 der Raffinerie Schwechat emittierte 2000 33,7 % der SO_2 - und 18,7 % der NO_x -Emissionen aller Großfeuerungsanlagen in Österreich (Tabelle 2).

Tabelle 2: Großfeuerungsanlagen mit mehr als 500 Tonnen SO₂ bzw. NOҳ Ausstoß und ihr Anteil an den Gesamtemissionen der Großfeuerungsanlagen 2000

SO ₂	Tonnen	Anteil	NO _x	Tonnen	Anteil
OMV-Schwechat RS15	3172	33,7 %	OMV-Schwechat RS15	2129	18,7 %
Kraftwerk Voitsberg	1475	15,7 %	Kraftwerk Voitsberg	960	8,4 %
Fa. Jungbunzlauer	797	8,5 %	Kraftwerk Dürnrohr	810	7,1 %
Kraftwerk Dürnrohr	652	6,9 %	Kraftwerk Riedersbach 2	608	5,3 %
			FHKW Mellach	553	4,8 %
			PF Pöls, Laugenkessel	542	4,8 %

4 EMISSIONEN ÖSTERREICHISCHER GROSSFEUERUNGSANLAGEN


Dieses Kapitel zeigt die Ergebnisse der jährlichen Emissionsinventur für SO_2 , NO_x , CO und Staub von Großfeuerungsanlagen (Dampfkesselanlagen mit einer Brennstoffwärmeleistung über 50 Megawatt) in Österreich für die Jahre 1990 bis 2000. Zunächst werden die Emissionen der gesamten Großfeuerungsanlagen nach Sektoren präsentiert, dann die Einzelemissionen von SO_2 und NO_x der Großfeuerungsanlagen über 300 MW_{th} und der Dampfkesselanlagen der Raffinerie Schwechat.

4.1 Gesamtemissionen der Großfeuerungsanlagen ab 50 MW_{th}

4.1.1 Schwefeldioxid (SO₂)

Im Jahr 2000 betrugen die SO_2 -Emissionen von Großfeuerungsanlagen 9.423 Tonnen. Sie lagen damit um 701 Tonnen über den Emissionen von 1999. Bezogen auf das Basisjahr 1980 (90.000 Tonnen SO_2 laut EWR Vertrag) haben sich die SO_2 -Emissionen um rund 90 % reduziert. Damit liegt Österreich deutlich unter dem EU-Reduktionsziel von insgesamt 70 % (Abbildung 1).

Abbildung 1: SO₂-Emissionen aus österreichischen Großfeuerungsanlagen und EU Reduktionsziele

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Die größte Minderung wurde schon zwischen 1980 und 1990 erzielt, aber auch Anfang der 1990er Jahre konnten die SO_2 -Emissionen noch weiter vermindert werden. Seit 1994 blieben die SO_2 -Emissionen aus den Großfeuerungsanlagen allerdings in etwa konstant. Die SO_2 -Emissionen lagen im Jahr 2000 um 47 % unter dem Wert von 1990.

Tabelle 3: SO₂-Emissionen aus Großfeuerungsanlagen pro Heizperiode in Tonnen

		SO ₂ -Emissionen (Tonnen pro Heizperiode)										
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00
Kraftwerke	11.056	9.732	6.404	4.528	2.985	2.884	4.831	4.641	4.282	3.373	3.985	-64%
Raffinerie	2.786	1.974	2.652	3.364	3.092	3.013	3.068	3.591	3.524	3.502	3.428	23%
Industrie	3.774	4.269	4.014	3.181	2.185	2.088	1.727	1.508	2.029	1.847	2.010	-47%
	17 616	15 974	13 070	11 073	8 262	7 984	9 625	9 739	9 835	8 723	9 423	-47%

Kraftwerke: Die deutlichsten Reduktionen bis 1995 erfolgten bei den Kraftwerken (Abbildung 2 und Tabelle 3). Trotz Zunahmen ab 1995 konnten im gesamten Zeitraum (1990 bis 2000) die SO₂-Emissionen bei den Kraftwerken um 64 % reduziert werden. Dies gelang vor allem durch die drastische Reduktion der Verbrennung von *Heizöl Schwer* in Kraftwerken ohne Entschwefelungsanlage. Einige Kraftwerke haben von Heizöl/Erdgas Kombibetrieb auf alleinige Erdgasverfeuerung umgestellt. Außerdem ist der Verbrauch von Braunund Steinkohle trotz Schwankungen generell rückläufig.

