

Bodenmikrobiologische Untersuchungen am Zöbelboden 1993 und 1994

Integrated Monitoring Serie

Bodenmikrobiologische Untersuchungen am Zöbelboden 1993 und 1994

von

Ellen Kandeler Michael Stemmer

Integrated Monitoring Serie: IM - Rep - 016 Wien, 1998 Projektleitung (Integrated Monitoring): Dipl. Ing. Dr. Michael Mirtl
Editorische Bearbeitung: Andrea Foreith
Redaktion: Andrea Foreith, Elisabeth Lössl, Dipl. Ing. Dr. Michael Mirtl
Autor: Univ. Doz. Dr. Ellen Kandeler, Mag. Michael Stemmer

Impressum

Medieninhaber und Herausgeber: Umweltbundesamt, 1090 Wien, Spittelauer Lände 5 Eigenvervielfältigung

© Umweltbundesamt, Wien, 1998 Alle Rechte vorbehalten ISBN 3-85457-686-2

INHALTSVERZEICHNIS

1 ZUSAMMENFASSUNG
2 ABSTRACT
3 EINLEITUNG
4 MATERIAL UND METHODEN
4.1 Probefläche7
4.2 Probenahme und -behandlung8
4.3 Statistische Datenverarbeitung9
4.4 Auswahl der bodenbiologischen Parameter11
4.5 Analytische Methoden 12
4.5.1 Bestimmung der N-Mineralisation im anaeroben Brutversuch12
4.5.2 Bestimmung der N-Mineralisation im aeroben Brutversuch
4.5.3 Bestimmung der mikrobiellen Biomasse mittels substratinduzierter
Respiration (SIR)16
4.5.4 Bestimmung der bodeneigenen Phosphatase-Aktivität 18
4.5.5 Bestimmung der sauren Phosphatase-Aktivität 19
4.5.6 Bestimmung der Xylanase-Aktivität
4.5.7 Bestimmung der Arylsulfatase-Aktivität
4.5.8 Bestimmung des pH-Wertes
4.5.9 Bestimmung des C _{tot} -Gehaltes
5 ERGEBNISSE
5.1 N-Mineralisation im anaeroben Brutversuch27
5.2 N-Mineralisation im aeroben Brutversuch
5.3 Substratinduzierte Respiration (SIR)
5.4 Bodeneigene Phosphatase
5.5 Saure Phosphatase 39
5.6 Xylanase 41
5.7 Arylsufatase

5.8 Beziehungen der enzymatischen Parameter zueinander und zwisc	hen den
Untersuchungshorizonten bzwjahren	45
5.9 Beziehungen der enzymatischen Parameter zum pH-Wert und Ct	ot49
5.10 Bezug der bodenmikrobiologischen Parameter zum Biomasse-Ke	ohlenstoff
(Cmic)	55
6 DISKUSSION	56
7 LITERATUR	62
8 ANHANG - DATENCODE	66

1 ZUSAMMENFASSUNG

Bodenorganismen liefern einen wichtigen Beitrag zu Nährstoffumsetzungen in Böden. Viele durch Mikroorganismen katalysierte Reaktionen sind empfindlich gegenüber externen Umwelteinflüssen, natürlicher als auch anthropogener Art (saure Deposition, Schwermetallbelastung, etc). Als Basis für langjährige Untersuchungen sollten im Rahmen dieses Projektes erste bodenmikrobiologische Grunduntersuchungen am INTEGRATED-MONITORING-Standort Zöbelboden durchgeführt werden. Das Ziel dieser ersten beiden Versuchsreihen sollte sein, die zeitliche und räumliche Variabilität der mikrobiellen Biomasse und einiger ausgesuchter Bodenenzyme zu untersuchen und diese in weiterer Folge in parallel dazu durchgeführte chemische, physikalische und biologische Erhebungen einzugliedern. Als Maß für die mikrobielle Biomasse wurde die substratinduzierte Respiration bestimmt. Methoden zur Bestimmung der N-Mineralisation, Phosphatase, Xylanase und Arylsulfatase wurden ausgewählt, um den Abbau organischer N-, P-, C- und S-Verbindungen zu charakterisieren.

- 3 -

Der Auflage- und Ah-Horizont dieser Waldbestände kann durch die räumlich unterschiedliche Variabilität bodenmikrobiologischer einzelner Eigenschaften gekennzeichnet werden. Die Tendenz zur Streuung um den Median bzw. Mittelwert nimmt in der Reihenfolge substratinduzierte Respiration < N-Mineralisation (im anaeroben Brutversuch) < Xylanase < saure Phosphatase < bodeneigene Phosphatase und Arylsulfatase zu. Die etwas weitere Streuung im Ah-Horizont hängt eng mit dessen chemischen Eigenschaften zusammen: Sowohl pH und Ctot (bzw. Corg) weisen im mineralischen A_h-Horizont weitere Schwankungen auf. Unabhängig von der Datenstreuung unterscheiden sich der Auflagehorizont (Of/Oh) und der Ah-Horizont deutlich in ihrer mikrobiellen Aktivität. Mit Ausnahme der Arylsulfatase (methodische Gründe) weist der Auflagehorizont durchwegs signifikant höhere Umsatzraten auf als der Ah-Horizont. Im Mittel liegen die Werte der Streuauflage um das 1,4fache (bodeneigene Phosphatase) bis 8,2fache (Xylanase) über denen des darunter angrenzenden mineralischen A_h-Horizonts. Bezogen auf den Biomasse-C ergibt sich in den Enzymaktivitäten jedoch ein umgekehrtes Bild: Mit Ausnahme der Xylanase zeigen alle ermittelten enzymatischen Parameter höhere

UMWELTBUNDESAMT

kurzzeitige Veränderungen der Bodenverhältnisse häufig rascher und deutlicher als physikalisch/chemische Parameter, über die Reaktion auf langzeitige, "schleichende" Veränderungen (z. B. Bodenversauerung, N-Anreicherung durch Niederschläge) liegen besonders im forstlichen Bereich kaum Untersuchungen vor. Eine Bewertung dahingehend ist nach 2 aufeinanderfolgenden Beprobungsjahren am INTEGRATED MONITORING-Standort Zöbelboden nicht zielführend. Auch aus dieser Perspektive sollte der Verbleib der Bodenmikrobiologie im Untersuchungsrahmen des INTEGRATED MONITORING forciert werden. Für weitere Untersuchungen ist allerdings zu überlegen, ob die Bestimmung der Arylsulfatase und der N-Mineralisation im aeroben Brutversuch aufgrund unüblicher Schwankungen bzw. aufgrund methodischer Schwierigkeiten nicht gestrichen werden sollte.

Horizont in einem höheren Ausmaß für die Produktion von Enzymen verantwortlich sind. Der Vergleich der beiden Untersuchungsjahre 1993 und 1994 führt im Ah-Horizont zu keinen ausgeprägten Unterschieden, lediglich die Streuauflage tendiert aufgrund höherer Biomasse-C-Gehalte im Untersuchungsjahr 1994 zu höheren Werten als im Untersuchungsjahr 1993. Der direkte Vergleich von Bodenplot I und Bodenplot II zeigt nur geringfügige Unterschiede zwischen den beiden Untersuchungsflächen auf. Generell sind die Veränderungen (räumlich und zeitlich) der bodenbiologischen Parameter im mineralischen A_h-Horizont (trotz der höheren Datenstreuung) gering, die Veränderungen in Umwelteinflüsse der Streuauflage spiegeln die fluktuierenden (Witterung, Streuzusammensetzung, Feuchtigkeitsgehalt, etc.) und die daraus resultierenden Schwankungen in der mikrobiellen Umsatzleistung wider.

Die Möglichkeit, durch eine detaillierte Zusammenschau aller an diesen Bodenplots

erhobenen, relevanten chemischen, physikalischen und biologischen Daten, entscheidend

zum Verständnis der komplexen Vorgänge am INTEGRATED MONITORING-Standort

Zöbelboden beizutragen, sollte genutzt werden. Mikrobielle Prozesse reagieren auf

Aktivitäten im Ah-Horizont. Dieses Ergebnis spricht dafür, daß Mikroorganismen im Ah-

2 ABSTRACT

Microorganisms substantially contribute to nutrient turnover in soils. Nevertheless a lot of enzymatical reactions catalysed by microorganisms are sensitive to environmental changes and to the noxious anthropogenous influence, e. g. acid deposition or stress by heavy metals. These primary inquiries should be treated as a basis for longterm investigations of soil microbiological parameters at the INTEGRATED-MONITORING-site Zöbelboden. Temporal and spatial variability of microbial biomass and some important soil enzyms should be investigated and later correlated to other chemical, physical and biological inquiries. Microbial biomass was estimated by substrate-induced respiration and methods for measurement of nitrogen-mineralization, phosphatase, xylanase and arylsulfatase were selected to characterize decomposition of organic nitrogen-, phosphor-, carbon- and sulfur-compounds.

- 5 -

The investigated Of/Oh-layer and the Ah-layer of the mixed forest site can be described by the different spartial variability of soil microbiological properties. Spreading of data increases in the order of substrate-induced respiration < nitrogen-mineralization < xylanase < acid phosphatase < soil phosphatase and arylsulfatase. The spreading of values in the A_hlayer is closely correlated to its chemical characteristics, both pH and total carbon vary more in the mineral layer. Nevertheless the Of/Oh-layer and the Ah-layer differ distinctly in their microbial activity. With the exception of arylsulfatase the litter shows significant higher enzyme activities than the mineral layer, results range from 1.4 times (phosphatase) to 8.2 times (xylanase) higher than in the below layer. In contrast to the absolute enzyme activity the relative activity (related to microbial carbon) is higher in the A_h-layer than in the O_f/O_h-layer in most cases (xylanase shows different relation). The results of both sampling dates (1993 and 1994) do not differ significantly, but the activity in the litter has more or less increased because of slightly higher microbial carbon contents in 1994. These results support, that microorganisms influence the production of soil enzymes in the Ahlayer significantly. Similar to the comparison of the sampling dates both soil-plots show resembling activities. In general, spartial and temporal variability of the soil microbial parameters is small in the mineral A_h-layer (despite the higher data spreading), the changes of microbial activity in the litter are results of environmental influences (weather conditions, composition of the litter, moisture content, etc.) and reflect the variation of microbial turnover in this layer.

3 EINLEITUNG

Bodenorganismen liefern einen wichtigen Beitrag zu Nährstoffumsetzungen im Boden, die Erhebung ihrer Aktivität spiegelt die aktuelle Abbau- und Umsatzdynamik in den belebten Bodenschichten wider und ist eine wertvolle Ergänzung zu chemisch-physikalischen Analysen. Aus diesem Grund wurden ausgewählte bodenbiologische Untersuchungsparameter in das Programm des INTEGRATED MONITORING am Bodenplot I und II des Standortes Zöbelboden aufgenommen, die zum Verständnis der komplexen Vorgänge im Ökosystem Wald beitragen sollen. Waldböden bilden ein außerordentlich heterogen zusammengesetztes Ökosystem, das eine ausgeprägte kleinräumige Variabilität aufweist. Aus diesem System gewonnene Daten streuen stark, die benötigte Anzahl an Parallelmessungen für eine sinnvolle Interpretation der Ergebnisse ist hoch. Mehrere Autoren (BONMATI et al. 1991, ÖHLINGER et al. 1993) haben sich mit diesem Problem der räumlichen Variabilität bodenmikrobiologischer Aktivitäten in Acker- und Wiesenböden beschäftigt. Das Ziel dieser Untersuchungen sollte sein, die zeitliche und räumliche Variabilität der mikrobiellen Biomasse und einiger ausgesuchter Bodenenzyme an einem gut definierten Waldstandort zu untersuchen.

Der Untersuchungsrahmen wurde nach Darlegung des Zwischenberichts im vollen Umfang auf beide Bodenplots (BP I und BP II) des INTEGRATED MONITORING ausgedehnt und umfaßt nun folgende bodenmikrobiologische Methoden: N-Mineralisation im anaeroben Brutversuch, N-Mineralisation im aeroben Brutversuch (nach dem Manual for Integrated Monitoring, 1993), substratinduzierte Respiration (SIR) als Maß für die mikrobielle Biomasse (nach dem Manual for Integrated Monitoring, 1993), saure Phosphatase (modifiziert nach dem Manual for Integrated Monitoring, 1993) und bodeneigene Phosphatase, außerdem Xylanase und Arylsulfatase. Die Streubeutel für die Untersuchung des Streuabbaues im Freiland konnten wegen des frühen Wintereinbruchs 1993 nicht mehr

exponiert werden, damit fällt dieser Parameter aus dem Untersuchungsprogramm. Als Ergänzung zu den bodenbiologischen Parametern wurden zusätzlich der pH-Wert und der C_{tot} -Gehalt in den Bodenproben (nur im Untersuchungsjahr 1994) erhoben.

Die bodenmikrobiologischen Untersuchungen am INTEGRATED MONITORING-Standort stehen im engen Konnex zur Humusansprache und -analytik, die von Dipl.-Ing. Michael ENGLISCH koordiniert wird. Eine zusammenschauende Ergebnisanalyse ist allerdings erst für Ende 1996 geplant (pers. Mitt. von ENGLISCH). Die Projektleitung am UBA unterliegt Dipl.-Ing. Michael MIRTL, in der Projektplanung wurden wir von Dipl.-Ing. Sigrid SCHWARZ und Andrea FOREITH, die uns auch das den Untersuchungsflächen zugrundeliegende Kartenmaterial zur Verfügung stellten, unterstützt.

4 MATERIAL UND METHODEN

4.1 PROBEFLÄCHE

Die Intensivplots I und II mit den entsprechenden Bodenplots I und II des INTEGRATED MONITORING NORD liegen im Bereich des Zöbelbodens (Reichraminger Hintergebirge, Oberösterreich, Österreich) in einer Seehöhe von etwa 900 msm. Intensivplot I (mit dem entsprechenden BP I) liegt auf dem bewaldeten Hochplateau (Abb. 1), Intensivplot II (mit dem entsprechenden BP II) liegt nördlich davon in einem NNW exponierten Oberhang. Der Bodentyp des Bodenplots I ist ein Braunlehm (FAO: cambisol), während die Böden des Bodenplots II am Waldabhang den kolluvial beeinflußten Rendzinen (FAO: cambi rendzic leptosol) zuzuordnen sind (GRATZER, 1992). Ein Bodenplot stellt ein Quadrat mit einer Kantenlänge von 20 m (400 m²) dar (Abb. 2). Jeder dieser Bodenplots setzt sich aus 4 x 4 = 16 Unterquadraten (Kantenlänge 5 x 5 m = 25 m²) zusammen. Aus jedem dieser Unterquadrate wurde pro Untersuchungsjahr eine Probe für die Analyse geworben (n = 16 Proben pro Bodenplot).

Abb. 1: Teilansicht des Bodenplots I zum Probenahmetermin Juni 1994

4.2 PROBENNAHME UND -BEHANDLUNG

Die Bodenproben wurden am 6. Oktober 1993 und am 14./15. Juni 1994 geworben. Nach Absprache mit Dipl.-Ing. M. ENGLISCH (Koordination mit der Humusansprache) wurde innerhalb eines Untersuchungsquadrates eine repräsentative, 30 x 30 cm große Fläche in unmittelbarer Nähe zum systematisch bestimmten Probennahmepunkt (dieser Punkt unterliegt einer Jahresrotation und kann Abb. 2 entnommen werden) ausgewählt. Unter Mithilfe von Dipl.-Ing. Michael ENGLISCH wurde nach manuellem Entfernen der O₁-Schicht die verbleibende Auflage (O_f + O_h) und der A_h-Horizont (0 - 5 cm) getrennt geworben (Horizontklassifikation und -ansprache nach BLUM et al., 1986). Die Proben wurden im naturfeuchten Zustand in Kunststoffsäckchen verpackt und bei -20 °C gelagert. Zum Analysenbeginn wurden die gefrorenen Proben 3 Tage bei 4 °C aufgetaut, anschließend auf 2 mm gesiebt und in Kunststoffsäckchen bis zur Analyse (längstens 2 Wochen) aufbewahrt.

4.3 STATISTISCHE DATENVERARBEITUNG

Die statistische Auswertung der Datenreihen erfolgte mit Hilfe des Softwarepaketes SPSSWIN. Zur Überprüfung auf normalverteilte Daten wurde der KOLMOGOROV-SMIRNOV-Test herangezogen. Neben parameterfreien Korrelationsanalysen (SPEARMEN) wurden die Datenreihen mittels MANN-WHITNEY-Test auf signifikante Unterschiede überprüft. Die graphische Darstellung erfolgte mit Hilfe des Softwarepakets SIGMAPLOT für WINDOWS.

Abb. 2: Beprobungsschema des Bodenplot 1 mit den Entnahmepunkten der einzelnen Untersuchungsparameter. Der Bodenplot 2 wurde analog dazu eingerichtet, statt 201 – 601, statt 202 – 602 usw.

4.4 AUSWAHL DER BODENBIOLOGISCHEN PARAMETER

Die Auswahl der bodenmikrobiologischen Parameter knüpft eng an das Manual for Integrated Monitoring (1993) an. Neben diesen vorgegeben Untersuchungsmethoden wurden weitere, in der Forschung etablierte Methoden in das Untersuchungsprogramm aufgenommen.

