EVALUATION OF THE INTERLABORATORY COMPARISON TEST

Pesticides according to the drinking water ordinance incl. relevant and non relevant metabolites – PM02

Sample dispatch on 11th September 2018

1st Edition 20th December 2018
Address: Umweltbundesamt GmbH
Spittelauer Lände 5
1090 Vienna/Austria

Contact: Dr. Sandra Kulcsar

Telephone: +43 (0) 1 31304 4334

E-mail: ringversuche@umweltbundesamt.at

Website: http://www.umweltbundesamt.at/en/interlaboratory_comparison/
www.ifatest.eu

Management:
Dipl.-Ing. Monika Denner
Table of contents

1 Interlaboratory comparison test Pesticides according to the drinking water ordinance – PM02 ... 4
 1.1 Participants and time schedule... 4
 1.2 Sampling, sample material and distribution.. 4
 1.3 Control testing .. 5
2 Evaluation ... 5
3 Representation and interpretation of measurement results.............................. 6
4 Explanatory notes ... 6
5 Annotations on tables and charts... 9
 5.1 Information and abbreviations in tables... 8
 5.2 Graphical presentation of results... 11
6 Summary of results, after removal of outliers.. 13
7 Parameter oriented report.. 20
8 Laboratory oriented report... 533
1 Interlaboratory comparison test Pesticides according to the drinking water ordinance – PM02

1.1 Participants and time schedule

- Number of registrations: 26
- Number of submitted data records: 26
- Dispatch of samples: 11th September 2018
- Closing date for submission of data: 16th October 2018

To anonymize results, each laboratory was given a laboratory code on a random basis.

1.2 Sampling, sample material and distribution

The following samples were made available:

- 1 Sample drinking water (PM02 A)
- 1 Sample drinking water (PM02 B)

The sampling of the drinking water was carried out on 10th September 2018.

Both samples were stored at < 4 °C until further processing.

The samples were partly spiked with specific substances and were filled into bottles under continuous stirring to achieve homogeneous samples. The samples were dispatched on 11th September 2018.

Each participant received:

- 2 samples each 3000 ml, filled in a 1000 ml plastic containers and 2 x 1000 ml aluminium bottles or
- 2 samples each 6000 ml, filled in 2 x 1000 ml plastic containers and 4 x 1000 ml aluminium bottles.
1.3 Control testing

During filling the bottles, aliquots of each sample were collected randomly for control testing. Testing was performed close to the time of sample dispatch.

In the parameter-oriented evaluation, the results of the control testing are given in the form of arithmetic means of the detected concentrations as control test ± U.

2 Evaluation

The analytical results had to be made available to the organiser not later than 16th October 2018. Any values received at a later date were not considered. A statistical evaluation of interlaboratory comparison data was only carried out if at least 6 valid results per parameter were available.

To evaluate the data, outliers were detected first by using the outlier test method according to Hampel. Values identified as conspicuous by this test method are marked specifically in the parameter-oriented evaluation.

In justified cases, the outlier elimination is performed according to other criteria. If this is the case, the procedure is documented in section 4 of the report.

Further evaluation was performed in accordance with DIN ISO 5725-2. Results < LOQ or < LOD are not taken into account for calculation.

The adjusted average value (after removal of outliers) for all submitted results was used as a basis for the calculation of recovery rates and z-scores.

z-Score

z-Scores were calculated on the basis of the following formula:

\[z - \text{score} = \frac{x_i - \overline{X}}{\text{Criteria}} \]

In this context,

- \(x_i \) is the measurement value of the participating laboratory.
- \(\overline{X} \) is the target value, normally the average value of the participants' results after removal of outliers; if this approach is not applicable, the target value is assigned according to the procedure given in section 4;
- \(\text{Criteria} \) is normally the reproducibility standard deviation (sR) calculated from the participants' results (after removal of outliers) in the relevant test round; if this approach is not applicable, the criteria is derived according to the procedure given in section 4.
Interpretation of z-Scores in the parameter-oriented evaluation:

- $|z| < 2$ result: good
- $2 < |z| < 3$ result: questionable
- $|z| > 3$ result: not satisfactory

3 Representation and interpretation of measurement results

The parameter oriented report shows the measurement values including uncertainty, recovery rate, calculated z-Score and the outliers in tabular form. The results listed in the table are also represented graphically.

The laboratory oriented report shows the results of the individual laboratories, including the recovery rates and z-Scores.

An annotation of the tables and graphics is given in section 5.

4 Explanatory notes

As explained in section 2, the z-Score is normally calculated using the reproducibility standard deviation, calculated from the participants’ results (after removal of outliers) in the relevant test round. It might occur that the z-Score between -2 and 2 covers a large range of measurement values when the variance of the results is high. On the other hand, the range of good results can be very narrow, when the variation of the participants' results is small (e.g. Dicamba PM02 A).

The recovery rate is calculated for the individual result based on the target value and is thus independent of the reproducibility standard deviation. In the case of a high variance of the results, participants should also consider recovery rates as additional criteria to decide on the necessity of internal quality assurance measures.

This is particularly recommended for the parameters listed in table 1.
Table 1: Parameters with a reproducibility standard deviation > 25%

<table>
<thead>
<tr>
<th>Pesticides</th>
<th>Relevant metabolites (RM)</th>
<th>Not relevant metabolites (NRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dieldrin (PM02 A)</td>
<td>3,5,6-Trichloro-2-pyridinol (PM02 B)</td>
<td>Flufenacet oxanilic acid (Flufenacet-OA) (PM02 B)</td>
</tr>
<tr>
<td>Glufosinate (PM02 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor (PM02 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron (PM02 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl (PM02 A)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-methyl (PM02 A)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In comparison PM01:

4 parameters with a standard deviation > 25%

3,5,6-Trichloro-2-pyridinol (PM02 B)

In comparison PM01:

5 parameters with a standard deviation > 25%

Flufenacet oxanilic acid (Flufenacet-OA) (PM02 B)

Summary

86 different analytes were spiked in at least one out of two drinking water samples at varying concentrations, filled in aluminium bottles and plastic containers of 1000 ml each and dispatched to 26 interlaboratory test participants.

The two new not relevant metabolites Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid) and Chlorothalonil sulfonic acid (Chlorothalonil-ESA) were included in PM02. For both parameters a mean value could not be established, due to an insufficient number of feedbacks. The control test value of the proficiency test organizer can be considered as comparative value for internal quality assurance purposes.