Der relativ strenge Winter des Jahres 1996 ist der Hauptgrund für die Zunahme der SO₂-Emissionen gegenüber 1995. Strenge Winter erhöhen einerseits den Strombedarf für Heizungen, verringern aber auch andererseits die Wassermenge, die zur Stromerzeugung mittels Wasserkraftwerken herangezogen werden kann. Außerdem steigt in kalten Jahren auch die Wärmeproduktion in den Fernheizkraftwerken.

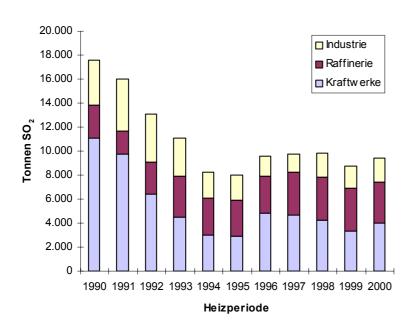
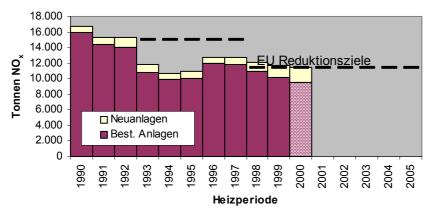


Abbildung 2: SO₂-Emissionen aus Großfeuerungsanlagen nach Sektoren

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002


Raffinerie: Ganz anders sieht die Situation bei den Großfeuerungsanlagen der Raffinerie aus. Diese Anlagen emittierten 2000 deutlich mehr SO_2 als im Jahr 1990 (+23 %). Mit 3.428 Tonnen emittieren nun die Großfeuerungsanlagen in der Raffinerie ungefähr gleich viel SO_2 wie die kalorischen Kraftwerke. Verursacht wird die Steigerung des SO_2 -Ausstoßes vor allem durch vermehrte Verfeuerung von schwefelhaltigen Gasen und Rückständen, die bei der Herstellung von schwefelarmen Brenn- und Treibstoffen entstehen.

Industrie: Auch die Großfeuerungsanlagen der Industrie konnten ihre SO_2 -Emissionen von 1990 bis 2000 stark reduzieren (-47 %). Bei der Industrie schlagen sich u.a. Rückgänge beim *Heizöl Schwer* Verbrauch nieder.

4.1.2 Stickoxide (NO_x)

Im Jahr 2000 betrugen die gesamten NO_x-Emissionen aus Großfeuerungsanlagen 11.410 Tonnen. Damit haben die NO_x-Emissionen aus den Großfeuerungsanlagen in den 90er Jahren um 32 % abgenommen. Bezogen auf das Basisjahr 1980 (wo laut EWR Vertrag 19.000 Tonnen NO_x emittiert wurden) bedeutet dies eine Reduktion um 39,9 %. Österreich hat sich zu einer zweistufigen Reduktion der NO_x-Emissionen um insgesamt 40% bis zum Jahr 1998 auf der Basis von 1980 verpflichtet. Allerdings bezieht sich das Reduktionsziel nur auf bestehende Anlagen im Sinne der Großfeuerungsanlagen-Richtlinie (das sind Anlagen, die vor dem 1. Juli 1987 genehmigt wurden). Deshalb liegt Österreich unter dem Zielwert für 2000, wohingegen das bei der Einrechnung aller Anlagen knapp nicht der Fall sein würde (siehe Abbildung 3).

Abbildung 3: NO_x-Emissionen aus österreichischen Großfeuerungsanlagen und EU Reduktionsziele

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Kraftwerke: Zu den stärksten Reduktionen kam es im Bereich der kalorischen Kraftwerke, wo der NO_{x} -Ausstoß von 9.740 Tonnen im Jahr 1990 auf 5.629 Tonnen im Jahr 2000 sank (Tabelle 4 und Abbildung 4). Damit gingen die NO_{x} -Emissionen der Kraftwerke in den Jahren von 1990 bis 2000 um 42 % zurück; jedoch ist von 1999 auf 2000 wieder ein Anstieg von 17 % zu verzeichnen.