Die substratinduzierte Respiration (SIR) gibt indirekt Aufschluß über die stoffwechselaktive mikrobielle Biomasse und ist somit ein Maß für die Abbau- und Umsatzleistung des Bodens.

Die mikrobielle Stickstoff-Freisetzung aus organischem Bodenmaterial ist für den pflanzenverfügbaren N-Pool im Boden von großer Bedeutung und wird anhand von Inkubationsversuchen (Stickstoffmineralisation im anaeroben als auch im aeroben Brutversuch) bestimmt.

Die Xylanase ist neben der Cellulase (diese ist methodisch schwierig zu erfassen) das wichtigste Enzym des primären Streuabbaues. Xylane sind mengenmäßig die zweitwichtigsten Kohlenstoffpolymere der Natur und sind leichter verwertbar als Cellulose. Sie werden durch eine große Zahl von Pilzen und Bakterien außerhalb der Zellen zu Oligosacchariden und Monomeren abgebaut.

Die Aufnahme von Phosphor in Pflanzen setzt eine Mineralisierung der organischen P-Komponenten durch Phosphatasen voraus. Sie können sowohl aus Pflanzenwurzeln stammen als auch mikrobiellen Ursprungs sein. Im Boden dominieren mikrobielle Phosphatasen, sie unterscheiden sich in ihrem pH-Optimum (saure und alkalische Phosphatase).

Sulfatasen (so auch die Arylsulfatase) sind bei der Mineralisierung schwefelhaltiger Verbindungen von Bedeutung. Sie hydrolisieren organische Sulfate und stellen dadurch Schwefel in pflanzenverfügbarer Form bereit. Sulfatasen sind größtenteils mikrobiellen Ursprungs.

4.5 ANALYTISCHE METHODEN

Die Arbeitsvorschriften für die mikrobiologischen Analysenmethoden beruhen auf dem Manual for Integrated Monitoring (1993) und auf dem Arbeitsbuch "Bodenbiologische Arbeitsmethoden" (SCHINNER et al. 1993).

Alle mikrobiellen Analysenmethoden wurden am naturfeuchten Boden durchgeführt. Nach Bestimmung des Trockengewichtes bei 105 °C wurden alle Daten auf die Trockensubstanz bezogen. Sämtliche Analysen wurden doppelt ausgeführt.

4.5.1 Bestimmung der N-Mineralisation im anaeroben Brutversuch

Prinzip: Böden werden mit Wasser überstaut und 7 Tage bei 40 °C inkubiert. Der aus organischen N-Verbindungen freigesetzte Ammonium-N wird kolorimetrisch bestimmt (KANDELER und GERBER, 1988). Die Methode beruht auf einer Modifikation der Originalarbeit von KEENEY (1982).

Substrat:	keines (bodeneigene,	organische N-V	/erbindungen)
-----------	----------------------	----------------	---------------

Detektiertes Reaktionsprodukt: NH₄⁺

Inkubationsbedingungen: 7 Tage bei 40 °C

Puffer:

- Chemikalien zur Detektion:
 - **A.** NaOH: $c = 0,3 \mod dm^{-3}$
 - **B.** Nitroprussid-Salicylat-Lösung:
 - 0,12 g Nitroprussidnatrium und 17,0 g Natriumsalicylat auf 100 ml $\rm H_2O$
 - C. Mischlösung: Lös. A: Lös. B: dest. Wasser = 1 : 1 : 1

keiner

D. Dichlorisocyanursäure-Natriumsalz-Lösung (0,1 % w/v)

Eichlösungen: 0 - 2,5 µg NH₄⁺-N · ml⁻¹ H₂O (entsprechen 0 - 12,5 µg NH₄⁺-N im Ansatz)

Ausführung: 2,50 g naturfeuchter Boden werden in drei Reagenzgläser eingewogen und mit 15 ml dest. Wasser versetzt. Die Reagenzgläser werden verschlossen und geschüttelt. 2 Proben werden 7 Tage bei 40 °C inkubiert (Vollproben), die dritte Probe wird sofort bei -20 °C tiefgefroren (Leerprobe). Nach der

Inkubation werden die Proben mit 15 ml Extraktionslösung (2molare KCl) versetzt, 30 min auf einem Horizontalschüttler geschüttelt und anschließend filtriert. Die Filtrate werden mit dest. Wasser 1 : 10 bis 1 : 50 verdünnt (Verdünnung hängt von der Aktivität der Böden ab).

Zur Analyse werden 5 ml der verdünnten Filtrate bzw. 5 ml der Eichlösungen in einem Reagenzglas mit 2,5 ml Mischlösung (**C**) und 1 ml Lösung (**D**) versetzt und geschüttelt. Nach 30 min werden alle Lösungen bei 660 nm gegen den Blindwert der Eichung photometrisch gemessen.

Berechnung:

	$\frac{(VP - LP) \cdot f \cdot 30 \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g N \cdot g^{-1} TS \cdot 7d^{-1}$
VP	Vollprobe [µg NH4+-N im Ansatz]
LP	Leerprobe [µg NH ₄ ⁺ -N im Ansatz]
f	Verdünnungsfaktor (hier 10 bzw. 50)
30	Volumen des Inkubationsansatzes
ml	Filtrataliquot (hier 5 ml)
EW	Einwaage (hier 2,5 g FG)
100 · %-1 TS	Trockensubstanzfaktor

Anmerkungen:

• keine

4.5.2 Bestimmung der N-Mineralisation im aeroben Brutversuch

Der Inkubationsansatz zur Bestimmung der N-Mineralisierung im aeroben Brutversuch wurde dem Manual for Integrated Monitoring (1993) entnommen.

Prinzip: Wassergesättigte Böden werden unter aeroben Bedingungen bei 25 °C inkubiert. Der aus organischen N-Verbindungen freigesetzte Ammonium- und Nitrat-N wird nach einer Inkubationsdauer von 0, 14 und 28 Tagen kolorimetrisch bestimmt. Diese Methode wurde von BECK (1983) entwickelt.

Substrat: keines (bodeneigene organische N-Verbindungen)

Detektierte Reaktionsprodukte: NH₄⁺ und NO₃⁻

Inkubationsbedingungen: 0, 14 und 28 Tage bei 25 °C

Inkubationspuffer: keiner

Chemikalien zur Detektion:

NH₄⁺: **A.** NaOH: $c = 0,3 \text{ mol} \cdot dm^{-3}$

- B. Nitroprussid-Salicylat-Lösung:
 0,122 g Nitroprussidnatrium und 17,0 g Natriumsalicylat auf 100 ml H₂O
- C. Mischlösung: Lös. \mathbf{A} : Lös. \mathbf{B} : dest. Wasser = 1 : 1 : 1
- **D.** Dichlorisocyanursäure-Natriumsalz-Lösung (0,1 % w/v)

Eichlösungen: 0 - 2,5 µg NH₄⁺-N · ml⁻¹ H₂O (entsprechen 0 - 12,5 µg NH₄⁺-N im Ansatz)

NO₃⁻: **A.** NH₄Cl-Lösung (2,0 % w/v) mit 0,83 g \cdot l⁻¹ EDTA

- **B.** Kupfersulfat (2,5 % w/v)
- C. NH₄Cl-CuSO₄-EDTA-Lösung:
 220 g NH₄Cl und 9,2 g EDTA in dest. Wasser lösen, 2 ml 2,5%ige CuSO₄-Lösung (B) zusetzen und auf 1000 ml mit dest. Wasser auffüllen. Das pH mit konz. NH₃ auf 8,2 einstellen.
- D. Sulfanilamid-Lösung:5,0 g Sulfanilamid mit 2,4molarer HCl auf 1000 ml auffüllen
- E. N-(1-Naphthyl)-ethylendiammoniumchlorid-Lösung:
 3,0 g N-(1-Naphthyl)-ethylendiammoniumchlorid in dest. Wasser lösen, 50 ml 2,4molare HCl zusetzen und mit dest. Wasser auf 1000 ml auffüllen
- F. Farbreagenz:

Lösung **D** und **E** im Verhältnis 1 : 1 mischen (täglich frisch)

Eichlösungen: 0 - 4 µg NO₃--N · ml⁻¹ H₂O (entsprechen 0 - 40 µg NO₃--N im Ansatz)

Ausführung: 10,0 g naturfeuchter Boden (5,00 g bei sehr humosen Böden) werden in sechs 100 ml Erlenmeyerkolben eingewogen und tropfenweise mit 2 - 3 ml H₂O versetzt. Bei Zugabe des Wassers soll eine Verschlämmung der Proben unbedingt

vermieden werden. Die Erlenmeyerkolben werden verschlossen und bei 25 °C in einem Brutschrank bebrütet. Nach einer Inkubationsdauer von 0, 14 und 28 Tagen werden jeweils zwei Proben tiefgefroren. Nach Abschluß der Inkubation werden alle Proben nach dem Auftauen mit 50 ml KCl-Lösung (2molar) versetzt, 2 h auf einem Horizontalschüttler geschüttelt und anschließend filtriert. Die Filtrate werden $1:10 \text{ mit H}_2\text{O} \text{ verdünnt.}$

Zur Analyse des Ammonium-N werden 5 ml der verdünnten Filtrate bzw. 5 ml der Eichlösungen in einem Reagenzglas mit 2,5 ml Mischlösung (C) und 1 ml Lösung (D) versetzt und geschüttelt. Nach 30 min werden alle Lösungen bei 660 nm gegen den Blindwert der Eichung photometrisch gemessen.

Zur Analyse des Nitrat-N werden 10 ml der verdünnten Filtrate bzw. 10 ml der Eichlösungen mit 1,0 ml Lösung (C) gemischt. 2,0 ml dieser Lösung werden in eine Cadmiumsäule gesaugt. Nach einer Reaktionszeit von 27 sec wird die Lösung in ein Reagenzglas mit 2,0 ml Farbreagenz (F) ausgestoßen. Nach einer Reaktionszeit von 15 min werden alle Lösungen bei 540 nm gegen den Blindwert der Eichung photometrisch gemessen.

Anmerkung: Zur Herstellung der Cadmiumsäule werden ca. 20 g Cd gekörnt 30 sec. in 5% iger HNO₃ gespült (nitrose Gase - Abzug!). Nach Waschen mit dest. Wasser wird anschließend mit 5% iger HCl gespült. Waschen mit dest. Wasser. Das so vorbereitete Cd wird in ein Glasrohr mit ca. 8 mm Innendurchmesser und 180 mm Länge gefüllt. Die Säule ist mit Lösung A zu überstauen und darf nicht austrocknen (keine Luftbläschen im Cd-Granulat).

Berechnung:

Ammonium-N:

	$\frac{(VP - LP) \cdot f \cdot 50 \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g NH_4^+ - N \cdot g^{-1} TS \cdot 7d^{-1}$
VP	Vollprobe [µg NH4 ⁺ -N im Ansatz]
LP	Leerprobe [µg NH ₄ ⁺ -N im Ansatz]
f	Verdünnungsfaktor (hier 10)
50	Volumen des Inkubationsansatzes

ml	Filtrataliqout (hier 5 ml)
EW	Einwaage (hier 10,0 bzw. 5,00 g FG)
100 · %-1 TS	Trockensubstanzfaktor

Nitrat-N:

	$\frac{(VP - LP) \cdot f \cdot 50 \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g NO_3^{-1} - N \cdot g^{-1} TS \cdot 7d^{-1}$
VP	Vollprobe [µg NO ₃ ⁻ -N im Ansatz]
LP	Leerprobe [µg NO ₃ N im Ansatz]
f	Verdünnungsfaktor (hier 10)
50	Volumen des Inkubationsansatzes
ml	Filtrataliqout (hier 10 ml)
EW	Einwaage (hier 10,0 bzw. 5,00 g FG)
100 · %-1 TS	Trockensubstanzfaktor

Anmerkungen:

- Die Bodenschichtdicke darf 5 mm nicht übersteigen, um auch im wassergesättigten Zustand eine ausreichende Sauerstoffdiffusion zu ermöglichen.
- Ein linearer Verlauf der N-Mineralisierung ist charakteristisch für landwirtschaftliche Böden. In ton- und humusreichen Proben kann es aufgrund von NH₄⁺-Fixierungen zu Abweichungen kommen.

4.5.3 Bestimmung der mikrobiellen Biomasse mittels substratinduzierter Respiration (SIR)

Zur Bestimmung der substratinduzierten Respiration wurde die dem Arbeitsbuch "Bodenbiologische Arbeitsmethoden" (SCHINNER et al. 1993) zugrunde liegende Analysenvorschrift modifiziert und an die im Manual for Integrated Monitoring (1993) vorgeschrieben Methode (unter "soil respiration") angepaßt.

Prinzip: Bodenproben werden mit Glukose versetzt und die unmittelbar folgende Atmungsreaktion wird gemessen. Durch Kalibrierung dieser Methode mit der Fumigations-Inkubations-Methode kann auf Biomasse-C umgerechnet werden. Die

Methode wurde von ANDERSON und DOMSCH (1978) beschrieben und in ähnlicher Form in das Manual for Intregrated Monitoring (1993) übernommen.

Substrat:	D-Glukose
Detektiertes Reaktionsprodukt:	CO ₂
Inkubationsbedingungen:	4 h bei 25 °C
Puffer:	keiner

Ausführung (ISERMEYER-Ansatz): 35 g naturfeuchter Boden werden mit 280 mg D-Glukose (0,8 % w/w) gut gemischt. Je 10,0 g Boden werden in 4 Nylonsäcke eingewogen. Anschließend werden die Proben in mit 10 ml Natronlauge (0,05 molar) gefüllte Schott-Flaschen gehängt. Diese werden verschlossen und 4 h bei 25 °C bebrütet. Parallel dazu werden 4 Blindproben (ohne Boden) mitgeführt.

Nach Bebrütung werden die Bodenproben sofort aus den Flaschen entfernt, das absorbierte Kohlendioxid wird durch Zusatz von 2 ml 0,5molarer Bariumchloridlösung ausgefällt. Die unverbrauchte Natronlauge wird durch Zugabe von 3 - 4 Tropfen Indikatorlösung (Phenolphthalein) mit einer 0,05molaren HCl titriert.

Berechnung der Ergebnisse:

	$\frac{(BW - VW) \cdot 2, 2 \cdot 100}{4 \cdot EW \cdot \% TS} = mg CO_2 \cdot g^{-1} TS \cdot h^{-1}$
BW	Blindwert [ml HCl]
VW	Vollwert [ml HCl]
EW	Einwaage (hier 10,0 g FG)
2,2	Umrechnungsfaktor: 1 ml 0,1molare HCl entspricht 2,2 mg CO_2
4	Inkubationsdauer [h]
$100\cdot\%^{-1}TS$	Trockensubstanzfaktor

Bei einem Respirationskoeffizienten von 1,0 gilt:

1 mg CO₂ · g⁻¹ TS · h⁻¹ entspricht 20,6 mg Biomasse-C · g⁻¹ TS

Anmerkungen:

- Es wird empfohlen, vor der Bestimmung der Biomasse jene Substratkonzentration zu ermitteln, die unter den gegebenen Bedingungen zu einer maximalen CO₂-Freisetzung führt. Folgende Glukosezugaben haben sich in Serienuntersuchungen als geeignet gezeigt: für Ackerböden 4000 μg ⁻ g⁻¹ TS, für Grünlandböden 6000 μg ⁻ g⁻¹ TS und für Waldböden 8000 μg ⁻ g⁻¹ TS.
- Diese Methode erfaßt nur die stoffwechselaktive Mikroflora.

4.5.4 Bestimmung der bodeneigenen Phosphatase-Aktivität

Prinzip: Bodenproben werden mit einer Phenylphosphat-Dinatriumsalzlösung versetzt und 3 Stunden bei 37 °C bebrütet. Das abgespaltene Phenol wird mit 2,6-Dibromchinon-Chloramid angefärbt und photometrisch bei 614 nm gemessen. die Arbeitsvorschrift beruht auf einer Modifikation der Methode nach HOFFMANN (1968).

Substrat:	Phenylphosphat
Substratlösung:	0,1molare Na ₂ -Phenylphosphat-Lösung
Detektiertes Reaktionsprodukt:	Phenol
Inkubationsbedingungen:	3 h bei 37 °C
Puffer:	keiner

Chemikalien zur Detektion:

- A. Boratpuffer (pH = 10,0):
 12,4 g B₂O₃ in 100 ml NaOH (1molar) und 600 ml dest. Wasser, pH mit NaOH auf 10,0 einstellen und mit des. Wasser auf 1000 ml aufüllen
- B. Farbstoffreagenz: 200 mg 2,6-Dibromchinon mit Ethanol (60 % v/v) zu 100 ml lösen

Eichlösungen: 0 - 100 μ g Phenol · ml⁻¹ H₂O (entsprechen 0 - 200 μ g Ph im Ansatz)

Ausführung: 2,50 g naturfeuchter Boden werden in vier 50-ml-Meßkolben eingewogen und mit 10 ml H₂O versetzt. Man pipettiert zur Vollprobe (3 Ansätze) 5 ml Substratlösung und zur Leerprobe 5 ml dest. Wasser. Die Kolben werden verschlossen und geschüttelt. Es folgt eine Inkubation von 3 Stunden bei 37 °C. Nach der Bebrütung werden alle Kolben mit dest. Wasser bis zur Marke aufgefüllt,

güt geschüttelt und filtriert. Die Filtrate werden 1 : 4 verdünnt (Verdünnung hängt von der Aktivität der Böden ab).