Tolylfluanid decomposes rapidly in water (see: http://sitem.herts.ac.uk/aeru/iupac/Reports/645.htm). Thus, no evaluation can be performed for Tolylfluanid.

In the scope of inspection for PM02 Dimethachlor Metabolite - CGA 373464 (free acid) as well as Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester) are included, due to the wrong identification of the compound in the Austrian food codex ʿLebensmittelbuch, IV, Auflage Codexkapitel/B1/ Trinkwasserʿ, Dimethachlor metabolite CGA 373464 (see table below). As already indicated in the report of PM01 the wrong CAS number is reported for Dimethachlor metabolite CGA 373464 upon EFSA.
Table 2: Extract from the Austrian food codex

<table>
<thead>
<tr>
<th>No.</th>
<th>Precursor substance (active substance)</th>
<th>parameter for analysis (metabolite)</th>
<th>CAS No, (metabolite)</th>
<th>Classification (relevance)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Dimethachlor</td>
<td>CGA 373464</td>
<td>1196157-87-5</td>
<td>relevant metabolite</td>
</tr>
</tbody>
</table>

According to the German Federal Institute for Risk Assessment (BFR), the Dimethachlor metabolite CGA 373464 correctly refers to the acetic acid methyl ester, IUPAC name: [(2,6-dimethyl-phenyl)-methoxycarbonyl-methyl-carbamoyl]-methanesulfonic acid sodium salt. However, the substance [(2,6-Dimethylphenyl)(2-sulfoacetyl)amino]acetic acid sodium salt is cited by CAS No.: 1196157-87-5, which corresponds to the free acid or its sodium salt, respectively.

In Austria the analysis is performed according to the Austrian food codex, which is the determination of the free acid or the corresponding sodium salt. An appropriate information on this issue was already communicated to the relevant Austrian authorities (Codex Commission, BMGF) in course of PM01.

Table 3: Parameters with a low feedback rate

<table>
<thead>
<tr>
<th>Pesticides (PM02 A)</th>
<th>Relevant metabolites (RM)</th>
<th>Not relevant metabolites (NRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tritosulfuron</td>
<td>Dimethachlor Metabolite CGA 369873 (PM02 B)</td>
<td>Alachlor sulfonic acid (Alachlor-ESA) (PM02 B)</td>
</tr>
<tr>
<td></td>
<td>Dimethachlor Metabolite CGA 373464 (acetic acid methyl ester) (PM02 B)</td>
<td>Azoxystrobin-O-demethyl (CyPM) (PM02 B)</td>
</tr>
<tr>
<td></td>
<td>Dimethachlor Metabolite CGA 373464 (free acid) (PM02 B)</td>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid) (PM02 B)</td>
</tr>
</tbody>
</table>

In comparison PM01: 3 parameters with a low feedback rate

<table>
<thead>
<tr>
<th>Pesticides (PM02 A)</th>
<th>Relevant metabolites (RM)</th>
<th>Not relevant metabolites (NRM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimethachlor Metabolite CGA 373464 (PM02 B)</td>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA) (PM02 B)</td>
</tr>
<tr>
<td></td>
<td>s-Metolachlor Metabolite CGA 368208 (PM02 B)</td>
<td>s-Metolachlor Metabolite NOA 413173 (PM02 B)</td>
</tr>
</tbody>
</table>

In comparison PM01: 6 parameters with a low feedback rate

In comparison PM01: 8 parameters with a low feedback rate
For the following parameters no average value could be generated due to a low feedback rate (only a few measurement results were reported by participating laboratories and considered for evaluation). The control test values of the proficiency test organizer can be considered as comparative value for internal quality assurance purposes.

5 Annotations on tables and charts

5.1 Information and abbreviations in tables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyte identifier</td>
<td>Sample identifier</td>
</tr>
<tr>
<td>Sample</td>
<td>Given unit for result and uncertainty (e.g. µg/l)</td>
</tr>
<tr>
<td>Mean</td>
<td>Mean of the participants results, without outliers (3 significant digits)</td>
</tr>
<tr>
<td>CI (99 %)</td>
<td>99% confidence interval (3 significant digits)</td>
</tr>
<tr>
<td>Minimum</td>
<td>Minimum of all submitted results, after removal of outliers (3 significant digits)</td>
</tr>
<tr>
<td>Maximum</td>
<td>Maximum of all submitted results, after removal of outliers (3 significant digits)</td>
</tr>
<tr>
<td>SD</td>
<td>Reproducibility standard deviation, calculated from the participants results, after removal of outliers (3 significant digits)</td>
</tr>
<tr>
<td>RSD %</td>
<td>Reproducibility standard deviation, calculated from the participants results relative to the target value, given in %, after removal of outliers (2 significant digits)</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>Mean of control test value ± measurement uncertainty (3 significant digits)</td>
</tr>
<tr>
<td>Labcode</td>
<td>Laboratory identifier (anonymized)</td>
</tr>
<tr>
<td>Result</td>
<td>Result as indicated by participant (max. 5 decimal places)</td>
</tr>
<tr>
<td>± U</td>
<td>Results uncertainty as indicated by participant (max. 5 decimal places)</td>
</tr>
<tr>
<td>LOQ</td>
<td>Limit of quantification</td>
</tr>
<tr>
<td>LOD</td>
<td>Limit of detection</td>
</tr>
<tr>
<td>Recovery</td>
<td>Recovery rate in % based on target value (3 significant digits, max. one decimal place given)</td>
</tr>
<tr>
<td>z-Score</td>
<td>Deviation of result based on target value depicted as a multiple of the criteria (3 significant digits, max. 2 decimal places given)</td>
</tr>
<tr>
<td>Comments</td>
<td>Comment on the respective result (e.g. H, FN, FP)</td>
</tr>
<tr>
<td>H</td>
<td>Outlier according to Hampel-Test</td>
</tr>
</tbody>
</table>

No data available
FN	False negative – for a result < LOQ or result < LOD: The absolute value of the LOQ or LOD fulfils the condition of an outlier according to the Hampel test.
FP	False positive – for parameters where no target value is available because of a too low analyte content (n < 6): Result that exceeds the median of the absolute values of the transmitted LOQs or LODs by more than 100 %.
Standard deviation	Reproducibility standard deviation, calculated from the participants results (3 significant digits)
Rel. standard deviation	Reproducibility standard deviation, calculated from the participants results relative to the target value, given in %, (3 significant digits)
n	Number of results
Target value	Mean of the participants results, without outliers (3 significant digits)
Criteria	Criteria for z-Score calculation (if not otherwise stated in clause 4): The given value matches the reproducibility standard deviation, calculated from the participants’ results, after removal of outliers (3 significant digits).
5.2 Graphical presentation of results