Tabelle 4: NO_x-Emissionen aus Großfeuerungsanlagen pro Heizperiode in Tonnen

		NO _x -Emissionen (Tonnen pro Heizperiode)											
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00	
Kraftwerke	9.740	8.007	7.848	4.911	4.145	4.434	6.850	6.079	5.715	4.807	5.629	-42%	
Raffinerie	4.326	4.384	4.138	3.665	3.374	3.343	3.221	3.511	3.184	3.197	2.977	-31%	
Industrie	2.634	2.964	3.352	3.200	3.200	3.164	2.717	3.074	3.419	3.686	2.804	6%	
	16 700	15 356	15 338	11 776	10 718	10 941	12 788	12 665	12 318	11 690	11 410	-32%	

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Zusätzlich eingebaute Entstickungsanlagen haben hier geholfen, diese deutliche Reduktion zu erreichen. Im Jahr 1996 haben die mit Entstickungsanlagen ausgerüsteten Anlagen etwa 55 % aller in diesem Sektor verwendeten konventionellen Brennstoffe verfeuert. Der noch relativ kleine Anteil an Anlagen mit Entstickungsanlagen (im Vergleich zu Entschwefelungsanlagen) zeigt, dass hier noch deutlich höhere Emissionsreduktionen möglich wären.

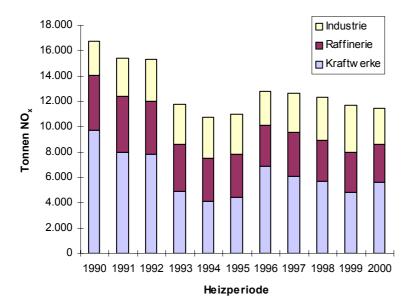


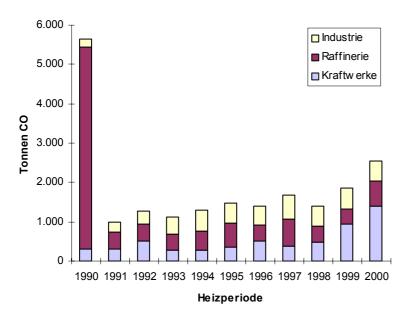
Abbildung 4: NO_x-Emissionen aus Großfeuerungsanlagen nach Sektoren

Raffinerie: Im Gegensatz zu den SO₂-Emissionen gelang es im Bereich der Raffinerie die NO_x-Emissionen durch Primärmaßnahmen um 31 % im Zeitraum 1990 bis 2000 zu senken.

Industrie: Zugenommen haben - parallel zu den höheren Brennstoffverbräuchen - die NO_x -Emissionen im Bereich der Industrie (+6 %). Hier schlägt sich die sehr geringe Zunahme der Anzahl von Entstickungsanlagen nieder. Die Großfeuerungsanlagen der Industrie emittierten 2000 ungefähr gleich viel NO_x wie die Raffinerie, 1990 war der Ausstoß der Raffinerie noch deutlich höher.

4.1.3 Kohlenmonoxid (CO)

Viele Emissionserklärungen enthalten keine Angaben zu den CO-Emissionen, obwohl das LRG-K eine Berichtspflicht für diese Emissionen vorsieht. Hier wäre eine vermehrte Aufmerksamkeit auf vollständige und richtige Angaben der Betreiber wünschenswert. Trotz der etwas unsicheren Datenlage sollten jedoch vorsichtige Aussagen über Trends möglich sein.


Die CO-Emissionen sind von 1990 auf 1991 abrupt gefallen, was auf eine Technologieumstellung in der OMV Raffinerie Schwechat zurückzuführen war. Seit 1991 steigen die CO-Emissionen allerdings wieder langsam aber stetig (Abbildung 5 und Tabelle 5). Insgesamt lagen die CO-Emissionen 2000 55 % unter dem Wert von 1990.

Die CO-Emissionen sind stark abhängig vom Braun- und Steinkohleverbrauch in den Kraftwerken, da Kohle die höchsten Emissionsfaktoren für CO hat. Allerdings korrelieren die CO-Emissionen nicht mit dem Kohleverbrauch. Beispielsweise weisen die Jahre 1991 und 1996 - Jahre mit sehr hohem Kohleverbrauch - keine Spitzenwerte bei den CO-Emissionen auf.

Sektorspezifische Entwicklung: Während die CO-Emissionen in der Raffinerie nach besagter Technologieumstellung abrupt abnahmen und seither schwankten, nahmen die CO-Emissionen in den Kraftwerken und in der Industrie beträchtlich zu. Die CO-Emissionen in den Kraftwerken stiegen um 377 %, jene in der

Industrie um 150 %. Ein Teil dieser Zunahme kann jedoch auch durch verstärkte Wahrnehmung der Berichtspflicht verursacht worden sein.