Zur Analyse werden 2 ml des verdünnten Filtrats bzw. 2 ml der Eichlösungen in 100-ml-Meßkolben pipettiert, die bereits 5 ml Boratpuffer (A) enthalten. Zu jeder Probe werden 1 ml Farbstofflösung (B) zugesetzt. Die Proben werden geschüttelt und mit weiteren 25 ml dest. Wasser versetzt. Nach erneutem Schütteln läßt man die Proben 30 min stehen, füllt bis zur Marke auf, schüttelt, und mißt bei 614 nm innerhalb von 24 h gegen den Blindwert der Eichung.

Berechnung:

	$\frac{(VP - LP) \cdot 50 \cdot f \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g \ Phenol \cdot g^{-1} TS \cdot 3h^{-1}$
VP	Mittelwert der Vollproben [µg Phenol im Ansatz]
LP	Leerprobe [µg Phenol im Ansatz]
50	Extraktionsvolumen
f	Verdünnungsfaktor (hier 4)
ml	Filtrataliquot (hier 2 ml)
EW	Bodeneinwaage (hier 2,5 g FG)
100 · % ⁻¹ TS	Trockensubstanzfaktor

Anmerkungen:

- Der ungepufferte Substratansatz erfaßt die Gesamtheit der Phosphatasen bei dem jeweiligen bodeneigenen pH-Wert.
- In den meisten Böden dominieren Phosphatasen mit pH-Optima im sauren und im alkalischen Bereich. Alkalische Phosphatasen können jedoch im Gegensatz zu sauren Phosphatasen nicht von Pflanzen ausgeschieden werden und sind daher rein mikrobieller Natur.

4.5.5 Bestimmung der sauren Phosphatase-Aktivität

Die Untersuchungsvorschrift zur Bestimmung der sauren Phosphatase (Manual for Integrated Monitoring, 1993) wurde modifiziert und an die Methoden nach TABATABAI und BREMNER (1969) bzw. EIVAZI und TABATABAI (1977) angepaßt. Prinzip: Bodenproben werden nach Zusatz einer gepufferten p-Nitrophenylphosphatlösung 2 h bei 25 °C inkubiert. Die enzymatisch freigesetzte Menge an p-Nitrophenol wird mit Natronlauge angefärbt und photometrisch bei 400 nm bestimmt.

Substrat:	p-Nitrophenylphosphat
Substratlösung:	Na ₂ -Hexahydrat-p-Nitrophenylphosphat-Lösung:
	115mmolar in Acetatpuffer (1molar, pH = 5,0)
Detektiertes Reaktionsprodukt:	p-Nitrophenol
Inkubationsbedingungen:	2 h bei 25 °C

Inkubationspuffer: Acetatpuffer: 1molar, pH = 5,0

Chemikalien zur Detektion:

A. CaCl₂-Lösung: $c = 0.5 \text{ mol} \cdot \text{dm}^{-3}$

B. NaOH: $c = 0.5 \text{ mol} \cdot \text{dm}^{-3}$

Eichlösungen: 0 - 20 µg p-Nitrophenol · ml⁻¹ H₂O (entsprechen 0 - 100 µg p-NP im Ansatz)

Ausführung: Je 1,00 g naturfeuchter Boden wird in fünf 100-ml-Weithals-Erlenmeyerkolben eingewogen. 3 Kolben werden mit 1 ml Substratlösung (115 mmolare p-NPP-Lös.) und 4 ml Acetatpuffer (1molar, pH = 5,0) versetzt, zu den Leerproben werden 4 ml Acetatpuffer pipettiert. Die Kolben werden kurz geschüttelt und 2 h bei 25 °C inkubiert.

Zur Analyse werden zu den Voll- und Leerproben bzw. zu 5 ml der Eichlösungen 1 ml $CaCl_2$ (**A**) und 4 ml NaOH (**B**) pipettiert, die Leerproben werden zusätzlich mit 1 ml Substratlösung versetzt. Voll- und Leerproben werden mit 90 ml dest. Wasser verdünnt, kurz geschüttelt und filtriert. Die Eichlösungen werden unverdünnt filtriert. Die Extinktion der Filtrate sowie der Eichlösungen wird photometrisch bei 400 nm gegen den Blindwert der Eichung gemessen.

Berechnung:

$$\frac{(VP - LP) \cdot 10 \cdot 100}{EW \cdot \% TS} = \mu g \ p - NP \cdot g^{-1} \ TS \cdot 2 \ h^{-1}$$

- VP Mittelwert der Vollproben [µg p-Nitrophenol im Ansatz]
- LP Mittelwert der Leerproben [µg p-Nitrophenol im Ansatz]

10	Verdünnungsfaktor des Extraktes
EW	Einwaage (hier 1,00 g FG)
$100 \cdot \text{\%}^{-1} \text{ TS}$	Trockensubstanzfaktor

Anmerkungen:

- Das Substrat ist licht- und temperaturempfindlich.
- Saure Phosphatasen werden nicht von Pflanzen ausgeschieden und sind rein mikrobieller Natur (siehe auch unter "Bestimmung der bodeneigenen Phosphataseaktivität").

4.5.6 Bestimmung der Xylanase-Aktivität

Prinzip: Unter Verwendung von Xylan als Substrat werden Bodenproben 24 h bei 50 °C und pH 5,5 inkubiert. Die freigesetzten reduzierenden Zucker bewirken die Reduktion von K-Hexacyanoferrat-III in alkalischer Lösung. Das reduzierte K-Hexacyanoferrat-II reagiert mit Fe-III-Ammoniumsulfat in saurer Lösung zu einem Fe-III-Hexacaynoferrat-II-Komplex (Berliner Blau), welches kolorimetrisch erfaßt wird. Die Methode wurde von SCHINNER und VON MERSI (1990) entwickelt.

Substrat:	Xylan				
Substratsuspension:	Xylansuspension (1,2 % w/v) in Acetatpuffer				
	(2molar, pH 5,5)				
Detektiertes Reaktionsprodukt:	Reduzierende Kohlenhydrate				
Inkubationsbedingungen:	24 h bei 50 °C				
Inkubationspuffer:	Acetatpuffer: 2molar, pH = 5,5				

Chemikalien zur Detektion:

- A. 16,0 g Na₂CO₃ und 0,9 g KCN mit dest. Wasser auf 1000 ml auffüllen
- B. 0,5 g K-Hexacyanoferrat-III mit dest. Wasser auf 1000 ml auffüllen
- C. Fe-III-Ammoniumsulfat und 1,0 g Na-Dodecylsulfat in 900 ml dest.
 Wasser und nach Zusatz von 4,2 ml konz. H₂SO₄ und Erhitzen auf 50 °C mit dest. Wasser auf 1000 ml auffüllen

Eichlösungen: 0 - 15 μ g Glukose · ml⁻¹ H₂O (ensprechen 0 - 30 μ g GLC im Ansatz)

Ausführung: 2,50 g naturfeuchter Boden werden in drei 100-ml-Erlenmeyerkolben eingewogen. Zwei Kolben werden mit 15 ml Substratlösung und 15 ml Acetatpuffer (2molar, pH = 5,5) versetzt, zur Leerprobe werden nur 15 ml Acetatpuffer pipettiert. Die Kolben werden kurz geschüttelt und verschlossen 24 h bei 50 °C inkubiert. Nach der Inkubation wird die Leerprobe mit 15 ml Substratsuspension versetzt. Voll- und Leerproben werden geschüttelt und sofort filtriert. Die Filtrate werden mit Wasser etwa 1 : 80 verdünnt (abhängig von der Aktivität).

Zur Analyse werden 2 ml des verdünnten Filtrates bzw. 2 ml der Eichlösungen in Reagenzgläsern mit 2 ml Reagenz A und 2 ml Reagenz B versetzt, verschlossen, gut geschüttelt und 15 min ins kochende Wasserbad gestellt. Anschließend werden die Proben 5 min in einem Wasserbad auf Raumtemperatur abgekühlt und mit 10 ml Reagenz C versetzt. Nach gründlicher Durchmischung läßt man die Proben 60 min zur Entwicklung des "Berliner Blau" bei Raumtemperatur stehen. Die Extinktion wird anschließend innerhalb von 30 min bei 690 nm photometrisch gegen den Blindwert der Eichung gemessen.

Berechnung:

	$\frac{(VP - LP) \cdot 30 \cdot f \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g GLC \cdot g^{-1} TS \cdot 24 h^{-1}$
VP	Mittelwert der Vollproben [µg GLC im Ansatz]
LP	Leerprobe [µg GLC im Ansatz]
30	Volumen des Inkubationsansatzes
f	Verdünnungsfaktor des Filtrates (hier 80)
ml	Filtrataliquot (hier 2 ml)
EW	Einwaage (hier 2,50 g FG)
100 · %-1 TS	Trockensubstanzfaktor

Anmerkungen:

• Der Nachweis kann nur in verdünnten Lösungen durchgeführt werden, da erhöhte Konzentrationen von Säuren, Salzen, Ammoniumionen und hohe Ionenstärken die Bildung des Berliner Blaus beeinflussen (Filtratverdünnung mind. 1 : 10).

- Da das Berliner Blau einen labilen Farbkomplex darstellt und nur über einen begrenzten Zeitraum (30 min) stabil ist, müssen die Zeitangaben für die photometrische Messung genau eingehalten werden.

4.5.7 Bestimmung der Arylsulfatase-Aktivität

Prinzip: Boden werden nach Zusatz einer p-Nitrophenylsulfatlösung 1 Stunde bei 37 °C inkubiert. Das enzymatisch abgespaltene p-Nitrophenol wird mit Natronlauge angefärbt und bei 420 nm photometrisch bestimmt. Die von TABATABAI und BREMNER (1970) erstellte Originalvorschrift wurde modifiziert.

Substrat:	p-Nitrophenylsulfat
Substratlösung:	0,02molare K-p-Nitrophenylsulfat-Lösung
	im Acetatpuffer: 0,5molar, pH = 5,8
Detektiertes Reaktionsprodukt:	p-Nitrophenol
Inkubationsbedingungen:	1 h bei 37 °C
Inkubationspuffer:	Acetatpuffer: $0,5$ molar, pH = $5,8$

Chemikalien zur Detektion:

A. Natronlauge: $c = 0.5 \text{ mol} \cdot \text{dm}^{-3}$

- Eichlösungen: 0 16,67 µg p-Nitrophenol · ml⁻¹ H₂O (entsprechen 0 100 µg p-NP im Ansatz)
- Ausführung: 1,00 g naturfeuchter Boden wird in vier 50-ml-Erlenmeyerkolben eingewogen und mit 4 ml Acetatpuffer (0,5molar, pH = 5,8) versetzt. Anschließend werden zu 3 Vollproben 1 ml Substratlösung zugesetzt, gründlich gemischt und 1 h bei 37 °C inkubiert. Der Leerwert wird ohne Substratlösung inkubiert. Nach der Bebrütung werden alle Kolben mit 25 ml dest. Wasser versetzt, zur Leerprobe wird zusätzlich 1 ml Substratlösung pipettiert. Die Suspensionen werden geschüttelt, sofort filtriert und anschließend 1 : 1 (abhängig von der Aktivität) verdünnt.

Zur Analyse werden 6 ml des Filtrats bzw. 6 ml der Eichlösungen mit 4 ml NaOH(A) versetzt. Die Intensität der entstehenden Gelbfärbung kann sofort bei 420 nm gegen den Blindwert der Eichung photometrisch gemessen werden.

Berechnung:

$$\frac{(VP - LP) \cdot 30 \cdot f \cdot 100}{ml \cdot EW \cdot \% TS} = \mu g \ p - NP \cdot g^{-1} \ TS \cdot h^{-1}$$

VP	Mittelwert der Vollproben [µg p-Nitrophenol im Ansatz]
LP	Mittelwert der Leerproben [µg p-Nitrophenol im Ansatz]
30	Extraktionsvolumen
f	Verdünnungsfaktor (hier 2)
ml	Filtrataliquot (hier 6 ml)
EW	Einwaage (hier 1,00 g FG)
100 · % ⁻¹ TS	Trockensubstanzfaktor

Anmerkungen:

- Das Substrat ist sehr lichtempfindlich.
- In sehr humusreichen Böden kann es zu unspezifischen Adsorptionen von p-Nitrophenol kommen, sodaß dessen Konzentration im Filtrat unterschätzt wird.
 SARATHACHANDRA und PERROTT (1981) schlagen Diethylether anstatt NaOH als Extraktionsmittel vor.

4.5.8 Bestimmung des pH-Wertes

- **Prinzip:** Die potentielle Acidität entspricht der Summe der Hydrogeniumionen in der Bodenlösung, welche mittels einer 0,01molaren CaCl₂-Lösung kurzfristig desorbierbar sind.
- Ausführung: Der Feinboden wird im Verhältnis 1 zu 2,5 (bei Humusauflage 1 : 12,5) mit einer 0,01molaren CaCl₂-Lösung versetzt, gemischt und über Nacht bei Raumtemperatur inkubiert. Vor der Messung ist neuerlich zu mischen. Nach dem Absetzten des Bodens wird mittels einer geeichten pH-Elektrode gemessen.

Anmerkungen:

• keine

4.5.9 Bestimmung des C_{tot}-Gehaltes

- **Prinzip:** Die Bodenprobe wird im Sauerstoffstrom bei ca. 1500 °C quantitativ verbrannt, das gebildete CO₂ wird gaschromatographisch mittels Wärmeleitfähigkeitsdetektor ermittelt (Totalanalyser: Carlo Erba, NA 1500).
- **Durchführung:** 5,00 bis 20,00 mg der feinst zermahlenen Bodenprobe (homogenisiert) werden in Zinnhütchen eingewogen und luftfrei verschlossen. Die Proben werden mittels Autosampler dem Meßgerät zugeführt. Die Kalibrierung erfolgt mit Hilfe eines organischen Standards bekannter C-Konzentration. Zur Auswertung werden die Peakflächen (peakareas) herangezogen.

Berechnung:

$$C_{tot}[\%] = \frac{100}{mg_{Probe}} \cdot PA_{Probe} \cdot \frac{mg_{Std} \cdot \%C_{Std}}{100 \cdot PA_{Std}}$$

PA _{Probe}	peakarea der Probe
mg _{Std}	Einwaage des Standards [mg]
%C _{Std}	C-Gehalt des Standards [%]
mg _{Probe}	Einwaage der Probe [mg]
PA _{Std}	peakarea des Standards

Anmerkungen:

• keine

Die statistische Auswertung der Daten zeigt eine hohe Streuung der analysierten Parameter in den 16 Unterquadraten der Bodenplots I und II in beiden Untersuchungsjahren. Aufgrund der Standortsvariabilität in diesen Mischwaldbeständen sind die Datenreihen (n = 16; entsprechend den 16 Unterquadraten pro Bodenplot) anfällig für Abweichungen vom Mittelwert bzw. Median und für "Ausreißer" (Extremwerte). Die Überprüfung der Datenreihen mittels KOLMOGOROV-SMIRNOV-Test bzw. SHAPIRO-WILKS-Statistik ergab in einigen Fällen signifikante Abweichungen von einer Normalverteilung (mit dem Mittelwert μ und der Standardabweichung σ), die für relativ homogene Flächen charakteristisch wäre. Allerdings ist die Anwendung dieser Tests bei kleinem Datenumfang (hier n = 16) kritisch, die subjektive Beurteilung der Histogramme (nicht abgebildet) zeigt weitere Grenzfälle auf. Aus diesem Grund wurde auf die Normalverteilungs-Statistik weitgehendst verzichtet und parameterfreie Tests zur Datenanalyse (MANN-WHITNEY-TEST für Medianvergleiche, Korrelationskoeffizient nach SPEARMEN) herangezogen. Lediglich aus Gründen der Vergleichbarkeit und der zusätzlichen Information scheinen in den tabellarischen Darstellungen der Daten beide Verteilungsstatistiken auf. Für hohe Datenstreuungen sorgt auch die subjektive Auswahl des Probenentnahmepunktes innerhalb des sehr heterogen zusammengesetzten Unterquadrats, da nach Absprache mit Dipl. Ing. Michael ENGLISCH unterschiedliche "Microsites" angesprochen werden sollten.

		1993			1994					
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	796 a①	790	701 - 890	-12 / +12	775 a	806	689 - 998	-11 / +29	n.s.@
	A _h -Hor.	346 b	342	283 - 431	-18 / +25	308 b	325	258 - 418	-16 / +36	n.s.
BP II	Aufl.	673 a	662	595 - 758	-12 / +13	738 a	771	702 - 840	-5 / +14	n.s.
	A _h -Hor.	392 b	391	334 - 437	-15 / +11	347 b	364	317 - 423	-9 / +22	n.s.