Example chart: Results

|z-Score| = 2
|z-Score| = 3
Outlier according to the Hampel test ± uncertainty
Result outside displayed area

Confidence interval (95 %) of target value
Mean of participants results, without outliers = target value

Result < LOQ or < LOD, the basis of the triangle is equal to the absolute value of the LOQ or LOD

Example chart: Recovery

|z-Score| = 2
|z-Score| = 3
Result outside displayed area

Recovery rate of laboratory
Confidence interval (95 %) of target value
Target value (100 %)

Result outside displayed area
Example chart: z-score

Example chart: z-score - laboratory oriented report
Summary of results, after removal of outliers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample</th>
<th>Unit</th>
<th>Number of results for calculation</th>
<th>Number of outliers</th>
<th>Mean ± Cl (99%)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>SD</th>
<th>RSD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>20</td>
<td>2</td>
<td>0.303 ± 0.022</td>
<td>0.233</td>
<td>0.36</td>
<td>0.0327</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>20</td>
<td>2</td>
<td>0.191 ± 0.0152</td>
<td>0.156</td>
<td>0.253</td>
<td>0.0227</td>
<td>12</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>20</td>
<td>0</td>
<td>0.883 ± 0.0593</td>
<td>0.707</td>
<td>1.01</td>
<td>0.0884</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>19</td>
<td>1</td>
<td>2.53 ± 0.132</td>
<td>2.23</td>
<td>2.97</td>
<td>0.192</td>
<td>7.6</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>4</td>
<td>0</td>
<td>- ±</td>
<td>0.036</td>
<td>0.287</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>1</td>
<td>0.182 ± 0.0175</td>
<td>0.159</td>
<td>0.199</td>
<td>0.0143</td>
<td>7.8</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>- ±</td>
<td>0.097</td>
<td>0.099</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>0</td>
<td>0.406 ± 0.183</td>
<td>0.179</td>
<td>0.627</td>
<td>0.149</td>
<td>37</td>
</tr>
<tr>
<td>Alachlor</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>15</td>
<td>0</td>
<td>0.5 ± 0.0649</td>
<td>0.364</td>
<td>0.66</td>
<td>0.0838</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ±</td>
<td>0.0043</td>
<td>0.0043</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>5</td>
<td>1</td>
<td>- ±</td>
<td>2.26</td>
<td>3.13</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>1</td>
<td>0.475 ± 0.0605</td>
<td>0.405</td>
<td>0.559</td>
<td>0.0533</td>
<td>11</td>
</tr>
<tr>
<td>Aldrin</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>9</td>
<td>2</td>
<td>0.0379 ± 0.00855</td>
<td>0.03</td>
<td>0.055</td>
<td>0.00855</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ±</td>
<td>0.0022</td>
<td>0.0022</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>3</td>
<td>0</td>
<td>- ±</td>
<td>0.006</td>
<td>0.227</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>11</td>
<td>1</td>
<td>0.715 ± 0.159</td>
<td>0.4</td>
<td>1.04</td>
<td>0.175</td>
<td>25</td>
</tr>
<tr>
<td>Atrazine</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>22</td>
<td>0</td>
<td>0.154 ± 0.00877</td>
<td>0.128</td>
<td>0.178</td>
<td>0.0137</td>
<td>8.9</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>- ±</td>
<td>0.003</td>
<td>0.006</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>1</td>
<td>1.52 ± 0.174</td>
<td>1.27</td>
<td>1.73</td>
<td>0.153</td>
<td>10</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>- ±</td>
<td>0.005</td>
<td>0.006</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>20</td>
<td>0</td>
<td>0.212 ± 0.0153</td>
<td>0.164</td>
<td>0.272</td>
<td>0.0228</td>
<td>11</td>
</tr>
<tr>
<td>Parameter</td>
<td>Sample</td>
<td>Unit</td>
<td>Number of results for calculation</td>
<td>Number of outliers</td>
<td>Mean</td>
<td>± Cl (99%)</td>
<td>Minimum</td>
<td>Maximum</td>
<td>SD</td>
</tr>
<tr>
<td>-----------</td>
<td>------------------</td>
<td>----------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>0.014</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>0</td>
<td>0.872</td>
<td>±</td>
<td>0.204</td>
<td>0.642</td>
<td>1.09</td>
</tr>
<tr>
<td>Atrazine-disisopropyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>18</td>
<td>0</td>
<td>0.46</td>
<td>±</td>
<td>0.0348</td>
<td>0.37</td>
<td>0.564</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>15</td>
<td>0</td>
<td>0.141</td>
<td>±</td>
<td>0.0175</td>
<td>0.095</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>0.334</td>
<td>0.858</td>
</tr>
<tr>
<td>Bentazon</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>22</td>
<td>0</td>
<td>0.091</td>
<td>±</td>
<td>0.00744</td>
<td>0.068</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>1</td>
<td>0.164</td>
<td>±</td>
<td>0.0144</td>
<td>0.14</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>16</td>
<td>3</td>
<td>0.0873</td>
<td>±</td>
<td>0.00567</td>
<td>0.0693</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>12</td>
<td>0</td>
<td>3.11</td>
<td>±</td>
<td>0.194</td>
<td>2.75</td>
<td>3.43</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>11</td>
<td>1</td>
<td>0.115</td>
<td>±</td>
<td>0.00942</td>
<td>0.095</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>2.87</td>
<td>3.17</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>1.76</td>
<td>1.93</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>8</td>
<td>0</td>
<td>0.351</td>
<td>±</td>
<td>0.0762</td>
<td>0.237</td>
<td>0.448</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>11</td>
<td>3</td>
<td>0.162</td>
<td>±</td>
<td>0.0146</td>
<td>0.136</td>
<td>0.199</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Summary of results, after removal of outliers: Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample</th>
<th>Unit</th>
<th>Number of results for calculation</th>
<th>Number of outliers</th>
<th>Mean</th>
<th>± Cl (99%)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>SD</th>
<th>RSD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dicamba</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>3</td>
<td>0.683</td>
<td>± 0.0311</td>
<td>0.625</td>
<td>0.72</td>
<td>0.0328</td>
<td>4.8</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>0.065</td>
<td>0.065</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>20</td>
<td>1</td>
<td>0.606</td>
<td>± 0.0444</td>
<td>0.452</td>
<td>0.733</td>
<td>0.0662</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>18</td>
<td>3</td>
<td>0.222</td>
<td>± 0.0162</td>
<td>0.173</td>
<td>0.266</td>
<td>0.023</td>
<td>10</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>1</td>
<td>0.06</td>
<td>± 0.0154</td>
<td>0.03</td>
<td>0.078</td>
<td>0.0163</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethochlor</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>15</td>
<td>0</td>
<td>0.432</td>
<td>± 0.0351</td>
<td>0.369</td>
<td>0.51</td>
<td>0.0453</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.025</td>
<td>0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>9</td>
<td>0</td>
<td>0.462</td>
<td>± 0.0516</td>
<td>0.388</td>
<td>0.533</td>
<td>0.0516</td>
<td>11</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>2</td>
<td>0.2</td>
<td>± 0.0487</td>
<td>0.154</td>
<td>0.287</td>
<td>0.0429</td>
<td>21</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>4</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.09</td>
<td>0.167</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetate acid methyl ester)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.514</td>
<td>0.618</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.412</td>
<td>0.412</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.405</td>
<td>0.733</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>17</td>
<td>1</td>
<td>0.537</td>
<td>± 0.0315</td>
<td>0.486</td>
<td>0.634</td>
<td>0.0433</td>
<td>8.1</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide-P-sulfonic acid (Dimethenamide-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>10</td>
<td>0</td>
<td>0.911</td>
<td>± 0.187</td>
<td>0.451</td>
<td>1.18</td>
<td>0.197</td>
<td>22</td>
</tr>
<tr>
<td>Dimethenamide-P-acid (Dimethenamide-P-sulfonic acid, Dimethenamide-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Sample</td>
<td>Unit</td>
<td>Number of results for calculation</td>
<td>Number of outliers</td>
<td>Mean ± CI (99%)</td>
<td>Minimum</td>
<td>Maximum</td>
<td>SD</td>
<td>RSD %</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
<td>-----------------------------------</td>
<td>--------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>OA)</td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>0</td>
<td>0.371 ± 0.0703</td>
<td>0.269</td>
<td>0.434</td>
<td>0.0574</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>21</td>
<td>1</td>
<td>0.295 ± 0.0188</td>
<td>0.234</td>
<td>0.332</td>