Abbildung 5: CO-Emissionen aus Großfeuerungsanlagen nach Sektoren

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Tabelle 5: Entwicklung der CO-Emissionen der Großfeuerungsanlagen von 1990 bis 2000 in Tonnen

		CO-Emissionen (Tonnen pro Heizperiode)											
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00	
Kraftwerke	295	305	515	277	273	351	500	385	486	946	1.406	377%	
Raffinerie	5.152	421	423	421	483	626	423	690	412	377	619	-88%	
Industrie	207	261	343	417	539	494	474	605	492	543	516	150%	
	5 653	988	1 281	1 115	1 295	1 471	1 396	1 679	1 391	1 866	2 541	-55%	

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

4.1.4 Staub

Die Staubemissionen aus Großfeuerungsanlagen haben sich zwischen 1990 und 2000 halbiert (-50 %). Besonders stark war der Rückgang zwischen 1991 und 1994. Während 1996 wieder deutlich mehr Staub emittiert wurde als 1994 (vor allem in den Kraftwerken), konnte bis 2000 insgesamt gesehen wieder ein leichter Rückgang registriert werden (Abbildung 6 und Tabelle 6).

Auch für die Staubemissionen ist der Kohleverbrauch maßgeblich. Hier zeigen sich im Gegensatz zu den CO-Emissionen deutliche Parallelen zwischen dem Kohleverbrauch und den Staubemissionen: die Jahre 1991 und 1996 waren Jahre mit sehr hohem Kohleverbrauch und damit hohen Staubemissionen. Allerdings muss auch hier erwähnt werden, dass viele Emissionserklärungen keine Angaben zu den Staubemissionen beinhalten, und diese fehlenden Angaben zu einer Verzerrung des Trends führen können.

Sektorspezifische Entwicklung: In allen Sektoren sanken die Staubemissionen. Während die Staub-Emissionen in der Industrie nahezu kontinuierlich zurückgegangen sind (-52 %), sanken jene aus den Kraftwerken zwar insgesamt (-53 %), schwankten allerdings entsprechend dem Kohleverbrauch. Die Staubemissionen in der Raffinerie fielen um 33 %.

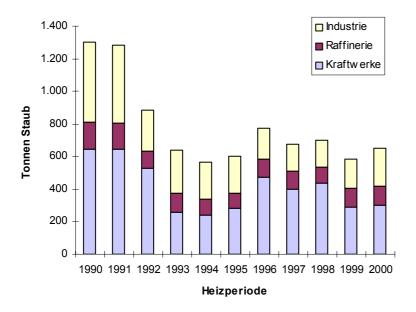


Abbildung 6: Staubemissionen aus Großfeuerungsanlagen nach Sektoren in Tonnen

Tabelle 6: Entwicklung der Staubemissionen der Großfeuerungsanlagen von 1990 bis 2000

	Staub-Emissionen (Tonnen pro Heizperiode)											Diff.
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	90/00
Kraftwerke	646	644	527	257	241	282	475	398	433	289	303	-53%
Raffinerie	166	160	106	117	98	94	105	111	103	117	112	-33%
Industrie	491	481	252	264	222	226	191	166	166	175	237	-52%
,	1 303	1 285	885	638	562	603	771	675	703	581	652	-50%

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

4.2 Einzelemissionen der Großfeuerungsanlagen

4.2.1 Großfeuerungsanlagen über 300 MW der Kraftwerke und Industrie

Großfeuerungsanlagen mit einer thermischer Brennstoffwärmeleistung über 300 MW müssen einzeln gegenüber der Europäischen Kommission berichtet werden. Tabelle 1 zeigt eine Aufstellung der wichtigsten Umweltdaten österreichischer Großfeuerungsanlagen über 300 MW_{th}. Wie daraus zu ersehen ist, sind bereits nahezu alle Kraftwerke, die nicht ausschließlich mit Erdgas beheizt sind, mit Rauchgasreinigungsanlagen ausgestattet.

 MW_{th} Bezirk Kraftwerksblock DeSO_x Haupt-DeNO_v Konzentration Konzentration brennstoff NO_x [mg/m³] SO₂ [mg/m³] VKG, KW Korneuburg, Block II 685 Gas/Öl 400 250 Korneubura EVN, KW Theiß, AbHDE + M3 **ZWS** SCR 2 70 Krems 1 233 Gas/Öl 50 3 Krems EVN, KW Theiß, M2 367 Gas/Öl 300 300 Tulln EVN/VKG, KW Dürnrohr 1 758 Steinkohle SAV SCR 130 140 Braunau OKA, KW Riedersbach 2 378 Braunkohle KWV **SNCR** 100 200 6 STEWEAG, KW Neud/Wernd Graz 649 Frdgas SCR 100 100 ÖDK, KW Zeltweg TSV Judenburg 344 Steinkohle SNCR 170 270 Voitsberg 792 Braunkohle KAV+KWV 8 ÖDK, KW Voitsberg, Werk 3 SCR 230 190 Wien XI WEW, KW Simmering 1,2 857 Erdgas SCR 80 WEW, KW Simmering 3 Wien XI 800 Heizöl **TSV** SCR 20 80 Wien XXII WEW, KW Donaustadt 1,2 812 Erdgas SCR 0 80 11 WEW, KW Leopoldau, GuDKW 12 Wien XXII 649 Erdgas SCR n < 100 13 Graz STEWEAG, FHKW Mellach 543 Steinkohle **KWV** SCR 60 160 Wien III HBW, FHKW Arsenal 1,2,3 354 Heizöl 200 300 ESG Linz, Ges.anl. Lunzerstr. 412 283 15 Linz Erdgas 0 Wien XXIII HBW, FHW Süd, Rosiwalg. 16 358 Erdgas 61 80 17 Judenburg PF Pöls, Laugenkessel 2 330 Erdgas 160