5.1 N-MINERALISATION IM ANAEROBEN BRUTVERSUCH

- 27 -

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \odot n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-Test: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, A_h -Hor. = A_h -Horizont

Tab. 1: N-Mineralisation im anaeroben Brutversuch: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [µg N g⁻¹ TS 7 d⁻¹].

Mit einer mittleren Abweichung vom Median (halbe Interquartile) von ± 14 % in der Auflage und ± 19 % im A_h-Horizont weist die N-Mineralisation im anaeroben Brutversuch ähnlich wie die substratinduzierte Respiration die geringsten Streuungen auf (Tab. 1, Abb. 3). Diese Untersuchungsmethode zeichnet sich durch eine hohe "Robustheit" gegenüber wechselnden Umweltbedingungen (Witterung, Jahreszeit, Streuzusammensetzung) aus: weder zwischen den Bodenplots I und II noch zwischen den beiden aufeinander folgenden Untersuchungsjahren 1993 und 1994 lassen sich statistisch gesicherte Unterschiede herausarbeiten. In beiden Fällen weist die Auflage um 2,3 - 2,5fach (BP I) bzw. um 1,7 -2,1fach (BP II) höhere Werte als der A_h-Horizont auf.

Abb. 3: N-Mineralisation im anaeroben Brutversuch in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

$NH_4^+-N \ [\mu g . g^{-1} TS]$			0 Tage	14 Tage	28 Tage	0 - 14 T.	14 - 28 T.	0 - 28 T.
1993	BP I	Aufl.	208	131	66	-77	-65	- 142
		A _h -Hor	27	8	10	-19	+2	- 17
	BP II	Aufl.	194	39	40	-155	+1	- 154
		A _h -Hor	36	9	11	-27	+1	- 26
1994	BP I	Aufl.	249	30	32	-219	+2	- 217
		A _h -Hor	28	6	7	-22	+1	- 21
	BP II	Aufl.	189	29	24	-160	-5	- 155
		A _h -Hor	13	4	6	-9	+2	- 7
NO₃⁻-N [μg.g ⁻¹ TS]		0 Tage	14 Tage	28 Tage	0 - 14 T.	14 - 28 T.	0 - 28 T.	
1993	BP I	Aufl.	46	128	251	+ 82	+ 123	+ 205
		A _h -Hor	122	150	176	+ 28	+ 26	+ 54
	BP II	Aufl.	46	104	143	+ 58	+ 39	+ 97
		A _h -Hor	109	152	168	+ 43	+ 16	+ 59
1994	BP I	Aufl.	111	25	27	- 75	+ 2	- 73
		A _h -Hor	88	95	132	+ 7	+ 37	+ 44
	BP II	Aufl.	125	52	140	- 73	+ 88	- 15
		A _h -Hor	52	123	90	+ 71	- 33	+ 38
$N_{min} \ [\mu g . g^{-1} TS]$			0 Tage	14 Tage	28 Tage	0 - 14 T.	14 - 28 T.	0 - 28 T.
1993	BP I	Aufl.	277	266	324	-11	+ 58	+ 69
		A _h -Hor	143	173	208	+ 30	+ 35	+ 65
	BP II	Aufl.	240	172	192	- 68	+ 20	- 48
		A _h -Hor	154	163	179	+ 9	+ 16	+ 25
1994	BP I	Aufl.	378	70	62	- 308	- 8	- 316
		A _h -Hor	132	99	139	- 33	+40	+ 7
	BP II	Aufl.	333	114	208	- 219	+ 94	- 125
		A _h -Hor	76	131	97	+ 55	- 34	+ 21

5.2 N-MINERALISATION IM AEROBEN BRUTVERSUCH

Abkürzungen: BP = Bodenplot

Tab. 2: N-Mineralisation im aeroben Brutversuch in den Untersuchungsjahren 1993 (Oktober) und 1994 (Juni) in beiden Bodenplots. Ammonium-N, Nitrat-N und N_{min}-Gehalt (N_{min}) nach 0, 14 und 28 Tagen. Ammonium-N, Nitrat-N und N_{min}-Bildungsraten in der 1. und. 2. Monatshälfte und Gesamtbildungsrate nach 28 Tagen Inkubationsdauer (alle Angaben stellen den Median dar).

Die Ermittlung der N-Mineralisation im aeroben Brutversuch führt zu wenig einheitlichen Ergebnissen (Tab. 2, Abb. 4, Abb. 5, Abb. 6 und Abb. 7). Generell kommt es während der einmonatigen Inkubationsphase zu einer Reduktion des Ammonium-N von etwa 200 µg $NH_4^+-N \cdot g^{-1}$ TS auf 50 µg $NH_4^+-N \cdot g^{-1}$ TS in der Auflage (besonders ausgeprägt in den beiden ersten Inkubationswochen). Die schon zu Inkubationsbeginn deutlich geringeren Gehalte an Ammonium-N im A_h -Horizont (um 25 µg NH_4^+ -N \cdot g⁻¹ TS) senken sich im Laufe des Versuches auf ca. 10 µg NH4+-N · g-1 TS ab. Der Grund dafür dürfte in der mikrobiell erleichterten N-Assimilierung in Form von Ammonium-N liegen. Im Gegensatz dazu weist der Gehalt an Nitrat-N steigende (Untersuchungsjahr 1993) bzw. indifferente (Untersuchungsjahr 1994) Tendenzen auf: Liegen die Anfangsgehalte an Nitrat-N im Ah-Horizont 1993 signifikant über denen der Auflage, so zeichnet sich das Untersuchungsjahr 1994 mit umgekehrten Verhältnissen aus. Der mittlere Gehalt an N_{min} (Summe von Ammonium-N und Nitrat-N) liegt zu Versuchsbeginn bei 240 - 380 µg N · g⁻¹ TS (Auflage) bzw. 80 - 160 µg N · g⁻¹ TS (A_h-Horizont) und bleibt im Untersuchungsjahr 1993 weitgehendst unverändert (Ammonium-N nimmt ab, Nitrat-N nimmt zu), die Ergebnisse des Untersuchungsjahres 1994 sind uneinheitlich und schwanken beträchtlich. Möglicherweise kann die vom Manual for Integrated Monitoring (1993) vorgeschlagene und für landwirtschaftliche Böden durchaus etablierte Bestimmung der N-Mineralisation im aeroben Brutversuch nicht in dieser Form auf Waldböden übertragen werden (siehe auch unter "Bestimmung der N-Mineralisation im aeroben Brutversuch").

- O Extremwerte außerhalb der 10- bzw. 90% Percentile
- Abb. 4: N-Mineralisation im aeroben Brutversuch nach 0, 14 und 28 Tagen am Bodenplot I im Untersuchungsjahr 1993 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen).

- = Median
 - ---- = Mittelwert
- O Extremwerte außerhalb der 10- bzw. 90% Percentile
- Abb. 5: N-Mineralisation im aeroben Brutversuch nach 0, 14 und 28 Tagen am Bodenplot II im Untersuchungsjahr 1993 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

Abb. 6: N-Mineralisation im aeroben Brutversuch nach 0, 14 und 28 Tagen am Bodenplot I im Untersuchungsjahr 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

O Extremwerte außerhalb der 10- bzw. 90% Percentile

Abb. 7: N-Mineralisation im aeroben Brutversuch nach 0, 14 und 28 Tagen am Bodenplot II im Untersuchungsjahr 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

				1993				1994		
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	639 aO	641	574 - 737	-10/+15	892 a	916	852 - 960	-4 / +8	sign.@
	A _h -Hor.	199 b	203	153 - 244	- 23 / +23	187 b	188	131 - 239	-30 / +28	n.s.
BP II	Aufl.	549 a	540	483 - 597	-12 / +9	652 c	660	562 - 726	-14 / +11	sign.
	A _h -Hor.	257 b	260	199 - 311	-23 / +21	223 b	236	196 - 274	-12 / +23	n.s.

5.3 SUBSTRATINDUZIERTE RESPIRATION (SIR)

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \bigcirc n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-TEST: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, A_h -Hor. = A_h -Horizont

Ähnlich unempfindlich wie die N-Mineralisation im anareoben Brutversuch reagiert die substratinduzierte Respiration auf die unterschiedlichen Beprobungsjahre und -jahreszeiten (Tab. 3; Abb. 8). Mit einer mittleren Datenstreuungen um den Median von ±10 % in der ± 18 % Auflage (halbe Interguartile) und im A_h-Horizont weist diese Untersuchungsmethode die höchste Konstanz aller hier angeführten Methoden auf. Allerdings lassen sich in der Streuauflage der beiden Bodenplots signifikante Unterschiede zwischen den Untersuchungsjahren 1993 und 1994 ablesen: Das Untersuchungsjahr 1994 führte zu 1,4fach (BP I) bzw. 1,2fach (BP II) höheren Atmungsraten als das Jahr 1993. Dadurch verschieben sich die Verhältnisse Auflage : A_h-Horizont von 3,2 : 1 auf 4,8 : 1 (BP I) bzw. von 2,1 : 1 auf 2,9 : 1 (BP II). Die Ergebnisse der A_h-Horizonte unterscheiden sich nicht zwischen den beiden Untersuchungsjahren. Die Ursache für diese geringfügig unterschiedlichen Werte dürfte, wie auch bei den anderen, teilweise beträchtlich weiter in streuenden Untersuchungsmethoden, saisonellen und witterungsbedingten Veränderungen der Streuauflage (Wassergehalt, Artendiversität, Substrat, Veränderung chemischer und physikalischer Parameter) liegen.

Tab. 3: Substratinduzierte Respiration (SIR): Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [μg CO₂ g⁻¹ TS h⁻¹].

Abb. 8: Substratinduzierte Respiration in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	9,3 aO	9,3	8,0 - 10,4	-14 / +12	19,8 a	20,4	15,7-25,7	-22 / +30	sign.@
	A _h -Hor.	6,8 ab	7,7	5,5 - 9,9	-19 / +46	5,2 b	6,8	4,0 - 8,9	-23 / +71	n.s.
BP II	Aufl.	11,5 a	12,8	8,6 - 16,6	-23 / +44	15,2 a	16,5	11,0-20,5	-28 / +35	n.s.
	A _h -Hor.	3,6 b	6,5	2,9 - 7,1	-19 / +97	3,3 b	5,1	2,9 - 5,3	-12 / +61	n.s.

5.4 BODENEIGENE PHOSPHATASE

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \bigcirc n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-Test: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, A_h -Hor. = A_h -Horizont

Tab. 4: Bodeneigene Phosphatase-Aktivität: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [mg Phenol g⁻¹ TS 3 h⁻¹].

Mit mittleren Schwankungen von ± 26 % in der Auflage und ± 44 % im A_h-Horizont zeichnet sich die bodeneigene Phosphatase durch eine hohe Datenstreuung aus (Tab. 4, Abb. 9). Besonders die mineralischen A-Horizonte führen zu stark rechtslastigen Datenreihen, die anfällig für Extremwerte nach oben sind, was ein Hinweis auf eine Einlagerung von einzelnen "hot spots" in eine relativ gering aktive Grundmasse sein dürfte. Außerdem unterliegen die Phosphatasen im nicht gepufferten Versuchsansatz den unterschiedlichen pH-Werten. Die hohe Datenstreuung erschwert die statistische Absicherung von Unterschieden zwischen den beiden Untersuchungsjahren 1993 und 1994, lediglich in der Auflage des BP I kann zwischen 1993 und 1994 ein signifikanter Unterschied festgestellt werden: Die Streuauflage des BP I weist im Untersuchungsjahr, das Verhältnisse von Auflage zu A_h-Horizont verschiebt sich von 1,4 : 1 (1993) auf 3,8 : 1 (1994). Der Bodenplot II weist mit 3,2 : 1 (1993) bzw. 4,6 : 1 (1994) etwas weitere Aktivitätsunterschiede zwischen den beiden Horizonten auf.

Abb. 9: Bodeneigene Phosphataseaktivität in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	296 a①	301	264 - 328	-11/+11	394 a	429	323 - 526	-18 / +34	sign.@
	A _h -Hor.	122 b	120	95 - 151	-22 / +24	110 b	113	92 - 133	-16 / +21	n.s.
BP II	Aufl.	325 a	317	267 - 385	-18 / +18	382 a	376	292 - 430	-24 / +13	n.s.
	A _h -Hor.	163 c	189	129 - 225	-21 / +38	148 c	155	115 - 199	-22 / +34	n.s.

5.5 SAURE PHOSPHATASE

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \bigcirc n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-Test: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, A_h -Hor. = A_h -Horizont

Tab. 5: Saure Phosphatase-Aktivität: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [μg p-Nitrophenol g⁻¹ TS h⁻¹].

Im direkten Vergleich zur bodeneigenen Phosphatase zeichnet sich die saure Phosphatase (im gepufferten Ansatz) durch eine deutlich geringere Datenstreuungen aus: 18 % in der Auflage und 27 % im A_h -Horizont (Tab. 5, Abb. 10). Wie bei den meisten anderen Untersuchungsmethoden sind die Aktivitäten (Mediane) in den mineralischen A_h -Horizonten trotz der höheren Streuung außerordentlich konstant, die Untersuchungsjahre 1993 und 1994 lassen sich nicht statistisch abgesichert unterscheiden. Lediglich in der Streuauflage des BP I konnten im Vergleich zum vorhergehenden Untersuchungsjahr 1993 etwas höheren Aktivitäten ermittelt werden. Die Auflagen weisen um 2,4fach (BP I, 1993) bzw. 3,6fach (BP I, 1994) und 2,0fach (BP II, 1993) bzw. 2,6fach (BP II, 1994) höhere Umsatzraten auf als die angrenzenden A_h -Horizonte.

Abb. 10: Saure Phosphataseaktivität in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

5.6 XYLANASE

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	33,2 a①	34,2	31,8-35,5	-4 / +7	47,4 a	49,0	39,0-62,7	-18 / +32	sign.@
	A _h -Hor.	6,7 b	8,2	5,4 - 10,7	-19 / +60	5,5 b	6,7	3,9 - 8,1	-29 / +47	n.s.
BP II	Aufl.	24,9 c	24,8	20,5-30,7	-18 / +23	37,8 a	38,4	33,2-44,5	-12 / +18	sign.
	A _h -Hor.	5,7 b	8,3	4,7 - 9,1	-46 / +60	4,9 b	6,1	4,2 - 7,8	-14 / +59	n.s.

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \bigcirc n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-TEST: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, Ah-Hor. = Ah-Horizont

Tab. 6: Xylanase-Aktivität: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [mg Glukoseäquivalente g⁻¹ TS 24 h⁻¹].

Die mittleren Streuungen (halbe Interquartilen) der Xylanase-Aktivität betragen ± 17 % (Auflage) bzw. ± 42 % (A_h-Horizont) um den Median, wobei in allen Fällen eine starke Rechtslastigkeit der Verteilungsfunktion auffällt (Tab. 6, Abb. 11). Besonders der A_h-Horizont weist Extremwerte auf, die bis um das 7fache über den Werten der gering aktiven Basis liegen und somit besonders der Mittelwert, weniger aber der Median zu höheren Werten tendiert. Grund für diese "Ausreißer" dürften, ähnlich wie auch bei den Phosphatasen, kleinräumige Einlagerungen ("hot spots") von deutlich höher aktivem Streumaterial in die Matrix des wenig aktiven, homogenen A_h-Horizontes sein. Im Mittel weist die Streuauflage 4,8fach (BP I) bzw. 8,2fach (BP II) höhere Werte auf als der mineralische A_h-Horizont, der Aktivitätsgradient von der Streu zum A_h-Horizont ist bei den Zylanase am deutlichsten ausgeprägt. Ähnlich wie bei den übrigen enzymatischen Parametern liegen die ermittelten Aktivitäten der Xylanase in der Auflage 1994 signifikant höher als 1993, die Aktivitäten in den A_h-Horizonten sind in beiden Untersuchungsjahren unverändert konstant.

Abb. 11: Xylanaseaktivität in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	251 a①	270	159 - 373	-37 / +49	576 a	565	369 - 716	-36 / +24	sign.@
	Ah-Hor.	707 b	712	542 - 962	-23 / +36	928 b	899	699-1026	-25 / +11	n.s.
BP II	Aufl.	556 c	535	385 - 640	-31 / +15	653 b	725	566 - 902	-13 / +38	n.s.
	Ah-Hor.	782 b	790	674 - 940	-14 / +20	913 b	931	754-1119	-17 / +23	n.s.

- 43 -

5.7 ARYLSULFATASE

 \bigcirc Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)

 \odot n.s. = Wert von 1993 unterscheidet sich nicht signifikant von 1994; sign. = Wert von 1993 unterscheidet sich signifikant von 1994 (MANN-WHITNEY-Test: p < 0,01)

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, Ah-Hor. = Ah-Horizont

Tab. 7: Arylsulfatase-Aktivität: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₂-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Oktober 1993 und Juni 1994 [μg p-Nitrophenol g⁻¹ TS h⁻¹].