<td>0.0287</td>
<td>9.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>13</td>
<td>2</td>
<td>0.153 ± 0.0132</td>
<td>0.127</td>
<td>0.179</td>
<td>0.0159</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>15</td>
<td>1</td>
<td>0.43 ± 0.0434</td>
<td>0.332</td>
<td>0.55</td>
<td>0.056</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>1</td>
<td>0.8 ± 0.215</td>
<td>0.501</td>
<td>0.983</td>
<td>0.176</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>0</td>
<td>0.191 ± 0.0874</td>
<td>0.039</td>
<td>0.275</td>
<td>0.0771</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>7</td>
<td>1</td>
<td>0.148 ± 0.0493</td>
<td>0.088</td>
<td>0.215</td>
<td>0.0434</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>12</td>
<td>1</td>
<td>0.366 ± 0.0555</td>
<td>0.27</td>
<td>0.441</td>
<td>0.0641</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>0</td>
<td>0.0486 ± 0.0266</td>
<td>0.01</td>
<td>0.0864</td>
<td>0.0281</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ± -</td>
<td>0.0015</td>
<td>0.0015</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>0.185 ± 0.0222</td>
<td>0.148</td>
<td>0.209</td>
<td>0.0196</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>2</td>
<td>- ± -</td>
<td>0.018</td>
<td>0.037</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>16</td>
<td>1</td>
<td>0.22 ± 0.0201</td>
<td>0.174</td>
<td>0.28</td>
<td>0.0268</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>14</td>
<td>0</td>
<td>0.307 ± 0.0287</td>
<td>0.248</td>
<td>0.366</td>
<td>0.0358</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>11</td>
<td>1</td>
<td>0.405 ± 0.0469</td>
<td>0.347</td>
<td>0.485</td>
<td>0.0518</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>21</td>
<td>1</td>
<td>0.301 ± 0.0199</td>
<td>0.249</td>
<td>0.358</td>
<td>0.0303</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Summary of results, after removal of outliers: Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample</th>
<th>Unit</th>
<th>Number of results for calculation</th>
<th>Number of outliers</th>
<th>Mean ± Cl (99%)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>SD</th>
<th>RSD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoproturon</td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>0</td>
<td>0.147 ± 0.0118</td>
<td>0.131 0.16</td>
<td>0.0104</td>
<td>7.1</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>20</td>
<td>3</td>
<td>0.237 ± 0.0108</td>
<td>0.205 0.272</td>
<td>0.0161</td>
<td>6.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>0.022 0.022</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>0.0217 0.0217</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>22</td>
<td>0</td>
<td>0.118 ± 0.00973</td>
<td>0.091 0.15</td>
<td>0.0152</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>8</td>
<td>1</td>
<td>0.228 ± 0.0255</td>
<td>0.192 0.261</td>
<td>0.0241</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>16</td>
<td>0</td>
<td>0.533 ± 0.0393</td>
<td>0.451 0.634</td>
<td>0.0524</td>
<td>9.8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>18</td>
<td>2</td>
<td>0.51 ± 0.0476</td>
<td>0.43 0.666</td>
<td>0.0673</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>19</td>
<td>0</td>
<td>0.157 ± 0.0156</td>
<td>0.123 0.211</td>
<td>0.0227</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>17</td>
<td>4</td>
<td>0.26 ± 0.00676</td>
<td>0.241 0.274</td>
<td>0.0093</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>2.77 ± 0.367</td>
<td>2.08 3.26</td>
<td>0.441 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>12</td>
<td>1</td>
<td>1.32 ± 0.202</td>
<td>0.875 1.64</td>
<td>0.233 18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolochlor</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>22</td>
<td>0</td>
<td>0.403 ± 0.0313</td>
<td>0.282 0.5 0.0489</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>15</td>
<td>2</td>
<td>0.0895 ± 0.00875</td>
<td>0.064 0.11 0.0113</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>1</td>
<td>0.256 ± 0.0346</td>
<td>0.206 0.298</td>
<td>0.0305</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Sample</td>
<td>Unit</td>
<td>Number of results for calculation</td>
<td>Number of outliers</td>
<td>Mean</td>
<td>± CI (99%)</td>
<td>Minimum</td>
<td>Maximum</td>
<td>SD</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------</td>
<td>----------------------------------</td>
<td>-------------------</td>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>---------</td>
<td>----</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>1</td>
<td>0.254</td>
<td>± 0.0343</td>
<td>0.197</td>
<td>0.32</td>
<td>0.0362</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>8</td>
<td>0</td>
<td>1.07</td>
<td>± 0.217</td>
<td>0.749</td>
<td>1.44</td>
<td>0.205</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>14</td>
<td>3</td>
<td>0.919</td>
<td>± 0.222</td>
<td>0.398</td>
<td>1.46</td>
<td>0.276</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>9</td>
<td>2</td>
<td>0.176</td>
<td>± 0.0111</td>
<td>0.159</td>
<td>0.198</td>
<td>0.0111</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>16</td>
<td>1</td>
<td>0.49</td>
<td>± 0.0258</td>
<td>0.419</td>
<td>0.536</td>
<td>0.0344</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>0</td>
<td>0.205</td>
<td>± 0.0224</td>
<td>0.186</td>
<td>0.23</td>
<td>0.0183</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>16</td>
<td>0</td>
<td>0.152</td>
<td>± 0.0146</td>
<td>0.125</td>
<td>0.191</td>
<td>0.0194</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>16</td>
<td>0</td>
<td>0.363</td>
<td>± 0.0362</td>
<td>0.289</td>
<td>0.446</td>
<td>0.0482</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.001</td>
<td>0.001</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>15</td>
<td>0</td>
<td>2.75</td>
<td>± 0.245</td>
<td>2.15</td>
<td>3.41</td>
<td>0.317</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>13</td>
<td>0</td>
<td>1.09</td>
<td>± 0.142</td>
<td>0.814</td>
<td>1.48</td>
<td>0.171</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>3</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>0.333</td>
<td>0.394</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>3</td>
<td>2</td>
<td>-</td>
<td>± -</td>
<td>0.377</td>
<td>0.386</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>18</td>
<td>3</td>
<td>0.123</td>
<td>± 0.00681</td>
<td>0.105</td>
<td>0.145</td>
<td>0.00963</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>22</td>
<td>0</td>
<td>0.254</td>
<td>± 0.0165</td>
<td>0.205</td>
<td>0.292</td>
<td>0.0258</td>
</tr>
</tbody>
</table>
Summary of results, after removal of outliers: Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Sample</th>
<th>Unit</th>
<th>Number of results for calculation</th>
<th>Number of outliers</th>
<th>Mean ± Cl (99%)</th>
<th>Minimum</th>
<th>Maximum</th>
<th>SD</th>
<th>RSD %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terbutylazine</td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>7</td>
<td>0</td>
<td>0.204 ± 0.0276</td>
<td>0.158</td>
<td>0.229</td>
<td>0.0244</td>
<td>12</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>6</td>
<td>0</td>
<td>0.122 ± 0.0256</td>
<td>0.103</td>
<td>0.157</td>
<td>0.0209</td>
<td>17</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>2</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>16</td>
<td>2</td>
<td>0.504 ± 0.0313</td>
<td>0.446</td>
<td>0.586</td>
<td>0.0417</td>
<td>8.3</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>13</td>
<td>2</td>
<td>0.295 ± 0.0181</td>
<td>0.273</td>
<td>0.334</td>
<td>0.0217</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>13</td>
<td>0</td>
<td>0.128 ± 0.0118</td>
<td>0.107</td>
<td>0.153</td>
<td>0.0141</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>13</td>
<td>2</td>
<td>0.765 ± 0.0774</td>
<td>0.614</td>
<td>0.949</td>
<td>0.0931</td>
<td>12</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>13</td>
<td>2</td>
<td>0.154 ± 0.0906</td>
<td>0.05</td>
<td>0.323</td>
<td>0.0955</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>1</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>2</td>
<td>0.154 ± 0.0906</td>
<td>0.05</td>
<td>0.323</td>
<td>0.0955</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>1</td>
<td>0.48 ± 0.0503</td>
<td>0.412</td>
<td>0.596</td>
<td>0.0531</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>10</td>
<td>0</td>
<td>0.407 ± 0.143</td>
<td>0.119</td>
<td>0.691</td>
<td>0.15</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>PM02 A</td>
<td>µg/l</td>
<td>5</td>
<td>1</td>
<td>- ± -</td>
<td>-</td>
<td>0.489</td>
<td>0.692</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>PM02 B</td>
<td>µg/l</td>
<td>0</td>
<td>0</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
7 Parameter oriented report