Tabelle 7: Aufstellung wichtiger Umweltdaten der Großfeuerungsanlagen > 300 MW (Stand 2002)

KAV - Kalkadditiv-Verfahren; TSV - Trockensorptionsverfahren; KWV - Kalksteinwaschverfahren; SAV - Sprühabsorptionsverfahren; SNCR - Selektive nicht-katalytische Reduktion; SCR - Selektive katalytische Reduktion; ZWS - Zirkulierende Wirbelschicht. Bei den Konzentrationsangaben handelt es sich um gemessene Halbstundenmittelwerte (HMW)

Tabelle 8 und Tabelle 9 zeigen Emissionen österreichischer Großfeuerungsanlagen über 300 MW. Ein Vergleich mit den Gesamtemissionen zeigt, dass Anlagen über 300 MW maßgeblich zu den Reduktionserfolgen aller Anlagen beigetragen haben.

Entscheidend war hierbei vor allem die Installation von Entschwefelungsanlagen in kalorischen Kraftwerken und die Umstellung auf schwefelarme Brennstoffe in Kraftwerken ohne Entschwefelungsanlagen. Beispielsweise verbrannten im Jahr 1990 die Blockkraftwerke Simmering (1 und 2) und Donaustadt rund 140.000 Tonnen Heizöl Schwer ohne Entschwefelungsanlage. Dies verursachte SO₂-Emissionen von etwa 2.700 Tonnen. 1997 wurde in beiden Kraftwerken kein Heizöl Schwer mehr verfeuert. Umgekehrt sind die seit 1997 höheren SO₂-Emissionen im zweitgrößten Kraftwerk Österreichs (Kraftwerk Theiß) auf vermehrte Verfeuerung von Heizöl Schwer zurückzuführen.

Tabelle 8: SO₂ Emissionen der Großfeuerungsanlagen > 300 MW (Kraftwerke und Industrie) 1990 - 2000 (in Tonnen)

Nr.	Bezirk	Anlage	MW_{th}	1990	1994	1995	1996	1997	1998	1999	2000
1 Ko	rneuburg	VKG, KW Korneuburg, Block II	685	331	0	0	412	80	360	60	95
2 Kre	ems	EVN, KW Theiß, Maschine 2	367								86
3 Kre	ems	EVN, KW Theiß, AbHDE + M3	1.233								120
4 Tu	ılln	EVN/VKG, KW Dürnrohr	1.758	1.040	303	497	640	640	583	303	652
5 Bra	aunau	OKA, KW Riedersbach 2	378	793	466	134	253	203	277	170	266
6 Gr	az	STEWEAG, FHKW Mellach	543	65	17	106	117	117	88	124	219
7 Gr	az	STEWEAG, KW Neudorf/Werndorf	649	3	0	0	1	1	1	176	175
8 Ju	denburg	ÖDK, KW Zeltweg	344	596	169	73	122	122	40	10	21
9 Vo	itsberg	ÖDK, KW Voitsberg, Werk 3	792	740	148	560	1.168	790	879	728	1.475
10 Wi	ien III	HBW, FHKW Arsenal, HWK 1,2,3	354	102	79	79	101	225	91	55	11
11 Wi	ien XI	WEW, KW Simmering, BKW 1,2	857	1.197	0	0	2	2	2	0	0
12 Wi	ien XI	WEW, KW Simmering, BKW 3	800		106	73	145	170	36	146	61
13 Wi	ien XXII	WEW, KW Donaustadt, BKW 1,2	812	1.518	24	0	35	0	0	6	14
14 Wi	ien XXII	WEW, KW Leopoldau, GuDKW	649	0	0	0	0	0	0	0	6
15 Lin	nz	ESG Linz, Gesamtanl. Lunzerstr.	412						0	0	0
16 Wi	ien XXIII	HBW, FHW Süd, Rosiwalgasse	358				108	153	0	0	0
17 Ju	denburg	PF Pöls, Laugenkessel 2	330							19	16