Als einzige hier angeführte Untersuchungsmethode weist die Arylsulfatase, konträr zu den anderen enzymatischen Parametern, höhere Aktivitäten im A_h-Horizont als in der Auflage auf. Dieser ungewöhnliche Sachverhalt dürfte allerdings methodische Gründe haben. SARATHACHANDRA und PERROTT (1981) weisen auf methodische Schwierigkeiten in sehr humusreichen Proben hin, wodurch es durch unspezifische Adsorptionsvorgänge während der Analytik zu Fehleinschätzungen der ermittelten Aktivität kommen kann. KAMPICHLER und KANDELER (1993) kommen in ihren Untersuchungen zu ähnlichen Ergebnissen (siehe auch unter "Bestimmung der Arylsulfataseaktivität").

Im Mittel liegen die Werte des A_h-Horizonts um das 1,4 (BP II) bis 2,8fache (BP I, 1993) über den Werten der Streuauflage (Tab. 7, Abb. 12). Die Ergebnisse streuen mit $\pm 30 \%$ (Auflage) bzw. $\pm 21 \%$ (A_h-Horizont) um den Median. Mit Ausnahme der Auflage des BP I unterscheiden sich die Horizonte nicht zwischen den Untersuchungsjahren 1993 und 1994, besonders die A_h-Horizonte weisen annähernd konstante Verhältnisse auf.

Abb. 12: Arylsulfataseaktivität in den Bodenplots I und II der Untersuchungsjahre 1993 und 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

5.8 BEZIEHUNGEN DER ENZYMATISCHEN PARAMETER ZUEINANDER UND ZWISCHEN DEN UNTERSUCHUNGSHORIZONTEN BZW. -JAHREN

- 45 -

Innerhalb der einzelnen Horizonte sind alle bodenenzymatischen Parameter zueinander positiv korreliert (Tab. 8, Tab. 9), auch wenn im Fall der Arylsulfataseaktivität zwischen den einzelnen Horizonten konträre Werte zu den übrigen Parametern ermittelt wurden. Eine auffällig hohe positive Korrelation besteht zwischen Xylanase und saurer Phosphatase (mittlerer Korrelationskoeffizient r nach SPEARMAN = $0,83^{***}$) sowohl im Auflagehorizont als auch im A_h-Horizont beider Bodenplots in beiden Untersuchungsjahren. Ähnlich eng korreliert sind in der Auflage die beiden Phosphatasen (r = $0,76^{***}$) und im A_h-Horizont die Substratinduzierte Respiration mit der sauren Phosphatase (r = $0,74^{***}$). Weiters eng korrelierte Paare sind: SIR - N-min; SIR - Xylanase und bodeneigene Phosphatase -Xylanase. Die höhere Streuung der Werte im A_h-Horizont führt generell zu höheren Korrelationskoeffizienten.

	S	IR	boder	neigene	Sa	ure	Aryl	sulfatase	Xy	lanase
			Phos	ohatase	Phos	phatase				
N-Min.	0,69	0,78	-	0,73	-	0,83	-	-	-	0,90
	0,85	0,54	-	-	0,89	-	0,68	-	0,79	-
SIR			-	0,64	-	0,53	-	-	-	0,79
			-	0,88	0,79	0,83	0,88	-	0,56	0,85
bod.					0,72	0,76	-	-	-	0,85
Phos.					-	0,89	-	-	0,58	0,91
saure	CODE	BP I	BP II				-	-	0,88	0,84
Phos.	Aufl.						0,67	-	0,79	0,89
Aryl.	A _h -								0,69	-
	Hor.									
									-	-

normal: 0,05 > p > 0,01

- nicht signifikant (p > 0,05)

Abkürzungen: SIR = substratinduzierte Respiration, N-Min. = N-Mineralisation im anaeroben Brutversuch, Bod. Phos. = bodeneigene Phosphatase, saure Phos. = saure Phosphatase, Aryl. = Arylsulfatase, BP = Bodenplot, Aufl. = Auflage, A_h -Hor. = A_h -Horizont

Tab. 8: SPEARMEN's Korrelationskoeffizient (r) zwischen den analysierten Parametern in der Auflage und im A_h-Horizont des Bodenplots I und Bodenplots II im Untersuchungsjahr 1993.

	SI	R	boden	eigene	sa	ure	Arylsu	lfatase	Xyla	nase
			Phosp	hatase	Phosp	hatase				
N-Min.	-	0,72	-	-	-	-	-	-	-	-
	0,80	0,74	-	0,62	0,61	0,51	-	0,63	-	0,53
SIR			-	-	-	0,68	-	-	0,65	0,64
			-	0,57	0,66	0,66	-	-	-	0,68
bod.					0,83	0,74	-	-	0,83	0,76
Phos.					-	0,82	-	-	0,59	0,77
saure	CODE	BP I	BP II				-	-	0,85	0,92
Phos.	Aufl.						0,56	-	0,64	0,85
Aryl.	A _h -Hor.						<u></u>		-	-
									-	-

normal: 0,05 > p > 0,01

- nicht signifikant (p > 0,05)

Abkürzungen: SIR = substratinduzierte Respiration, N-Min. = N-Mineralisation im anaeroben Brutversuch, bod. Phos. = bodeneigene Phosphatase, saure Phos. = saure Phosphatase, Aryl. = Arylsulfatase, BP = Bodenplot, Aufl. = Auflage, A_h -Hor. = A_h -Horizont

Tab. 9: SPEARMEN's Korrelationskoeffizient (r) zwischen den analysierten Parametern in der Auflage und im A_h-Horizont des Bodenplots I und Bodenplots II im Untersuchungsjahr 1994.

	N-Min.		S	IR	bod. Phos.		saure Phos.		Xylanase		Arylsulfatase	
	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II
1993	-	-	-	0,63	-	0,83	-	0,55	-	0,59	-	-
1994	-	-	-	-	0,56	-	-	-	-	-	-	0,51

	р	Н	C	tot
	BP I	BP II	BP I	BP II
1993	n. b.	n. b.	n. b.	n. b.
1994	0,62	-	-	-

normal: 0,05 > p > 0,01

- nicht signifikant (p > 0,05)

n.b. Parameter nicht bestimmt

Abkürzungen: N-Min. = N-Mineralisation im anaeroben Brutversuch, SIR = substratinduzierte Respiration, bod. Phos. = bodeneigene Phosphatase, saure Phos. = saure Phosphatase, BP = Bodenplot

Tab. 10: SPEARMEN's Korrelationskoeffizient (r) der analysierten Parameter (einschlie
ßlich pH-Wert und C_{tot}) zwischen der Auflage und dem A_h-Horizont beider Bodenplots in den Untersuchungsjahren 1993 und 1994.

Zwischen der mikrobiellen Aktivität der Auflage und des A_h -Horizonts konnten mit vereinzelten Ausnahmen (Tab. 10) keine signifikanten Korrelationen festgestellt werden. Lediglich im Bodenplot II sind im Untersuchungsjahr 1993 die Mehrzahl der gewonnenen Daten (Substratinduzierte Respiration, bodeneigene Phosphatase, saure Phosphatase, Xylanase) zwischen der Streuauflage und dem A_h -Horizont signifikant korreliert. Da dieser Sachverhalt im Untersuchungsjahr 1994 allerdings nicht feststellbar ist, kann die ursprüngliche Vermutung, daß der deutlich heterogenere Standort am Oberhang (subjektiver Eindruck der Autoren bei der Geländebegehung) zu ausgeprägteren Korrelationen zwischen den Untersuchungshorizonten führen müßte, nicht bestätigt werden.

	N-Min.		SIR		bod.	bod. Phos.		saure Phos.		Xylanase		Arylsulfatase	
	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	
Aufl.	-	-	-	-	-	0,72	-	0,57	-	0,51	-	-	
A _h -Hor.	0,54	-	0,64	-	0,64	-	0,52	-	0,60	-	-	-	

normal: 0,05 > p > 0,01

- nicht signifikant (p > 0,05)

n.b. Parameter nicht bestimmt

Abkürzungen: N-Min. = N-Mineralisation im anaeroben Brutversuch, SIR = substratinduzierte Respiration, Bod. Phos. = bodeneigene Phosphatase, saure Phos. = saure Phosphatase, BP = Bodenplot, Aufl. = Auflage, A_h -Hor. = A_h -Horizont

Tab. 11: SPEARMEN's Korrelationskoeffizient (r) der analysierten Parameter zwischen den Untersuchungsjahren 1993 und 1994 beider Bodenplots in der Auflage und im A_h-Horizont.

Ein ähnlich uneinheitliches Bild ergibt der Vergleich des Untersuchungsjahres 1993 mit 1994 (Tab. 11). Interessanterweise weist der A_h-Horizont des BP I zwischen den beiden Untersuchungsjahren häufig korrelative Zusammenhänge auf (N-Mineralisation, Substratinduzierte Respiration, bodeneigene Phosphatase, saure Phosphatase, Xylanase). Es ist daher anzunehmen, daß bei den beiden Probewerbungsterminen an diesem BP mikrobiologisch ähnliche Probepunkte ("micro sites") im jeweiligen Untersuchungsquadrat geworben wurden (diese Vorgangsweise der Probenwerbung ist mit Dipl. Ing. M. ENGLISCH vereinbart worden).

5.9 BEZIEHUNGEN DER ENZYMATISCHEN PARAMETER ZUM PH-WERT UND C_{tot}

Der Bodenplot I unterscheidet sich in seiner Acidität deutlich vom Bodenplot II (Tab. 12, Abb. 13). Obwohl beide Böden auf carbonatreichem Ausgangsmaterial aufliegen, dürfte es in der Plateaulage des Bodenplots I (Kalkbraunlehme) aufgrund ungestörterer Horizontlagerung zu pH-Absenkungen in den obersten, carbonatärmeren Horizonten gekommen sein.

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	-	-	-	-	5,9 aO	5,9	5,4 - 6,4	-9 / +9	-
	A _h -Hor.	-	-	-	-	6,6 a	6,2	5,4 - 6,8	-18 / +3	-
BP II	Aufl.	-	-	-	-	6,6 a	6,5	6,5 - 6,7	-2 / +2	-
	A _h -Hor.	-	-	-	-	7,2 b	7,1	7,1 - 7,3	-1 / +1	-

① Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)</p>

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, Ah-Hor. = Ah-Horizont

Tab. 12: pH-Wert: Median, Mittelwert (MW), Interquartile (Q₁-Q₃) und Q₁/Q₃-Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Juni 1994 (- log [H₃O⁺]).

				1993						
		Median	MW	Q ₁ -Q ₃	Q.M. [%]	Median	MW	Q ₁ -Q ₃	Q.M. [%]	1993 - 1994
BP I	Aufl.	-	-	-	-	418 a①	420	392 - 449	-6 / +7	-
	A _h -Hor.	-	-	-	-	132 b	142	108 - 184	-18 / +39	-
BP II	Aufl.	-	-	-	-	428 a	408	355 - 437	-17 / +2	-
	A _h -Hor.	-	-	-	-	237 с	250	206 - 281	-13 / +19	-

① Werte (Mediane) einer Spalte mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0,01)</p>

Abkürzungen: BP = Bodenplot, Aufl. = Auflagehorizont, Ah-Hor. = Ah-Horizont

Tab. 13: Totaler Kohlenstoff-Gehalt: Median, Mittelwert (MW), Interquartile (Q_1-Q_3) und Q_1/Q_3 -Abstand zum Median (Q.M.) in den Auflage- und A_h-Horizonten der Bodenplots I und II im Juni 1994 [mg · g⁻¹ TS].

Abb. 13: pH-Werte in den Bodenplots I und II des Untersuchungsjahres 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

Abb. 14: C_{tot}-Gehalt in den Bodenplots I und II des Untersuchungsjahres 1994 (n = 16): Boxplots mit Median, Mittelwert, Quartilen und 10- bzw. 90% Percentilen.

Mit einem mittleren pH-Wert von 5,9 (Median) weist die Streuauflage des BP I etwas geringere pH-Werte auf als dessen mineralischer A_h -Horizont (pH um 6,6). Die dazu ermittelten C_{tot} -Werte (Tab. 13, Abb. 14) von etwa 42 % (Median) in der Streuauflage dürften in erster Linie aus dem organischen Kohlenstoff resultieren, während sich bei einem mittleren C_{tot} -Gehalt von 14 % im mineralischen A_h -Horizont im größeren Ausmaß bereits anorganischer Kohlenstoff (Carbonate) bemerkbar macht (Böden unter 6,5 sind weitgehendst carbonatfrei, BLUM et al., 1986). Anders liegen die Verhältnisse am Bodenplot II am Oberhang (kolluvial beeinflußte Rendzinen und O/C-Böden), wo die erhöhte Erosion eine ausgeprägte A_h -Horizont-Bildung erschwert und Ein- und Überlagerungen von kalkhältigem Gestein fördert. Die Böden sind dementsprechend stärker gepuffert, die pH-Werte liegen in der Auflage um 6,6 und im A_h -Horizont um 7,2. Der erhöhte anorganische C-Anteil im mineralischen A_h -Horizont führt zu C_{tot} -Gehalten um 25 % und liegt damit signifikant höher als am Bodenplot I. Der C_{tot} -Gehalt in der teilweise schwach ausgeprägten Streuauflage des Bodenplots II ist der des Bodenplots I ähnlich und liegt bei 43 %.

Punktuelle Inhomogenitäten (Einschlüsse von Dolomitgrus) dürften in den beiden oberen Horizonten des Bodenplots I zu weiteren Streuungen um den medianen pH-Wert (Auflage: ± 9 %, A_h-Horizont: +3 /-18 %!) als im Bodenplot II führen, dessen Streuung ± 2 % um den Median nicht übersteigt! Der pH-Wert im Bodenplot I hängt eng mit dessen C_{tot}-Gehalt zusammen (r = - 0,66** im Aufl.-Hor. bzw. - 0,72*** im A_h-Hor.) und ist ein deutlicher Hinweis auf Streu-Nester ("hot spots") im mineralischen A_h-Horizont. Die hohe Anfälligkeit der Datenreihe des A_h-Horizonts auf tiefe pH-Werte (Einlagerung von saurer Streu) unterstützt diesen Sachverhalt. Im Bodenplot II besteht diese enge Beziehung zwischen C_{tot} und pH nicht.

		N-Min.		SIR		boden. Phos.		saure Phos.		Xylanase		Arylsulf.	
		BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II	BP I	BP II
pН	Aufl.	-	-	-	-	-0,90	-	-0,70	-	-0,74	-	-	-
	A _h -Hor.	0,70	-	0,79	-	-0,77	-	-	-	-	-	-	-
C _{tot}	Aufl.	-	-	0,77	-	0,60	0,86	0,62	0,63	0,61	0,59	-	-0,59
	A _h -Hor.	0,92	0,55	0,86	0,84	-	0,81	0,68	0,86	-	0,84	-	0,54

normal: 0,05 > p > 0,01

nicht signifikant (p > 0,05)

Abkürzungen: N-Min. = N-Mineralisation im anaeroben Brutversuch, SIR = substratinduzierte Respiration, boden. Phos. = bodeneigene Phosphatase, saure Phos. = saure Phosphatase, Arylsulf. = Arylsulfatase, BP = Bodenplot, Aufl. = Auflage, A_h -Hor. = A_h -Horizont

Tab. 14: SPEARMEN's Korrelationskoeffizient (r) zwischen pH-Wert, C_{tot} und den bodenenzymatischen Parametern in den Bodenplots I und II im Untersuchungsjahr 1994.

Aufgrund der weiteren pH-Amplitude im Bodenplot I können hier teilweise signifikante Korrelationen zwischen Enzymaktivitäten und pH ermittelt werden (Tab. 14): besonders die bodeneigene Phosphatase (r = -0,84*** im Mittel), aber auch die saure Phosphatase und die Xylanase zeigen hier negativ proportionale Verbindungen zum pH-Wert. Allerdings dürfte in den meisten Fällen eine Scheinkorrelation vorliegen, da die Enzymaktivität und der pH-Wert direkt über den C_{org}-Gehalt beeinflußt werden (sehr enge Korrelation zu C_{tot} in beiden Bodenplots; Tab. 14). Im Bodenplot II treten keine signifikanten Korrelationen der enzymatischen Parameter zum pH auf.

5.10 BEZUG DER BODENMIKROBIOLOGISCHEN PARAMETER ZUM BIOMASSE-KOHLENSTOFF (C_{MIC})

	1993				1994				Vergleich 1993 - 1994			
	BP I		BP I BP II		BP I		BP II		BP I		BP II	
	Aufl.	A _h	Aufl.	A _h	Aufl.	A _h	Aufl.	A _h	Aufl.	A _h	Aufl.	A _h
C _{mic} [⊕]	13,2 [©] a ³) 4,1 b	11,3 a	5,3 b	18,4 a	3,9 b	13,4 a	4,6 b	sign. [@]	n.s.	sign.	n.s.
N-min	61 a	78 b	61 a	77 b	43 a	84 b	59 a	75 b	sign.	n.s.	n.s.	n.s.
boden. Phos.	0,68 a	1,52 b	1,04 c	0,79 a	0,91 a	1,58 a	1,00 a	0,77 a	sign.	n.s.	n.s.	n.s.
saure Phos.	22,1 a	29,6 b	27,6 b	32,3 a	21,6 a	27,7 b	26,6 b	30,3 b	n.s.	n.s.	n.s.	n.s.
Arylsulf.	19 a	168 b	47 c	154 b	27 a	261 b	47 a	188 b	n.s.	sign.	n.s.	n.s.
Xylanase	2,55 a	1,79 b	2,15 a	1,17 b	2,50 ab	1,41 a	2,70 b	1,10 c	n.s.	n.s.	sign.	n.s.