<table>
<thead>
<tr>
<th>Chemical Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>23</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>31</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>39</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>45</td>
</tr>
<tr>
<td>Alachlor</td>
<td>51</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>57</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>61</td>
</tr>
<tr>
<td>Aldrin</td>
<td>67</td>
</tr>
<tr>
<td>AMPA</td>
<td>73</td>
</tr>
<tr>
<td>Atrazine</td>
<td>79</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>85</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>91</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>97</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>103</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>109</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>115</td>
</tr>
<tr>
<td>Bentazon</td>
<td>119</td>
</tr>
<tr>
<td>Bromacil</td>
<td>125</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>131</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>137</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>143</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>149</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>153</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>157</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>163</td>
</tr>
<tr>
<td>Dicamba</td>
<td>169</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>175</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>183</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>189</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>195</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>201</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>207</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>211</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>215</td>
</tr>
<tr>
<td>Chemical Name</td>
<td>Page</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>219</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>225</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>231</td>
</tr>
<tr>
<td>Diuron</td>
<td>237</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>243</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>249</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>255</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>261</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>267</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>273</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>279</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>285</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>291</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>297</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>303</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>309</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>315</td>
</tr>
<tr>
<td>MCPA</td>
<td>315</td>
</tr>
<tr>
<td>MCPB</td>
<td>321</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>327</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>333</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>339</td>
</tr>
<tr>
<td>Metamitron</td>
<td>345</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>351</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>359</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>365</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>371</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>377</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>383</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>389</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>395</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>401</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>407</td>
</tr>
<tr>
<td>Propazine</td>
<td>413</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>419</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>425</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>431</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>439</td>
</tr>
<tr>
<td>Substance</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>445</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>451</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>455</td>
</tr>
<tr>
<td>Simazine</td>
<td>459</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>465</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>471</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>477</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>483</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>489</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>495</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>501</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>507</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>511</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>517</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>523</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>529</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A
2,4-D (2,4-Dichlorphenoxyaceticacid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.28</td>
<td>0.056</td>
<td>92.5</td>
<td>-0.69</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.296</td>
<td>0.02</td>
<td>97.8</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.303</td>
<td>0.0454</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.311</td>
<td>0.02</td>
<td>103</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.277</td>
<td>0.097</td>
<td>91.5</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.297</td>
<td>0.045</td>
<td>98.1</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.247</td>
<td>0.049</td>
<td>81.6</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.317</td>
<td>0.111</td>
<td>105</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.107</td>
<td>0.064</td>
<td>35.4</td>
<td>-5.98</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>1.29</td>
<td>0.097</td>
<td>426</td>
<td>30.2</td>
<td>H</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.342</td>
<td>0.068</td>
<td>113</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.287</td>
<td>0.06</td>
<td>94.8</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.296</td>
<td>0.074</td>
<td>97.8</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.309</td>
<td>0.062</td>
<td>102</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.284</td>
<td>0.085</td>
<td>93.8</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.34</td>
<td>0.085</td>
<td>112</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.36</td>
<td>0.054</td>
<td>119</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.339</td>
<td>0.1017</td>
<td>112</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.233</td>
<td>0.0699</td>
<td>77</td>
<td>-2.13</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.273</td>
<td>0.055</td>
<td>90.2</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.34</td>
<td>0.068</td>
<td>112</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.322</td>
<td>0.064</td>
<td>106</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.339 ± 0.14</td>
<td>0.303 ± 0.022</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.107</td>
<td>0.233</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.29</td>
<td>0.36</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.219</td>
<td>0.0327</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>64.6%</td>
<td>10.8%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: 2,4-D (2,4-Dichlorophenoxyaceticacid)