Tabelle 9: NO_x Emissionen der Großfeuerungsanlagen > 300 MW (Kraftwerke und Industrie) 1990 - 2000 (in Tonnen)

Nr. Bezirk	Anlage	MW _{th}	1990	1994	1995	1996	1997	1998	1999	2000
1 Korneuburg	VKG, KW Korneuburg, Block II	685	466	33	45	181	26	109	40	21
2 Krems	EVN, KW Theiß, Maschine 2	367								66
3 Krems	EVN, KW Theiß, AbHDE + M3	1.233								133
4 Tulln	EVN/VKG, KW Dürnrohr	1.758	1.105	383	675	886	886	991	549	810
5 Braunau	OKA, KW Riedersbach 2	378	559	470	317	596	457	549	387	608
6 Graz	STEWEAG, FHKW Mellach	543	283	349	529	513	513	386	317	553
7 Graz	STEWEAG, KW Neudorf/Werndorf	649	16	61	59	56	56	56	217	199
8 Judenburg	ÖDK, KW Zeltweg	344	156	93	108	301	301	141	57	75
9 Voitsberg	ÖDK, KW Voitsberg, Werk 3	792	1.349	127	342	711	378	498	543	960
10 Wien III	HBW, FHKW Arsenal, HWK 1,2,3	354	65	27	27	42	93	34	19	8
11 Wien XI	WEW, KW Simmering, BKW 1,2	857	1.020	260	0	333	324	347	310	243
12 Wien XI	WEW, KW Simmering, BKW 3	800		195	278	340	358	132	432	362
13 Wien XXII	WEW, KW Donaustadt, BKW 1,2	812	335	144	120	124	62	76	41	20
14 Wien XXII	WEW, KW Leopoldau, GuDKW	649	90	140	0	97	92	92	75	17
15 Linz	ESG Linz, Gesamtanl. Lunzerstr.	412						103	111	80
16 Wien XXIII	HBW, FHW Süd, Rosiwalgasse	358				46	66	1	2	1
17 Judenburg	PF Pöls, Laugenkessel 2	330							453	542

4.2.2 Großfeuerungsanlagen der Raffinerie

Die GFA-Richtlinie schreibt eine separate Meldung von Anlagen der Raffinerien vor. Diese hat unabhängig von ihrer Brennstoffwärmeleistung zu erfolgen.

Aufgrund der Besonderheiten des LRG-K werden diese Anlagen der Raffinerie entsprechend Tabelle 10 eingeteilt. Dabei handelt es sich bei den Anlagen RS07-RS11 um Prozessöfen für die Rohöldestillation und Olefinherstellung, bei der Anlage RS13 um eine FCC-Anlage und bei RS14 und RS15 um Dampferzeuger für die Erzeugung von Kraft und Wärme.

Tabelle 10: Aufstellung wichtiger Umweltdaten der Großfeuerungsanlagen der Raffinerie Schwechat (Stand 2000)

	Bezirk	Kraftwerksblock	MWth	Haupt	DeSO _x	DeNO _x	Konzentration	Konzentration
				brennstoff			SO ₂ [mg/m3]	NO _x [mg/m3]
1	Schwechat	OMV Schwechat, RS07	68	Raffineriegas	-	-	25	162
2	Schwechat	OMV Schwechat, RS08	80	Raffineriegas	-	-	23	168
3	Schwechat	OMV Schwechat, RS09	85	Raffineriegas	-	-	41	138
4	Schwechat	OMV Schwechat, RS10	180	Raffineriegas	-	-	18	73
5	Schwechat	OMV Schwechat, RS11	298	Raffineriegas	-	-	1	168
6	Schwechat	OMV Schwechat, RS13	82	Katalys.koks			334	283
7	Schwechat	OMV Schwechat, RS14	467	Raffineriegas	-	-	141	138
8	Schwechat	OMV Schwechat, RS15	482	Raffineriegas	WL ¹	-	697	491

Wellman-Lord Verfahren (Nasse Wäsche mit Natriumbisulfit)
Bei den Konzentrationsangaben handelt es sich um gemessene Halbstundenmittelwerte (HMW)

Tabelle 11 und Tabelle 12 zeigen die Emissionen von Anlagen der Raffinerie ab 50 MW $_{th}$ auf. Hier zeigt sich, dass insbesondere das Kraftwerk RS15 sehr hohe SO $_2$ - und NO $_x$ -Emissionen aufweist, wobei die SO $_2$ - Emissionen zwischen 1990 und 2000 sehr stark angestiegen sind.