① Abkürzungen: C_{mic} = errechneter Biomasse-Kohlenstoff; N-Min = N-Mineralisation im anaeroben Brutversuch; boden. Phos. = bodeneigene Phosphatase; saure Phos. = saure Phosphatase; Arylsulf. = Arylsulfatase;

BP = Bodenplot; Aufl = Auflage, A_h = A_h-Horizont
2 Einheiten: C_{mic}: mg Biomasse-C g⁻¹ TS; N-Min: μg N mg⁻¹ C_{mic} 7 d⁻¹; boden Phos: μg Ph mg⁻¹ C_{mic} 3 h⁻¹; saure Phos: μg p-NP mg⁻¹ C_{mic} h⁻¹; Xylanase: mg Glu mg⁻¹ C_{mic} 24 h⁻¹; Arylsulfatase: μg p-NP mg⁻¹ C_{mic} h⁻¹

③ Werte (Mediane) einer Zeile und eines Untersuchungsjahres mit unterschiedlichen Buchstaben unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0.01)

④ sign. = Werte (Mediane) der beiden Untersuchungsjahre unterscheiden sich signifikant (MANN-WHITNEY-Test: p < 0.01; n. s. = Werte (Mediane) der beiden Untersuchungsjahre unterscheiden sich nicht signifikant (MANN-WHITNEY-Test: p < 0,01)

Tab. 15: Mediane der analysierten Parameter am Bodenplot I und II zu den Untersuchungsjahren 1993 und 1994, bezogen auf den errechneten C_{mic}-Gehalt.

Mit Hilfe des k_{c} -Wertes kann nach der Formel $C_{mic} =$ Fehler! aus der Substratinduzierten Respiration (SIR) der mikrobielle Biomasse-Kohlenstoff (C_{mic}) ermitteln werden. Die auf diese Weise "geschätzten" Gehalte an Biomasse-Kohlenstoff (C_{mic}) zeigen deutlich höhere Werte in der Auflage als im A_h-Horizont (Tab. 15). Dabei wird deutlich, daß sich die Streuauflage beider Bodenplots im Untersuchungsjahr 1994 durch 1,2fach bis 1,4fach signifikant höhere C_{mic}-Gehalte als im Untersuchungsjahr 1993 auszeichnet. Die A_h-Horizonte weisen keine signifikanten Unterschiede auf. Bezogen auf den Biomasse-C zeigen mit Ausnahme der Xylanase alle bodenmikrobiologischen Parameter höhere Aktivitäten im A_h-Horizont, folglich resultieren die tatsächlich ermittelten hohen Umsatzraten im Auflagehorizont nicht aus einer gesteigerten Enzymproduktion, sondern aus den sehr hohen C_{mic}-Gehalten in der Streu. Ein Vergleich der beiden

Untersuchungsjahre 1993 und 1994 führt nur in wenigen Fällen zu signifikante Unterschieden in der bodenmikrobiologischen Aktivität.

6 DISKUSSION

Die statistische Auswertung der bodenenzymatischen Untersuchungen am INTEGRATED-MONITORING-Standort Zöbelboden zeigt deutlich die Problematik aber auch die Möglichkeiten der mikrobiellen Waldbodencharakterisierung auf. Aufgrund der hohen Standortsvariabilität (micro-sites) in diesen Mischwaldbeständen sind die Datenreihen anfällig für Extremwerte, daraus resultiert eine erhöhte Streuung. Die Tendenz zur Streuung nimmt in der Streuauflage in der Reihenfolge substratinduzierte Respiration (im Mittel 10 %) < N-Mineralisation (14 %) < Xylanase (17 %) < saure Phosphatase (18 %) < bodeneigene Phosphatase (26 %) und Arylsulfatase (30 %) zu. Die Aktivität der Arylsulfatase in der Streuauflage kann aus methodischer Gründen nicht direkt mit den anderen Parametern verglichen werden (siehe auch unter "Ergebnisse"). Die substratinduzierte Respiration (18 %) und die N-Mineralisation (19 %) bilden auch im Ah-Horizont die konstantesten Untersuchungsmethoden, die Arylsulfatase (21 %), die saure Phosphatase (27 %), besonders aber die Xylanase (42 %) und die bodeneigene Phosphatase (44 %) streuen im mineralischen A_h-Horizont deutlich weiter. Die weitere Streuung im A_h-Horizont hängt eng mit dessen chemischen Eigenschaften zusammen: sowohl pH und Ctot (bzw. C_{org}) weisen im mineralischen A_h-Horizont weitere Schwankungen auf. Mikrobiologisch hochaktive Streunester und -einlagen (hot spots) dürften im mineralischen A_h-Horizont zu stichweise höheren Ergebnissen führen.

Unabhängig von der Datenstreuung unterscheiden sich der Auflagehorizont (O_f/O_h) und der A_h -Horizont deutlich in ihrer mikrobiellen Aktivität. Mit Ausnahme der Arylsulfatase weist der Auflagehorizont durchwegs signifikant höhere Umsatzraten auf als der A_h -Horizont. Im Mittel liegen die Werte der Streuauflage um das 1,4fache (bodeneigene Phosphatase) bis 8,2fache (Xylanase) über denen des darunter angrenzenden mineralischen A_h -Horizonts. Untersuchungen an Wiesen- und Ackerböden (KANDELER et al. 1994, KANDELER & EDER 1993) haben gezeigt, daß ein Bezug der ermittelten Enzymaktivitäten

auf die tatsächlich vorhandene Biomasse wertvolle Rückschlüsse auf die relativen Umsatzraten liefert. Streuauflagen von Waldböden weisen in der Regel eine erhöhte mikrobielle Aktivität (Biomasse) auf und übertreffen die Umsatzraten im mineralischen Unterboden meist um ein Vielfaches. Günstige Abbaubedingungen (leicht verfügbares Substrat, gute Durchlüftung, optimale Feuchtigkeit, etc.) sorgen im Auflagehorizont für eine hohe Biomasse und damit für erhöhte mikrobielle Umsatzraten. In den Bodenplots des INTEGRATED MONITORING sinken die Werte von etwa 14 mg $C_{mic} \cdot g^{-1}$ TS in der Streuauflage (O_h/O_f) auf etwa 4,5 mg $C_{mic} \cdot g^{-1}$ TS im mineralischen A_h-Horizont ab. Ross & TATE (1992) ermittelten in Südbuchenwäldern (Nothofagus) ähnliche C_{mic}-Abnahmen vom O_l- über den O_{fh}- zum A_h-Horizont von 23,5 - 9,5 - 1,5 mg $C_{mic} \cdot g^{-1}$ TS (vgl. Tab. 13). Bezogen auf den Biomasse-C ergibt sich in den Enzymaktivitäten ein umgekehrtes Bild: Mit Ausnahme der Xylanase zeigen alle ermittelten enzymatischen Parameter höhere Aktivitäten im A_h-Horizont, die tatsächlich (bezogen auf die Boden-Trockensubstanz) ermittelten hohen Aktivitäten in der Auflage resultieren folglich nur aus den gesteigerten C_{mic}-Gehalten. Die Xylanase, als extrazelluläres Enzym, ist stark an die partikuläre organische Substanz gebunden und weist nicht diese enge Verbindung zum Biomasse-C auf.

Im A_h -Horizont konnte zwischen den Untersuchungsjahren 1993 und 1994 trotz der unterschiedlichen Jahreszeiten zum jeweiligen Beprobungstermin (Oktober bzw. Juni) bei allen untersuchten Parametern keine signifikanten Unterschiede festgestellt werden. In der Streuauflage zeigt sich allerdings generell ein Trend zu höheren Werten im Untersuchungsjahr 1994 (im Mittel um 1,4fach höhere Werte; maximal bis zu 2,2fach höher bei der bodeneigenen Phosphatase in der Auflage am BP I), diese Steigerungen sind jedoch nicht in allen Fällen signifikant (deutlich am Bodenplot I). Die weite Streuung der Datenreihen erschwert hierbei die statistische Absicherung. Dieser Sachverhalt steht eng im Zusammenhang mit den unterschiedlichen C_{mic}-Gehalten der Böden: Im Untersuchungsjahr 1994 zeichnet sich der Auflagehorizont durch signifikant (etwa 1,3fach) höhere Gehalte an Biomasse-C aus als zum Untersuchungszeitpunkt etwa ein Jahr zuvor, damit steigen auch die an den Biommasse-C gebunden Enzymaktivitäten. Werden die

C_{mic}-Gehalt bezogen, wirken sich die enzymatischen Parameter auf den Jahresschwankungen größtenteils nicht mehr signifikant aus. Der Grund für die unterschiedlichen Cmic-Gehalte in den Streuauflagen liegt in den unterschiedlichen, saisonal bedingten Entwicklungsstadien der Biomasse (unter Einfluß der Witterung, des Streumaterials, etc.). Auf diesen entscheidenden Einfluß der Streuzusammensetzung und der Feuchtigkeitsverhältnisse in der Streu auf Enzymaktivitäten weisen auch KSHATTRIYA et al. (1991) hin. Der mineralische A_h-Horizont ist diesen externen, witterungs- bzw. saisonal bedingten Einflüssen nur in gepufferter Form ausgesetzt und weist daher keine ausgeprägten Schwankungen in seiner mikrobiellen Aktivität auf.

Ein ähnliches Bild ergibt der direkte Vergleich des Bodenplots I auf der Hochfläche mit dem Bodenplot II am angrenzenden Oberhang: Trotz der augenscheinlich so unterschiedlichen Untersuchungsflächen (subjektiver Eindruck der Autoren bei der Geländebegehung) unterscheiden sich die beiden Bodenplots im A_h-Horizont nur in einer Ausnahme signifikant voneinander: die saure Phosphatase weist in beiden Untersuchungsjahren im Bodenplot II 1,3fach höhere Aktivitäten als im Bodenplot I auf. Ähnliches gilt auch für die Streuauflage, die enzymatischen Aktivitäten des Bodenplots I heben sich nur in den wenigsten Fällen signifikant von denen der Vergleichsfläche mit dem Bodenplot II ab.

Ein Vergleich der ermittelten Parameter mit Angaben in der Literatur (Tab. 16) zeigt, daß besonders die Streuauflage eine sehr hohe biologische Aktivität aufweist. Soweit enzymatische Untersuchungen über Streuauflagen von Waldböden vorliegen, bewegen sich jedoch auch diese im ähnlichen Ausmaß wie die Ergebnisse am INTEGRATED MONITORING Standort Zöbelboden. Lediglich die saure Phosphatase weist verhältnismäßig geringe Aktivitäten auf. Über die mineralischen Bodenhorizonte liegen mehrere Untersuchungen vor, die Ergebnisse am INTEGRATED MONITORING Standort Zöbelboden ordnen sich auch hier in die oftmals beträchtliche Spannweite der von verschiedenen Autoren an anderen Waldstandorten ermittelten Daten ein. Generell liegen die mikrobiellen Aktivitäten in den oberen Bodenschichten von ausgewogenen

Mischwäldern weit über den Werten, die im Kulturland (Ackerböden, Grünland) ermittelt werden. Grund dafür sind der hohe Gehalt an organischem Material, die ungestörte Lagerung und die günstigen Feuchtigkeitsverhältnisse, die zu hohen Mikroorganismendichten führen.

Parameter	Aktivitäts-Einheit	Standort u. Boden	Aktivität	Autor
N-Mineral-	$\mu g N \cdot g^{-1} TS \cdot 7 d^{-1}$	Kulturland - Braunerde	45 - 78	KANDELER und MURER 1993
isation		Grünland	4,3 - 440	Öhlinger 1993
		Wald O _{l/f}	240 - 390	KAMPICHLER und KANDELER
		Wald A _h	70 - 130	1993
		Grünland 0 - 7,5 cm	42 - 58	
		Grünland 7,5 - 15 cm	34 - 43	
		IM Zöbelboden - Auflage	446 - 1126	in dieser Arbeit
		IM Zöbelboden - A _h	50 - 523	
Substrat-	$\mu g CO_2 \cdot g^{-1} TS \cdot h^{-1}$	Kulturböden	60 - 170	TABATABAI und BREMNER 1969
induzierte		Kulturland - Braunerde	36 - 63	KANDELER und MURER 1993
Respiration		Kulturland - Düngeversuch	14 - 47	KANDELER und EDER 1991
		Fichtenwald A _h	130 - 220	VON MERSI et al. 1991
		Tannen-Buchenwald A _h	40 - 80	
		Wald $O_{l/f}$	140 - 450	KAMPICHLER und KANDELER
		Wald A _h	90 - 160	1993
		IM Zöbelboden - Auflage	344 - 1499	in dieser Arbeit
		IM Zöbelboden - A _h	44 - 413	
C _{mic}	mg $C_{mic} \cdot g^{-1} TS$	Laubwald - O _l	20,7 - 25,1	Ross und Tate 1992
		Laubwald - $O_{\rm f}$	9,1 - 10,3	
		Laubwald 0 - 8 cm	1,5	
		Laubwald 8 - 20 cm	1,0	
		Laubwald 20 - 30 cm	0,63	
		Laub-/Nadelwald - O _l	35,3 / 16,9	SCHEU und PARKINSON 1995
		Laub-/Nadelwald - $O_{l\!/\!f}$	9,2-22,4 / 5,5	
		Laub-/Nadelwald - A _h	0,59 / 0,42	
		Waldböden	0,28 - 1,61	DIAZ-RAVIÑA et al. 1993
		Kulturland - Braunerde	0,74 - 1,3	KANDELER und MURER 1993
		IM Zöbelboden - Auflage	7,1 - 30,9	in dieser Arbeit
		IM Zöbelboden - A _h	0,9 - 8,5	

Parameter	Aktivitäts-Einheit	Standort u. Boden	Aktivität	Autor
Arylsulfatase	μ g p-NP · g ⁻¹ TS · h ⁻¹	Kulturböden	96 - 829	Farrell 1994
		Wald-Streuauflage	810	
		Wald - A _e	124	
		trop. Plantagen	417 - 2430	APPIAH und AHENKORAH 1989
		Böden allgemein	82 - 314	GUPTA et al. 1993
		Gleye	10 - 450	Phillipp 1993
		Kalkbraunlehme	300 - 600	
		Rendsinen	200 - 750	
		Wald O _{l/f}	300 - 750	KAMPICHLER und KANDELER
		Wald A _h	500 - 1200	1993
		IM - Auflage	142 - 1235	in dieser Arbeit
		IM - A _h	191 - 1237	
Xylanase	mg Glu \cdot g ⁻¹ TS \cdot 24	Buchenwald	0,28 - 8,0	ZECHMEISTER et al. 1991
	h ⁻¹	Kulturböden	3 - 17	TABATABAI und BREMNER 1969
		Kulturland - Braunerde	0,68 - 1,02	KANDELER und MURER 1993
		Kulturland - Düngeversuch	1,0 - 3,8	KANDELER und EDER 1991
		Fichtenwald A _h	13 - 24	VON MERSI et al. 1991
		Tannen-Buchenwald A _h	1,5 - 7,5	
		Wald O _{l/f}	34 - 42	KAMPICHLER und KANDELER
		Wald A _h	1,7 - 2,4	1993
		IM Zöbelboden - Auflage	9,0 - 73,1	in dieser Arbeit
		IM Zöbelboden - A _h	2,7 - 29,9	
Bodeneigene	mg Ph \cdot g ⁻¹ TS \cdot 3 h ⁻¹	Buchenwald	0,53 - 1,76	ZECHMEISTER et al. 1991
Phosphatase		Wald - Streuauflage	3,6 - 22,3	HARRISON und PEARCE 1979
		Wald - A _h	0,12 - 3,97	
		Kulturland - Braunerde	0,53 - 1,20	KANDELER und MURER 1993
		Kulturland - Düngeversuch	0,14 - 0,40	KANDELER und EDER 1991
		Wald O _{l/f}	23 - 33	KAMPICHLER und KANDELER
		Wald A _h	10 - 18	1993
		IM - Zöbelboden Auflage	3,5 - 31,1	in dieser Arbeit
		IM - Zöbelboden A _h	2,0 - 27,8	

Parameter	Aktivitäts-Einheit	Standort u. Boden	Aktivität	Autor
Saure	mg p-NP \cdot g ⁻¹ TS \cdot h ⁻¹	Kulturböden	4 - 6	TABATABAI und BREMNER 1969
Phosphatase		Buchenwald A _h	0,04 - 0,08	RASTIN et al. 1988
		Fichtenwald	4 - 7	VON MERSI et al. 1991
		Tannen-Buchenwald A_h	2 - 9	
		IM - Zöbelboden Auflage	0,11 - 0,67	in dieser Arbeit
		IM - Zöbelboden A _h	0,03 - 0,47	

Tab. 16: Vergleich der am INTEGRATED MONITORING Standort Zöbelboden
erhobenen Daten (Extremwertspanne) mit Angaben in der Literatur.