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Recovery rate distribution for different laboratories.
Sample: PM02A, Parameter: 2,4-D (2,4-Dichlorophenoxyacetic acid)
Parameter oriented report

PM02 B

2,4-D (2,4-Dichlorphenoxyaceticacid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.17</td>
<td>0.034</td>
<td>89</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.184</td>
<td>0.015</td>
<td>96.3</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.198</td>
<td>0.0297</td>
<td>104</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.2</td>
<td>0.008</td>
<td>105</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.18</td>
<td>0.063</td>
<td>94.2</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.172</td>
<td>0.026</td>
<td>90</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.176</td>
<td>0.035</td>
<td>92.1</td>
<td>-0.67</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.167</td>
<td>0.058</td>
<td>87.4</td>
<td>-1.06</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.065</td>
<td>0.039</td>
<td>34</td>
<td>-5.56</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.8</td>
<td>0.023</td>
<td>419</td>
<td>26.8</td>
<td>H</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.192</td>
<td>0.038</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.184</td>
<td>0.03</td>
<td>96.3</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.156</td>
<td>0.039</td>
<td>81.6</td>
<td>-1.55</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.211</td>
<td>0.042</td>
<td>110</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.177</td>
<td>0.053</td>
<td>92.6</td>
<td>-0.62</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.2</td>
<td>0.05</td>
<td>105</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.253</td>
<td>0.03795</td>
<td>132</td>
<td>2.73</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.219</td>
<td>0.0657</td>
<td>115</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.166</td>
<td>0.0498</td>
<td>86.9</td>
<td>-1.11</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.202</td>
<td>0.04</td>
<td>106</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.206</td>
<td>0.042</td>
<td>108</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.209</td>
<td>0.042</td>
<td>109</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.213 ± 0.0867</td>
<td>0.191 ± 0.0152</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.065</td>
<td>0.156</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.8</td>
<td>0.253</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.136</td>
<td>0.0227</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>63.6</td>
<td>11.9%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Sample</th>
<th>Parameter: 2,4-D (2,4-Dichlorophenoxyacetic acid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample: PM02B, Parameter: 2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.28</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.26</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.24</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>

[Graphical representation of results]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02B, Parameter: 2,4-D (2,4-Dichlorphenoxyacetic acid)

Recovery rate

Recovery [%]

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 2,4-D (2,4-Dichlorophenoxyacetic acid)

Z-score

Laboratory

LC0002 - LC0025
Parameter oriented report

PM02 A

2,6-Dichlorobenzamide

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>0.865</td>
<td>0.007</td>
<td>98</td>
<td>-0.2</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>1.01</td>
<td>0.244</td>
<td>114</td>
<td>1.44</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.92</td>
<td>0.034</td>
<td>104</td>
<td>0.42</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.78</td>
<td>0.269</td>
<td>88.4</td>
<td>-1.16</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.88</td>
<td>0.132</td>
<td>99.7</td>
<td>-0.03</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.926</td>
<td>0.0102</td>
<td>105</td>
<td>0.49</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.89</td>
<td>0.312</td>
<td>101</td>
<td>0.08</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.9665</td>
<td>0.29</td>
<td>109</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.868</td>
<td>0.048</td>
<td>98.3</td>
<td>-0.17</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.798</td>
<td>0.159</td>
<td>90.4</td>
<td>-0.96</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.806</td>
<td>0.16</td>
<td>91.3</td>
<td>-0.87</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.98</td>
<td>0.294</td>
<td>111</td>
<td>1.1</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.737</td>
<td>0.147</td>
<td>83.5</td>
<td>-1.65</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.856</td>
<td>0.171</td>
<td>97</td>
<td>-0.3</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.84</td>
<td>0.126</td>
<td>95.2</td>
<td>-0.48</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.866</td>
<td>0.2598</td>
<td>98.1</td>
<td>-0.19</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.707</td>
<td>0.2121</td>
<td>80.1</td>
<td>-1.99</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.962</td>
<td>0.2</td>
<td>109</td>
<td>0.9</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>1</td>
<td>0.2</td>
<td>113</td>
<td>1.33</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.998</td>
<td>0.135</td>
<td>113</td>
<td>1.3</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.883 ± 0.0593</td>
<td>0.883 ± 0.0593</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.707</td>
<td>0.707</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.01</td>
<td>1.01</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0884</td>
<td>0.0884</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>10</td>
<td>10 %</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: 2,6-Dichlorobenzamide