Auch die Beschaffung der Emissionserklärungen des Raffineriesektors trug zu erheblichen Verzögerungen in der Erfüllung der Großfeuerungsanlagen-Berichtspflicht 2001 bei. Erst Mitte Dezember 2001 und somit mehr als ein halbes Jahr nach ihrer Anforderung durch das Umweltbundesamt gelangten diese Emissionserklärungen im Amt ein.

Tabelle 11: SO₂ Emissionen der Großfeuerungsanlagen der Raffinerie Schwechat 1990 - 2000 (in Tonnen)

Nr.	Bezirk	Anlage	MW_{th}	1990	1994	1995	1996	1997	1998	1999	2000
1	Wien-Umgeb OM\	/ Schwechat, RS07	68	30	8	10	0	11	11	11	8
2	Wien-Umgeb OM\	/ Schwechat, RS08	80	29	25	26	40	26	24	12	6
3	Wien-Umgeb OM\	/ Schwechat, RS09	85	39	62	41	58	42	32	20	0
4	Wien-Umgeb OM\	/ Schwechat, RS10	180	83	66	68	89	69	68	27	22
5	Wien-Umgeb OM\	/ Schwechat, RS11	298	16	3	3	3	3	3	3	0
6	Wien-Umgeb OM\	/ Schwechat, RS13	82	590	250	191	213	270	184	236	78
7	Wien-Umgeb OM\	/ Schwechat, RS14	596	352	110	81	65	56	75	81	142
8	Wien-Umgeb OM\	/ Schwechat, RS15	482	1648	2569	2593	2599	3113	3127	3111	3172

Datengrundlage: Die Dampfkessel-Datenbank des Umweltbundesamtes (DKDB), Stand: Mai 2002

Tabelle 12: NO_x Emissionen der Großfeuerungsanlagen der Raffinerie Schwechat 1990 - 2000 (in Tonnen)

Nr.	Bezirk	Anlage	MW_{th}	1990	1994	1995	1996	1997	1998	1999	2000
1	Wien-Umgeb OM\	/ Schwechat, RS07	68	102	91	95	0	93	84	71	99
2	Wien-Umgeb OM\	/ Schwechat, RS08	80	111	103	104	120	99	89	89	44
3	Wien-Umgeb OM\	/ Schwechat, RS09	85	137	114	89	104	75	73	71	0
4	Wien-Umgeb OM\	/ Schwechat, RS10	180	495	206	215	200	197	116	108	99
5	Wien-Umgeb OM\	/ Schwechat, RS11	298	360	314	293	353	374	390	390	335
6	Wien-Umgeb OM\	/ Schwechat, RS13	82	180	271	383	344	321	203	200	134
7	Wien-Umgeb OM\	/ Schwechat, RS14	596	413	232	140	108	72	89	75	138
8	Wien-Umgeb OM\	/ Schwechat, RS15	482	2526	2042	2024	1992	2281	2140	2193	2129

5 ANHANG: DATENLAGE

Die Dampfkessel-Datenbank

Dieser Bericht baut auf den Emissionserklärungen der Betreiber von Großfeuerungsanlagen auf. Das Luftreinhaltegesetz für Kesselanlagen (LRG-K 1989) verpflichtet Betreiber von Dampfkesselanlagen mit einer Brennstoffwärmeleistung über 2 MW, jährliche Emissionserklärungen abzugeben. Diese Emissionserklärungen enthalten monatliche Daten über den Brennstoffverbrauch, die Emissionskonzentrationen und die Emissionsfrachten. Sie sind spätestens bis zum dem Erklärungszeitraum folgenden 31. Dezember der Behörde zu übermitteln. Der Berichtszeitraum umfasst dabei nicht das Kalenderjahr, sondern die sogenannte Heizperiode. Diese beginnt mit 1. Oktober und endet am 30. September des Folgejahres.