7 LITERATUR

- ANDERSON, J. P. E. und K. H. DOMSCH (1978): A physiological method for the quantitative measurement of microbiological biomass in soils. Soil Biol. Biochem. 10: 215 221.
- APPIAH, M. R. und Y. AHENKORAH (1989): Arylsulfatase activity of different latosol soils of Ghana cropped to cocoa (*Theobroma cacao*) and coffee (*Coffea canephora* var. *robusta*). Biol. Fertil. Soils 7: 186 - 190.
- BECK, T. (1983): Die N-Mineralisierung von Böden im Laborversuch. Z. Pflanzenernähr. Bodenkd. 146: 243 - 252.
- BLUM, W. E. H., O. H. DANNEBERG, G. GLATZEL et al. (1986): Waldbodenuntersuchung:
 Geländeaufnahme, Probennahme, Analyse. Mitt. Österr. bodenkundl. Ges. 31, 59 pp.
- BONMATI, M., B. CECCANTI und P. NANNIPERI (1991): Spatial variability of phosphatase, urease, protease; organic carbon and total nitrogen in soils. Soil Biol. Biochem.
 23: 391 396.
- DIAZ-RAVIÑA, M., M. J. ACEA und T. CARBALLAS (1993): Microbial biomass and its contribution to nutrient concentrations in forest soils. Soil Biol. Biochem. 25: 25 - 31.
- EIVAZI, F. und M. A. TABATABAI (1977): Phosphatase in soils. Soil Biol. Biochem. 9: 167 172.
- FARRELL, R. E., V. V. S. R. GUPTA und J. J. GERMIDA (1994): Effects of cultivation on the activity and kinetics of arylsulfatase in saskatchewan soils. Soil Biol. Biochem.
 26: 1033 1040.
- GRATZER, G. (1992): Bodenerhebung. Draftversion.

- GUPTA, V. V. S. R., R. E. FARELL und J. J. GERMIDA (1993): Activity of arylsulfatase in Saskatchewan soils. Can. J. Soil Sci. **73**: 341 347.
- HARRISON, A. F. und T. PEARCE (1979): Seasonal variation of phosphatase activity in woodland soils. Soil Biol. Biochem. 11: 405 - 410.
- HOFFMANN, G. (1968): Eine photometrische Methode zur Bestimmung der Phosphatase-Aktivität in Böden. Z. Pflanzenernaehr. Bodenkd. **118**: 161 - 172.
- KAMPICHLER, C. und E. KANDELER (1993): Freiland-Mesokosmosversuchsreihe zur Untersuchung des Einflusses von Collembolen, Milben und Enchytraiden auf Mikroflora und Nährstoffdynamik in land- und forstwirtschaftlch genutzten Böden. Projektendbericht, Wien, 100 pp.
- KANDELER, E. und H. GERBER (1988): Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol. Fertil. Soils **6**: 68 72.
- KANDELER, E. UND G. EDER (1991): Gülledüngung im Dauergrünland und ihre Wirkung auf Bodenbiologie und Stickstoffaustrag. VDLUFA-Schriftenreihe 33: 257 -262.
- KANDELER, E., und E. MURER (1993): Aggregate stability and soil microbial processes in a soil under different cultivations. In: BRUSSARD, L. and M. I. KOISTRA (eds): Int. workshop on methods of research on soil structure/soil biota interrelationships. Geoderma 56: 503 513.
- KEENEY, D. R. (1982): Nitrogen-availability indices. In: PAGE A. L., R. H. MILLER, D. R. KEENEY (eds): Methods of Soil Analysis, Part 2. Am. Soc. Agron. Inc., Soil Sci. Soc. Am. Inc., Madison Wisconsin USA, 711 pp.
- KSHATTRIYA, A., G. D. SHARMA und R. R. MISHRA (1992): Enzyme activities related to litter decomposition in forests of different age and altitude in north west india. Soil Biol. Biochem. 24: 265 - 270.

- Manual for Integrated Monitoring (1993): Programme Phase 1993 1996. Environmental Report 5, Environment Data Centre (EDC), National Board of Waters and the Environment, Helsinki, 114 pp.
- MERSI VON, W., R. KUHNERT-FINKERNAGEL und F. SCHINNER (1992): The influence of rock powers on microbal activity of three forest soils. Z. Pflanzenernähr. Bodenk. 155: 29 - 33.
- ÖHLINGER, R. (1993): Mikrobiologische Aktivität. In: Amt der o.ö. Landesregierung: Österreichischer Bodenkataster - Bodenzustandsinventur 1993. Linz, pp 241 -259.
- ÖHLINGER, R., A. EIBELHUBER und M. VINZENZ (1993): Die Verteilung und Streuung von Bodenenzymaktivitäten in einer einheitlichen Fläche und deren Einfluß auf Probenahme und Analyse. Die Bodenkultur **44**: 103 - 117.
- PHILIPP, B (1993): Enzymatische Untersuchungen der Arylsulfatase im Rahmen der Österreichischen Waldboden-Zustandsinventur. Diplomarbeit, Universität Wien.
- RASTIN, N., K. RASENPLÄNTER und A. HÜTTERMANN (1988): Seasonal variation of enzyme activity and their dependence of certain soil factors in a beech forest soil. Soil Biol. Biochem. 20: 637 - 642.
- ROSS, D. J. und K. R. TATE (1993): Microbial C and N, and respiratory activity, in litter and soil of a southern beech (*Nothofagus*) forest: Distribution and properties. Soil Biol. Biochem. 25: 477 - 483.
- SARATHACHANDRA, S. U. und K. W. PERROTT (1981): Determination of phosphate and arylsulphatase activities in soil. Soil Biol. Biochem. **13**: 543 545.

SCHEU, S. und D. PARKINSON (1995): Successional changes in microbial biomass, respiration and nutrient status during litter decomposition in an aspen and pine forest. Biol. Fertil. Soils: 19: 327 - 332.

- SCHINNER, F. und W. von MERSI (1990): Xylanase-, CM-cellulase and invertase activity in soil, an improved method. Soil Biol. Biochem. 22: 511 - 515.
- SCHINNER, F. R. ÖHLINGER, E. KANDELER und R. MARGESIN (1993): Bodenbiologische Arbeitsmethoden. 2. Aufl., Springer Verl., Berlin, Heidelberg, New York, 389 pp.
- TABATABAI, M. A. und J. M. BREMNER (1969): Use of p-nitrophenylphosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1: 301 307.
- TABATABAI, M. A. und J. M. BREMNER (1970): Arylsufatase activity in soils. Soil Sci. Soc. Am. Proc. 34: 225 - 229.

ZECHMEISTER-BOLTENSTERN, S., K. SPADINGER und H. KINZEL (1991):
Bodenenzymatische Untersuchungen in verschieden stark belasteten
Buchenwaldstandorten. In: ALBERT, R., K. BURIAN und H. KINZEL:
Zustandserhebung Wienerwald. Pflanzenphysiologische und bodenökologische
Untersuchungen zur Bioindikation. Verl. d. Österreichischen Akademie der
Wissenschaften, Wien.

8 ANHANG - DATENCODE

Bodenplot I - 1993

Code	N-min	SIR	Phosphatase	Phosphatase	Xylanase	Arylsulfatase
	anaerob		bodeneigene	saure		
	μg N g ⁻¹ TS 7 d ⁻¹	μg CO ₂ g ⁻¹ TS h ⁻¹	mg Ph g ⁻¹ TS 3 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹	mg Glu g ⁻¹ TS 24 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹
IMN/19931006/0201/BE/01	867	841	99	362	47.3	328
IMN/19931006/0202/BE/01	796	660	6.1	313	34.9	493
IMN/19931006/0203/BE/01	525	574	13.0	328	36,8	332
IMN/19931006/0204/BE/01	702	515	8,6	282	33,2	400
IMN/19931006/0205/BE/01	546	631	10,4	264	31,9	142
IMN/19931006/0206/BE/01	710	639	14,2	571	54,9	395
IMN/19931006/0207/BE/01	890	707	10,0	327	35,5	229
IMN/19931006/0208/BE/01	828	424	4,2	114	20,6	155
IMN/19931006/0209/BE/01	748	698	9,3	296	31,3	159
IMN/19931006/0210/BE/01	1012	791	9,4	306	33,3	373
IMN/19931006/0211/BE/01	669	436	7,3	211	23,0	251
IMN/19931006/0212/BE/01	778	584	12,3	348	33,3	275
IMN/19931006/0213/BE/01	971	737	8,0	255	32,5	180
IMN/19931006/0214/BE/01	947	796	8,4	265	32,1	158
IMN/19931006/0215/BE/01	-	-	-	-	-	-
IMN/19931006/0216/BE/01	861	591	9,3	268	31,8	185
IMN/19931006/0201/BE/02	399	214	5,7	129	8,5	935
IMN/19931006/0202/BE/02	474	331	9,4	211	15,2	978
IMN/19931006/0203/BE/02	227	133	6,1	62	4,3	537
IMN/19931006/0204/BE/02	365	250	7,5	129	7,7	744
IMN/19931006/0205/BE/02	328	149	11,0	115	12,6	474
IMN/19931006/0206/BE/02	374	226	4,1	157	6,7	1055
IMN/19931006/0207/BE/02	282	185	5,0	98	5,0	754
IMN/19931006/0208/BE/02	314	209	3,0	94	6,4	714
IMN/19931006/0209/BE/02	285	131	6,0	81	5,3	556
IMN/19931006/0210/BE/02	495	314	5,7	141	6,7	971
IMN/19931006/0211/BE/02	290	169	9,0	99	6,7	485
IMN/19931006/0212/BE/02	442	199	15,3	182	15,0	559
IMN/19931006/0213/BE/02	260	166	5,4	102	4,8	695
IMN/19931006/0214/BE/02	500	325	8,2	155	11,1	1038
IMN/19931006/0215/BE/02	50	44	10,0	32	6,0	191
IMN/19931006/0216/BE/02	389	199	11,7	131	9,4	699

Bodenplot II - 1993

Code	N-min	SIR	Phosphatase	Phosphatase	Xylanase	Arylsulfatase
	anaerob		bodeneigene	saure		
	μ g N g ⁻¹ TS 7 d ⁻¹	$\mu g \operatorname{CO}_2 g^{-1} \operatorname{TS} h^{-1}$	mg Ph g ⁻¹ TS 3 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹	mg Glu g ⁻¹ TS 24 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹
IMN/19931006/0601/BE/01	446	344	3,5	125	9,0	742
IMN/19931006/0602/BE/01	791	696	17,4	349	32,5	552
IMN/19931006/0603/BE/01	656	552	12,4	323	23,3	621
IMN/19931006/0604/BE/01	700	573	10,8	316	25,4	559
IMN/19931006/0605/BE/01	452	497	5,9	279	14,3	821
IMN/19931006/0606/BE/01	799	523	22,1	466	31,1	637
IMN/19931006/0607/BE/01	690	493	10,1	338	20,9	548
IMN/19931006/0608/BE/01	761	602	26,5	459	37,3	299
IMN/19931006/0609/BE/01	639	551	8,1	265	24,3	450
IMN/19931006/0610/BE/01	583	462	6,5	190	18,2	394
IMN/19931006/0611/BE/01	524	547	11,6	228	21,7	245
IMN/19931006/0612/BE/01	738	581	14,2	335	27,5	382
IMN/19931006/0613/BE/01	750	603	21,4	326	29,3	381
IMN/19931006/0614/BE/01	812	672	11,3	398	33,0	641
IMN/19931006/0615/BE/01	632	472	10,3	273	20,4	602
IMN/19931006/0616/BE/01	633	480	13,2	397	28,1	694
IMN/19931006/0601/BF/02	299	189	2,0	126	4,1	945
IMN/19931006/0602/BF/02	432	333	5,8	211	7,8	1048
IMN/19931006/0603/BF/02	439	250	3,6	145	4,4	832
IMN/19931006/0604/BF/02	488	307	4,3	166	7,6	1001
IMN/19931006/0605/BF/02	256	108	2,3	127	4,7	928
IMN/19931006/0606/BF/02	359	286	7,5	229	9,6	989
IMN/19931006/0607/BF/02	398	264	3,5	157	5,6	839
IMN/19931006/0608/BF/02	321	413	27,8	464	29,9	424
IMN/19931006/0609/BF/02	422	244	2,9	161	5,0	647
IMN/19931006/0610/BF/02	382	229	3,0	118	4,7	626
IMN/19931006/0611/BF/02	523	340	10,3	237	13,8	667
IMN/19931006/0612/BF/02	451	298	4,2	164	6,9	762
IMN/19931006/0613/BF/02	386	313	16,1	278	13,0	801
IMN/19931006/0214/BF/02	420	229	3,6	183	5,8	693
IMN/19931006/0615/BF/02	327	186	3,3	121	5,2	695
IMN/19931006/0616/BF/02	355	175	2,9	131	4,0	748

- 67 -

Bodenplot I - 1994

Code	N-min	SIR	Phosphatase	Phosphatase	Xylanase	Arylsulfatase
	anaerob		bodeneigene	saure		
	μg N g ⁻¹ TS 7 d ⁻¹	$\mu g \operatorname{CO}_2 g^{-1} TS h^{-1}$	mg Ph g ⁻¹ TS 3 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹	mg Glu g ⁻¹ TS 24 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹
IMN/19940614/0201/BE/01	1015	1171	20,4	536	64,6	638
IMN/19940614/0202/BE/01	721	892	26,7	673	70,7	720
IMN/19940614/0203/BE/01	679	1031	19,1	403	44,9	386
IMN/19940614/0204/BE/01	774	856	19,6	481	52,6	774
IMN/19940614/0205/BE/01	727	852	21,5	495	50,3	427
IMN/19940614/0206/BE/01	1126	852	15,3	376	39,1	823
IMN/19940614/0207/BE/01	776	950	14,7	231	41,0	364
IMN/19940614/0208/BE/01	776	663	11,3	299	33,3	685
IMN/19940614/0209/BE/01	1024	926	22,8	386	50,0	331
IMN/19940614/0210/BE/01	822	924	28,1	540	57,1	529
IMN/19940614/0211/BE/01	963	960	17,3	386	40,7	497
IMN/19940614/0212/BE/01	884	-	29,0	600	64,7	703
IMN/19940614/0213/BE/01	470	1499	28,1	490	73,1	341
IMN/19940614/0214/BE/01	1038	854	14,8	358	30,5	965
IMN/19940614/0215/BE/01	489	671	20,0	298	38,9	240
IMN/19940614/0216/BE/01	608	644	17,1	311	33,1	624
IMN/19940614/0201/BF/02	294	186	5,7	121	4,8	1030
IMN/19940614/0202/BF/02	428	320	12,3	242	18,4	939
IMN/19940614/0203/BF/02	277	189	4,7	107	4,9	1200
IMN/19940614/0204/BF/02	298	188	4,7	129	5,3	1004
IMN/19940614/0205/BF/02	251	138	9,0	113	8,6	918
IMN/19940614/0206/BF/02	433	262	4,0	150	7,8	1037
IMN/19940614/0207/BF/02	216	130	4,5	60	2,7	1014
IMN/19940614/0208/BF/02	430	242	3,9	137	6,8	1214
IMN/19940614/0209/BF/02	211	107	8,0	59	4,5	772
IMN/19940614/0210/BF/02	386	251	3,7	94	3,7	675
IMN/19940614/0211/BF/02	387	232	4,2	118	5,6	668
IMN/19940614/0212/BF/02	317	129	14,8	134	12,5	889
IMN/19940614/0213/BF/02	194	109	6,6	56	3,3	593
IMN/19940614/0214/BF/02	445	231	2,9	102	3,3	965
IMN/19940614/0215/BF/02	328	154	11,4	92	8,3	666
IMN/19940614/0216/BF/02	299	135	8,5	94	7,4	805