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>1.3</td>
</tr>
<tr>
<td>LC0006</td>
<td>1.2</td>
</tr>
<tr>
<td>LC0007</td>
<td>1.1</td>
</tr>
<tr>
<td>LC0008</td>
<td>1.0</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.9</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.7</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Results

Graphical presentation of results
Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>LC0003</th>
<th>LC0005</th>
<th>LC0006</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0013</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0017</th>
<th>LC0018</th>
<th>LC0020</th>
<th>LC0021</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
<th>LC0026</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02A, Parameter: 2,6-Dichlorobenzamide
Sample: PM02A, Parameter: 2,6-Dichlorobenzamide

Z-score

Laboratory
Parameter oriented report

PM02 B

2,6-Dichlorobenzamide

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>2.44</td>
<td>0.023</td>
<td>96.3</td>
<td>-0.49</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>2.97</td>
<td>0.712</td>
<td>117</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>2.652</td>
<td>0.021</td>
<td>105</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>2.237</td>
<td>0.781</td>
<td>88.3</td>
<td>-1.55</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>2.536</td>
<td>0.38</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>2.62</td>
<td>0.29</td>
<td>103</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>2.34</td>
<td>0.819</td>
<td>92.3</td>
<td>-1.02</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>2.548</td>
<td>0.7644</td>
<td>101</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>2.235</td>
<td>0.17</td>
<td>88.2</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>2.497</td>
<td>0.499</td>
<td>98.5</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>2.544</td>
<td>0.25</td>
<td>100</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>2.386</td>
<td>0.716</td>
<td>94.1</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>2.8</td>
<td>0.56</td>
<td>110</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>2.502</td>
<td>0.5</td>
<td>98.7</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>2.585</td>
<td>0.38775</td>
<td>102</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>2.54</td>
<td>0.762</td>
<td>100</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>1.5</td>
<td>0.45</td>
<td>59.2</td>
<td>-5.4</td>
<td>H</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>2.53</td>
<td>0.5</td>
<td>99.8</td>
<td>-0.02</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>2.843</td>
<td>0.569</td>
<td>112</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>2.355</td>
<td>0.318</td>
<td>92.9</td>
<td>-0.94</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>2.48 ± 0.199</td>
<td>2.53 ± 0.132</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.5</td>
<td>2.23</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.97</td>
<td>2.97</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.297</td>
<td>0.192</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12</td>
<td>7.56 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.50</td>
<td>LC0003</td>
</tr>
<tr>
<td>3.25</td>
<td>LC0005</td>
</tr>
<tr>
<td>3.00</td>
<td>LC0006</td>
</tr>
<tr>
<td>2.75</td>
<td>LC0007</td>
</tr>
<tr>
<td>2.50</td>
<td>LC0008</td>
</tr>
<tr>
<td>2.25</td>
<td>LC0010</td>
</tr>
<tr>
<td>2.00</td>
<td>LC0012</td>
</tr>
<tr>
<td>1.75</td>
<td>LC0015</td>
</tr>
<tr>
<td>1.50</td>
<td>LC0016</td>
</tr>
<tr>
<td>1.25</td>
<td>LC0009</td>
</tr>
</tbody>
</table>

H
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 2,6-Dichlorobenzamide

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>90</td>
</tr>
<tr>
<td>LC0005</td>
<td>80</td>
</tr>
<tr>
<td>LC0006</td>
<td>70</td>
</tr>
<tr>
<td>LC0007</td>
<td>80</td>
</tr>
<tr>
<td>LC0008</td>
<td>90</td>
</tr>
<tr>
<td>LC0010</td>
<td>90</td>
</tr>
<tr>
<td>LC0012</td>
<td>70</td>
</tr>
<tr>
<td>LC0013</td>
<td>80</td>
</tr>
<tr>
<td>LC0015</td>
<td>90</td>
</tr>
<tr>
<td>LC0016</td>
<td>70</td>
</tr>
<tr>
<td>LC0017</td>
<td>90</td>
</tr>
<tr>
<td>LC0018</td>
<td>70</td>
</tr>
<tr>
<td>LC0019</td>
<td>80</td>
</tr>
<tr>
<td>LC0020</td>
<td>90</td>
</tr>
<tr>
<td>LC0021</td>
<td>70</td>
</tr>
<tr>
<td>LC0022</td>
<td>80</td>
</tr>
<tr>
<td>LC0023</td>
<td>90</td>
</tr>
<tr>
<td>LC0024</td>
<td>70</td>
</tr>
<tr>
<td>LC0025</td>
<td>80</td>
</tr>
<tr>
<td>LC0026</td>
<td>90</td>
</tr>
</tbody>
</table>

Recovery rate table:

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>130</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 2,6-Dichlorobenzamide

Z-score

Laboratory

LC0003
LC0005
LC0006
LC0007
LC0008
LC0009
LC0010
LC0011
LC0012
LC0015
LC0016
LC0017
LC0018
LC0019
LC0020
LC0021
LC0022
LC0023
LC0024
LC0025
LC0026
Parameter oriented report

PM02 A

2-Amino-4-methoxy-6-methyl-1,3,5-triazine

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.036 - 0.287</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td><0.05 (LOQ)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.038</td>
<td>0.013</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.036</td>
<td>0.005</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.287</td>
<td>0.172</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.087</td>
<td>0.0261</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.112 ± 0.179</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.036</td>
<td>0.036</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.287</td>
<td>0.287</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.119</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>106</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: 2-Amino-4-methoxy-6-methyl-1,3,5-triazine

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

2-Amino-4-methoxy-6-methyl-1,3,5-triazine

Unit: µg/l

Mean ± CI (99%) 0.182 ± 0.0175
Minimum - Maximum 0.159 - 0.199
Control test value ± U 0.17 ± 0.0255

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.183</td>
<td>0.0457</td>
<td>101</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.159</td>
<td>0.056</td>
<td>87.5</td>
<td>-1.59</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.175</td>
<td>0.026</td>
<td>96.3</td>
<td>4.47</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.18</td>
<td>0.063</td>
<td>99.1</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.634</td>
<td>0.98</td>
<td>899</td>
<td>102</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.194</td>
<td>0.039</td>
<td>107</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.199</td>
<td>0.0597</td>
<td>110</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.389 ± 0.623</td>
<td>0.182 ± 0.0175</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.159</td>
<td>0.159</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.63</td>
<td>0.199</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.549</td>
<td>0.0143</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>141</td>
<td>7.84 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02B, Parameter: 2-Amino-4-methoxy-6-methyl-1,3,5-triazine