Die Angaben der Betreiber werden vom Umweltbundesamt stichprobenartig überprüft, bei Bedarf vervollständigt und in eine Datenbank übertragen (Dampfkessel-Datenbank). Die Dampfkessel-Datenbank des Umweltbundesamtes enthält u.a. die folgenden Daten von etwa 600 Dampfkesselanlagen in Österreich für die Jahre 1990 bis 2000:

Betreiber	Dampfkessel	Brennstoff	Emission
Ort	Standort	Monat	Monat
Bezirk	Standort - PLZ	Jahr	Jahr
Name	Kessel	Gas in m³	Staub in kg
Adresse	Zweck der Anl	Heizöl S in t	SO ₂ in kg
PLZ	Brennstoffe	Heizöl M in t	NO ₂ in kg
Berichtszeitraum	Wärmeleistung	Heizöl L in t	CO in kg
Kontaktperson	Austrittstemperatur	BK Briketts in t	Sonstige Emissionen
TelNr	Verbrennungsgasmenge	Braunkohle in t	
	Querschnitt	SK Briketts in t	
	Austrittshöhe	Steinkohle in t	
	Abgasreinigungsanlage	Holzabfälle in Rm³	
	Abzuscheidender Stoff	Sonstiger Brennstoff 1	
	Art der Reinigungsanlage	Sonstiger Brennstoff 2	
	Berichtszeitraum	Sonstiger Brennstoff 3	

Definition der Anlage

Anlage: Die GFA-RL gibt keine klare Definition der Anlage. Deshalb wird in diesem Bericht die Definition des Luftreinhaltegesetzes für Kesselanlagen (LRG-K) übernommen:

"Eine Dampfkesselanlage im Sinne dieses Bundesgesetzes besteht in der Regel aus einem Dampfkessel einschließlich aller für die Emissionen maßgebenden Nebeneinrichtungen. Münden die Verbrennungsgaszüge mehrerer Dampfkessel, die im Regelfall gleichzeitig in Betrieb stehen, in einen gemeinsamen Schornstein, der auch mehrere Züge umfassen kann, oder stehen mehrere im Regelfall gleichzeitig in Betrieb stehende Dampfkessel eines Betreibers in einem engen räumlichen Zusammenhang, so gelten diese Dampfkessel grundsätzlich als eine einzige Dampfkesselanlage" (§1 Abs. 3 LRG-K, Unterstreichungen vom Autor).

Neuanlage: Artikel 2 Abs. 7 und Abs. 9 der Großfeuerungsanlagen-Richtlinie (GFA-RL) definieren Neuanlagen, als Anlagen, die ab dem 1. Juli 1987 genehmigt wurden.

Bestehende Anlage: Hierbei handelt es sich um Anlagen, die vor dem 1. Juli 1987 genehmigt wurden.

Ermittlungsmethoden

Jährliche Emissionen werden entweder mit kontinuierlichen Messungen ermittelt, oder mit Hilfe von Einzelmessungen und dem Brennstoffverbrauch auf Ganzjahreswerte hochgerechnet. Kontinuierliche Emissionsmessungen haben gemäß Luftreinhalteverordnung für Kesselanlagen (LRV-K §4 Abs. 1) bei allen neuen Dampfkesselanlagen mit einer Brennstoffwärmeleistung über 30 MW vorzulegen. In besonderen Fällen wurde allerdings auch mit Hilfe von Einzelmessungen und dem Brennstoffverbrauch auf die Jahresemissionen hochgerechnet.

Verfahren bei Fehlen der Emissionserklärung

Das Fehlen der Emissionserklärung kann mehrere Gründe haben. Aufgrund verschiedener Zuständigkeiten gestaltet sich auch die Nachrecherche seitens des Umweltbundesamtes schwierig. Entweder wurde die Erklärung von der zuständigen Behörde noch nicht vom Betreiber eingefordert, oder sie wurde von der Behörde zum Beispiel an die Landesregierung weitergeleitet. Das Fehlen eines klaren Ansprechpartners für das Umweltbundesamt und die oftmalige Unkenntnis der Behörden über den Verbleib von bestimmten Unterlagen gestalten auch Nachrecherchen äusserst zeitaufwendig und schwierig. Weiters gibt es auch Fälle, in denen Emissionserklärungen keine Emissionsangaben (nur Brennstoffdaten) enthalten. Darüber hinaus führt auch die Stillegung von Anlagen zum Ausbleiben der Emissionserklärung.

LITERATUR

ÖSTAT (2000): ÖSTAT-Energiebilanzen. E-mail vom 9. Dezember 2000

RITTER, M. & KÖNIG, G. (1997): Technische Grundlagen für die Bewertung des Erfolges der nach dem Luftreinhaltegesetz für Kesselanlagen getroffenen Maßnahmen. BE-100. Umweltbundesamt, Wien.

RITTER, M., GUGELE, B. & MOSER, G. (2001): Emissionen österreichischer Großfeuerungsanlagen 1990-1999. BE-176. Umweltbundesamt, Wien.