Bodenplot II - 1994

Code	N-min	SIR	Phosphatase	Phosphatase	Xylanase	Arylsulfatase
	anaerob		bodeneigene	saure		
	μg N g ⁻¹ TS 7 d ⁻¹	μg CO ₂ g ⁻¹ TS h ⁻¹	mg Ph g ⁻¹ TS 3 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹	mg Glu g ⁻¹ TS 24 h ⁻¹	μg p-NP g ⁻¹ TS h ⁻¹
IMN/19940614/0601/BE/01	719	580	7,3	238	25,0	854
IMN/19940614/0602/BE/01	872	701	14,9	391	44,5	656
IMN/19940614/0603/BE/01	748	643	18,7	435	43,8	564
IMN/19940614/0604/BE/01	773	645	11,7	349	35,9	638
IMN/19940614/0605/BE/01	693	556	7,3	260	22,1	763
IMN/19940614/0606/BE/01	673	556	30,1	351	38,0	393
IMN/19940614/0607/BE/01	728	819	15,4	428	45,4	572
IMN/19940614/0608/BE/01	710	710	25,5	497	52,1	605
IMN/19940614/0609/BE/01	720	531	6,8	253	21,8	694
IMN/19940614/0610/BE/01	893	723	14,2	373	37,1	650
IMN/19940614/0611/BE/01	699	624	16,7	280	32,3	505
IMN/19940614/0612/BE/01	678	547	10,8	329	36,1	918
IMN/19940614/0613/BE/01	817	772	31,1	416	44,3	550
IMN/19940614/0614/BE/01	847	727	13,5	411	37,7	918
IMN/19940614/0615/BE/01	997	775	19,1	431	42,2	1235
IMN/19940614/0616/BE/01	765	659	21,0	575	56,9	1078
IMN/19940614/0601/BF/02	316	232	2,4	145	4,3	1127
IMN/19940614/0602/BF/02	463	342	11,7	261	10,7	1094
IMN/19940614/0603/BF/02	284	168	2,5	99	3,1	758
IMN/19940614/0604/BF/02	326	212	2,9	111	4,9	736
IMN/19940614/0605/BF/02	330	220	3,0	160	4,3	1085
IMN/19940614/0606/BF/02	317	226	16,3	213	13,3	753
IMN/19940614/0607/BF/02	288	185	2,6	104	3,4	629
IMN/19940614/0608/BF/02	392	194	3,0	119	4,2	782
IMN/19940614/0609/BF/02	383	244	3,9	151	7,8	832
IMN/19940614/0610/BF/02	364	284	2,8	124	5,5	618
IMN/19940614/0611/BF/02	397	246	4,2	130	4,1	829
IMN/19940614/0612/BF/02	322	205	3,0	114	3,7	1031
IMN/19940614/0613/BF/02	432	309	10,5	214	7,8	1202
IMN/19940614/0214/BF/02	482	322	5,7	212	9,8	1237
IMN/19940614/0615/BF/02	442	216	4,2	159	5,8	1194
IMN/19940614/0616/BF/02	280	169	3,5	160	4,9	994

Bodenplot I und II - 1994

Code	рН	C _{tot}	Code	рН	C _{tot}
Bodenplot I		$mg \cdot g^{-1} \ TS$	Bodenplot II		$mg \cdot g^{-1} \ TS$
IMN/19940614/0201/BE/01	5,94	454	IMN/19940614/0601/BE/01	7,00	335
IMN/19940614/0202/BE/01	5,67	442	IMN/19940614/0602/BE/01	6,62	401
IMN/19940614/0203/BE/01	5,78	457	IMN/19940614/0603/BE/01	6,49	438
IMN/19940614/0204/BE/01	5,99	387	IMN/19940614/0604/BE/01	6,70	403
IMN/19940614/0205/BE/01	5,27	419	IMN/19940614/0605/BE/01	6,93	334
IMN/19940614/0206/BE/01	6,40	384	IMN/19940614/0606/BE/01	5,14	483
IMN/19940614/0207/BE/01	6,17	415	IMN/19940614/0607/BE/01	6,10	429
IMN/19940614/0208/BE/01	6,70	354	IMN/19940614/0608/BE/01	6,92	466
IMN/19940614/0209/BE/01	5,18	434	IMN/19940614/0609/BE/01	6,54	340
IMN/19940614/0210/BE/01	5,03	458	IMN/19940614/0610/BE/01	6,42	410
IMN/19940614/0211/BE/01	6,27	451	IMN/19940614/0611/BE/01	6,74	433
IMN/19940614/0212/BE/01	5,21	416	IMN/19940614/0612/BE/01	5,78	335
IMN/19940614/0213/BE/01	5,76	441	IMN/19940614/0613/BE/01	6,58	440
IMN/19940614/0214/BE/01	6,67	408	IMN/19940614/0614/BE/01	6,65	433
IMN/19940614/0215/BE/01	5,86	515	IMN/19940614/0615/BE/01	6,68	427
IMN/19940614/0216/BE/01	6,56	375	IMN/19940614/0616/BE/01	6,68	430
IMN/19940614/0201/BF/02	6,58	125	IMN/19940614/0601/BF/02	7,17	247
IMN/19940614/0202/BF/02	6,68	256	IMN/19940614/0602/BF/02	6,83	323
IMN/19940614/0203/BF/02	6,83	113	IMN/19940614/0603/BF/02	7,08	198
IMN/19940614/0204/BF/02	6,79	139	IMN/19940614/0604/BF/02	7,13	226
IMN/19940614/0205/BF/02	4,96	102	IMN/19940614/0605/BF/02	7,07	233
IMN/19940614/0206/BF/02	6,86	182	IMN/19940614/0606/BF/02	6,13	389
IMN/19940614/0207/BF/02	6,38	89	IMN/19940614/0607/BF/02	7,19	198
IMN/19940614/0208/BF/02	7,00	184	IMN/19940614/0608/BF/02	7,12	227
IMN/19940614/0209/BF/02	5,20	73	IMN/19940614/0609/BF/02	7,07	249
IMN/19940614/0210/BF/02	6,75	151	IMN/19940614/0610/BF/02	7,40	200
IMN/19940614/0211/BF/02	6,93	197	IMN/19940614/0611/BF/02	7,24	239
IMN/19940614/0212/BF/02	4,46	131	IMN/19940614/0612/BF/02	7,19	196
IMN/19940614/0213/BF/02	5,04	80	IMN/19940614/0613/BF/02	6,78	275
IMN/19940614/0214/BF/02	6,98	192	IMN/19940614/0214/BF/02	7,31	283
IMN/19940614/0215/BF/02	6,44	132	IMN/19940614/0615/BF/02	7,43	288
IMN/19940614/0216/BF/02	6,04	118	IMN/19940614/0616/BF/02	7,44	235

N-Mineralisation im aeroben Brutversuch [in $\mu g \; N \cdot g^{-1} \; TS$]

Bodenplot I - 1993

Code	NO3N				NH4 ⁺ -N			Gesamt-N		
	0 d	14 d	28 d	0 d	14 d	28 d	0 d	14 d	28 d	
IMN/19931006/0201/BE/01	61	176	575	353	272	40	413	448	616	
IMN/19931006/0202/BE/01	175	291	277	159	33	38	334	325	315	
IMN/19931006/0203/BE/01	25	56	251	261	289	256	287	345	508	
IMN/19931006/0204/BE/01	198	258	284	79	36	43	277	294	327	
IMN/19931006/0205/BE/01	15	25	75	270	203	163	285	228	238	
IMN/19931006/0206/BE/01	21	60	261	336	307	163	357	367	424	
IMN/19931006/0207/BE/01	56	136	376	241	131	65	297	266	442	
IMN/19931006/0208/BE/01	46	43	62	71	55	49	117	98	110	
IMN/19931006/0209/BE/01	24	75	230	208	177	68	232	252	298	
IMN/19931006/0210/BE/01	111	238	314	200	191	66	311	429	380	
IMN/19931006/0211/BE/01	56	147	167	95	63	26	151	210	193	
IMN/19931006/0212/BE/01	57	128	180	156	42	84	212	170	264	
IMN/19931006/0213/BE/01	39	165	346	223	91	56	262	256	402	
IMN/19931006/0214/BE/01	25	84	227	252	184	96	277	268	324	
IMN/19931006/0215/BE/01	-	-	-	-	-	-	-	-	-	
IMN/19931006/0216/BE/01	38	72	146	184	108	70	222	179	215	
IMN/19931006/0201/BE/02	111	155	164	21	7	8	132	162	172	
IMN/19931006/0202/BE/02	211	249	261	43	11	12	254	260	273	
IMN/19931006/0203/BE/02	95	127	179	16	4	5	112	131	184	
IMN/19931006/0204/BE/02	154	192	275	18	6	9	172	198	284	
IMN/19931006/0205/BE/02	22	40	73	117	112	111	140	152	184	
IMN/19931006/0206/BE/02	148	225	280	48	8	10	196	233	291	
IMN/19931006/0207/BE/02	124	145	172	13	107	7	136	252	179	
IMN/19931006/0208/BE/02	126	125	160	10	5	8	137	130	168	
IMN/19931006/0209/BE/02	108	105	106	13	2	4	121	108	110	
IMN/19931006/0210/BE/02	161	216	296	32	8	10	192	224	306	
IMN/19931006/0211/BE/02	141	180	225	26	4	8	167	183	233	
IMN/19931006/0212/BE/02	85	98	164	62	59	72	147	157	235	
IMN/19931006/0213/BE/02	81	111	172	18	5	7	99	116	179	
IMN/19931006/0214/BE/02	213	238	362	27	12	12	240	250	374	
IMN/19931006/0215/BE/02	8	19	39	39	31	35	47	50	74	
IMN/19931006/0216/BE/02	121	180	235	41	18	29	161	199	264	

Bodenplot II - 1993

Code	NO3 ⁻ -N			NH4 ⁺ -N			Gesamt-N		
	0 d	14 d	28 d	0 d	14 d	28 d	0 d	14 d	28 d
IMN/19931006/0601/BE/01	90	123	171	31	15	20	120	138	190
IMN/19931006/0602/BE/01	17	87	224	259	127	40	276	214	264
IMN/19931006/0603/BE/01	40	122	148	139	26	37	179	148	185
IMN/19931006/0604/BE/01	79	159	308	164	31	38	244	190	346
IMN/19931006/0605/BE/01	65	224	239	196	14	23	261	239	261
IMN/19931006/0606/BE/01	10	35	62	249	170	125	260	204	187
IMN/19931006/0607/BE/01	61	136	136	127	31	33	188	167	169
IMN/19931006/0608/BE/01	9	26	68	214	185	160	222	211	228
IMN/19931006/0609/BE/01	54	97	101	126	35	50	181	131	151
IMN/19931006/0610/BE/01	60	60	95	97	30	39	158	91	134
IMN/19931006/0611/BE/01	48	77	100	132	52	56	180	128	155
IMN/19931006/0612/BE/01	52	117	164	208	61	49	260	178	213
IMN/19931006/0613/BE/01	8	35	67	266	156	169	274	191	237
IMN/19931006/0614/BE/01	15	58	138	274	120	83	289	178	222
IMN/19931006/0615/BE/01	45	128	149	192	32	40	237	160	189
IMN/19931006/0616/BE/01	43	111	157	219	43	37	262	154	194
IMN/19931006/0601/BF/02	122	103	30	12	7	10	134	110	39
IMN/19931006/0602/BF/02	112	184	262	77	12	12	189	196	275
IMN/19931006/0603/BF/02	130	149	144	29	9	9	159	159	153
IMN/19931006/0604/BF/02	173	205	157	42	9	11	215	214	168
IMN/19931006/0605/BF/02	38	102	95	65	4	8	103	106	103
IMN/19931006/0606/BF/02	30	102	168	127	40	16	157	142	184
IMN/19931006/0607/BF/02	116	164	168	30	9	11	146	173	179
IMN/19931006/0608/BF/02	11	30	61	111	81	97	123	111	158
IMN/19931006/0609/BF/02	101	167	166	19	8	11	120	176	177
IMN/19931006/0610/BF/02	103	133	169	16	8	10	118	141	179
IMN/19931006/0611/BF/02	81	147	222	86	16	17	167	163	239
IMN/19931006/0612/BF/02	118	156	233	30	7	11	148	163	244
IMN/19931006/0613/BF/02	9	26	68	141	98	107	150	124	175
IMN/19931006/0214/BF/02	107	183	204	55	9	12	163	191	216
IMN/19931006/0615/BF/02	154	180	170	17	6	10	170	186	180
IMN/19931006/0616/BF/02	137	203	240	30	6	10	167	209	249

Bodenplot I - 1994

Code		NO ₃ N	[NH ₄ ⁺ -N Gesamt			Gesamt-	N	
	0 d	14 d	28 d	0 d	14 d	28 d	0 d	14 d	28 d
IMN/19940614/0201/BE/01	53	23	38	221	30	27	274	53	65
IMN/19940614/0202/BE/01	-	17	43	335	-	64	-	-	107
IMN/19940614/0203/BE/01	89	23	23	220	43	30	308	66	52
IMN/19940614/0204/BE/01	348	36	25	308	18	22	656	54	47
IMN/19940614/0205/BE/01	318	27	27	261	30	19	580	57	45
IMN/19940614/0206/BE/01	185	50	21	238	21	35	422	70	56
IMN/19940614/0207/BE/01	111	34	20	267	26	45	378	60	65
IMN/19940614/0208/BE/01	148	82	20	122	14	20	270	97	40
IMN/19940614/0209/BE/01	100	18	66	290	172	142	390	190	208
IMN/19940614/0210/BE/01	125	18	57	313	246	267	438	263	324
IMN/19940614/0211/BE/01	21	34	28	159	28	37	180	61	64
IMN/19940614/0212/BE/01	215	20	36	319	255	24	534	275	60
IMN/19940614/0213/BE/01	42	17	263	508	640	123	551	657	386
IMN/19940614/0214/BE/01	169	73	157	160	29	35	328	102	192
IMN/19940614/0215/BE/01	9	14	23	94	77	17	103	91	40
IMN/19940614/0216/BE/01	0	41	22	165	9	19	165	51	41
IMN/19940614/0201/BE/02	88	91	109	34	4	4	122	95	114
IMN/19940614/0202/BE/02	210	113	142	114	6	8	325	119	149
IMN/19940614/0203/BE/02	127	99	153	22	4	5	149	103	158
IMN/19940614/0204/BE/02	151	122	166	9	6	5	160	128	171
IMN/19940614/0205/BE/02	132	23	142	76	7	19	208	30	162
IMN/19940614/0206/BE/02	118	129	156	13	6	7	131	135	162
IMN/19940614/0207/BE/02	91	64	108	13	2	4	105	66	112
IMN/19940614/0208/BE/02	63	141	176	7	5	7	70	147	183
IMN/19940614/0209/BE/02	54	16	122	64	19	7	119	35	129
IMN/19940614/0210/BE/02	64	118	69	11	5	6	75	123	76
IMN/19940614/0211/BE/02	129	145	115	6	5	9	135	149	124
IMN/19940614/0212/BE/02	81	24	172	80	61	47	162	84	219
IMN/19940614/0213/BE/02	66	19	95	68	12	15	134	31	110
IMN/19940614/0214/BE/02	65	138	14	7	5	7	72	143	21
IMN/19940614/0215/BE/02	71	47	60	48	6	6	120	54	66
IMN/19940614/0216/BE/02	87	43	165	53	7	7	140	50	172

Bodenplot II - 1994

Code	NO ₃ ⁻ -N N			NH4 ⁺ -N	NH4 ⁺ -N		Gesamt-N		
	0 d	14 d	28 d	0 d	14 d	28 d	0 d	14 d	28 d
IMN/19940614/0601/BE/01	8	109	25	74	14	16	82	123	41
IMN/19940614/0602/BE/01	153	61	150	166	13	19	319	73	169
IMN/19940614/0603/BE/01	179	45	198	208	35	22	387	80	220
IMN/19940614/0604/BE/01	183	66	183	161	17	25	343	83	208
IMN/19940614/0605/BE/01	3	99	23	48	8	14	51	107	37
IMN/19940614/0606/BE/01	27	20	41	170	153	24	197	173	65
IMN/19940614/0607/BE/01	170	26	33	275	23	30	446	49	62
IMN/19940614/0608/BE/01	97	29	197	315	194	154	412	222	351
IMN/19940614/0609/BE/01	5	104	91	48	16	19	53	120	109
IMN/19940614/0610/BE/01	194	48	250	230	51	25	424	98	275
IMN/19940614/0611/BE/01	199	57	181	171	21	26	370	78	207
IMN/19940614/0612/BE/01	223	141	218	110	11	20	333	153	237
IMN/19940614/0613/BE/01	38	19	93	212	173	160	250	192	253
IMN/19940614/0614/BE/01	68	32	114	211	65	71	279	97	185
IMN/19940614/0615/BE/01	174	81	238	218	70	23	393	151	262
IMN/19940614/0616/BE/01	73	24	130	259	162	174	332	186	304
IMN/19940614/0601/BE/02	45	120	53	8	4	7	53	124	60
IMN/19940614/0602/BE/02	3	111	99	113	47	9	116	158	108
IMN/19940614/0603/BE/02	58	146	68	10	4	4	68	150	71
IMN/19940614/0604/BE/02	72	115	68	6	3	8	78	119	76
IMN/19940614/0605/BE/02	67	129	63	7	3	5	74	132	68
IMN/19940614/0606/BE/02	9	32	79	103	5	6	112	36	85
IMN/19940614/0607/BE/02	32	123	35	12	3	5	44	126	40
IMN/19940614/0608/BE/02	64	169	169	10	4	5	74	173	174
IMN/19940614/0609/BE/02	19	182	145	15	6	7	34	188	152
IMN/19940614/0610/BE/02	156	109	184	47	5	7	204	114	192
IMN/19940614/0611/BE/02	172	147	177	7	4	6	179	151	183
IMN/19940614/0612/BE/02	43	124	80	6	5	6	49	129	86
IMN/19940614/0613/BE/02	1	76	25	106	59	8	108	134	34
IMN/19940614/0214/BE/02	67	110	101	92	6	10	159	117	112
IMN/19940614/0615/BE/02	1	236	137	15	5	7	16	241	144
IMN/19940614/0616/BE/02	127	122	147	17	4	5	144	126	152