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
</tr>
<tr>
<td>LC0007</td>
</tr>
<tr>
<td>LC0008</td>
</tr>
<tr>
<td>LC0010</td>
</tr>
<tr>
<td>LC0011</td>
</tr>
<tr>
<td>LC0016</td>
</tr>
<tr>
<td>LC0022</td>
</tr>
</tbody>
</table>

Recovery [%]

- 130
- 120
- 110
- 100
- 90
- 80
- 70
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 2-Amino-4-methoxy-6-methyl-1,3,5-triazine

Laboratory

<table>
<thead>
<tr>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0016</th>
<th>LC0022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
</tr>
</tbody>
</table>

Z-score
Parameter oriented report

3,5,6-Trichloro-2-pyridinol

Unit: µg/l
Mean ± CI (99%) -
Minimum - Maximum 0.097 - 0.099
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.099</td>
<td>0.035</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.097</td>
<td>0.034</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.098 ± 0.003</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.097</td>
<td>0.097</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.099</td>
<td>0.099</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.00141</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>1.44</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: 3,5,6-Trichloro-2-pyridinol

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Value [µg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

3,5,6-Trichloro-2-pyridinol

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.627</td>
<td>0.219</td>
<td>155</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.474</td>
<td>0.166</td>
<td>117</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.419</td>
<td>0.063</td>
<td>103</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.325</td>
<td>0.114</td>
<td>80.1</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.41</td>
<td>0.082</td>
<td>101</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.179</td>
<td>0.0537</td>
<td>44.1</td>
<td>-1.52</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.406 ± 0.183</td>
<td>0.406 ± 0.183</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.179</td>
<td>0.179</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.627</td>
<td>0.627</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.149</td>
<td>0.149</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>36.9%</td>
<td>36.9 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 3,5,6-Trichloro-2-pyridinol

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Result (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.9</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.7</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.5</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.4</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: 3,5,6-Trichloro-2-pyridinol

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>225</td>
</tr>
<tr>
<td>LC0007</td>
<td>200</td>
</tr>
<tr>
<td>LC0008</td>
<td>175</td>
</tr>
<tr>
<td>LC0010</td>
<td>150</td>
</tr>
<tr>
<td>LC0016</td>
<td>125</td>
</tr>
<tr>
<td>LC0022</td>
<td>100</td>
</tr>
</tbody>
</table>

Recovery rate

Laboratory LC0005, LC0007, LC0010 show recovery rates above 150%.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02B, Parameter: 3,5,6-Trichloro-2-pyridinol

Laboratory

LC0005
LC0007
LC0008
LC0010
LC0016
LC0022

Z-score

0
-1
-2
-3

Z-score
Parameter oriented report

PM02 A

Alachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.518</td>
<td>0.005</td>
<td>104</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.563</td>
<td>0.03</td>
<td>113</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.364</td>
<td>0.127</td>
<td>72.7</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.6804</td>
<td>0.0415</td>
<td>132</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.428</td>
<td>0.15</td>
<td>85.5</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.486</td>
<td>0.073</td>
<td>97.1</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.423</td>
<td>0.127</td>
<td>84.5</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.5489</td>
<td>0.247</td>
<td>110</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.517</td>
<td>0.103</td>
<td>103</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.62</td>
<td>0.124</td>
<td>124</td>
<td>1.43</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.54</td>
<td>0.135</td>
<td>108</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.466</td>
<td>0.0699</td>
<td>93.1</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.462</td>
<td>0.1386</td>
<td>92.3</td>
<td>-0.46</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.374</td>
<td>0.1122</td>
<td>74.7</td>
<td>-1.51</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.536</td>
<td>0.107</td>
<td>107</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.5 ± 0.0649</td>
<td>0.5 ± 0.0649</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.364</td>
<td>0.364</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.66</td>
<td>0.66</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0838</td>
<td>0.0838</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>16.7</td>
<td>16.7 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Alachlor

Graphical presentation of results

Results

![Graphical presentation of results](image-url)
Recovery rate

Sample: PM02A, Parameter: Alachlor

Recovery [%]

Laboratory

53/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Alachlor

Z-score

Laboratory

LC0003 LC0004 LC0005 LC0006 LC0007 LC0008 LC0010 LC0011 LC0016 LC0017 LC0019 LC0020 LC0021 LC0022 LC0025
Parameter oriented report

PM02 B

Alachlor

Unit: µg/l

Mean ± CI (99%) -
Minimum - Maximum: 0.0043 - 0.0043
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.0043</td>
<td>0.0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0043</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0043</td>
<td>0.0043</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0043</td>
<td>0.0043</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Alachlor

Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Alachlor-t-sulfonic acid (Alachlor-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Alachlor-t-sulfonic acid (Alachlor-ESA)

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: 2.26 - 3.13
Control test value ± U: 2.87 ± 0.431

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>2.85</td>
<td>0.627</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>2.838</td>
<td>1.135</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>3.13</td>
<td>0.469</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>3.03</td>
<td>1.061</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>4.19</td>
<td>2.51</td>
<td>-</td>
<td>-</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.26</td>
<td>0.678</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>3.05 ± 0.778</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>2.26</td>
<td>2.26 µg/l</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>4.19</td>
<td>3.13 µg/l</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.635</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>20.8</td>
<td>- %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Alachlor-t-sulfonic acid (Alachlor-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>6.5</td>
</tr>
<tr>
<td>LC0007</td>
<td>6</td>
</tr>
<tr>
<td>LC0008</td>
<td>5.5</td>
</tr>
<tr>
<td>LC0010</td>
<td>5</td>
</tr>
<tr>
<td>LC0011</td>
<td>4.5</td>
</tr>
<tr>
<td>LC0022</td>
<td>4</td>
</tr>
<tr>
<td>LC0011</td>
<td>3.5</td>
</tr>
<tr>
<td>LC0011</td>
<td>3</td>
</tr>
<tr>
<td>LC0011</td>
<td>2.5</td>
</tr>
<tr>
<td>LC0011</td>
<td>2</td>
</tr>
<tr>
<td>LC0011</td>
<td>1.5</td>
</tr>
<tr>
<td>LC0011</td>
<td>1</td>
</tr>
</tbody>
</table>

Laboratory LC0011 has a unusually high result.
Parameter oriented report

PM02 A

Alachlor-t-acid (Alachlor-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>> 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Alachlor-t-acid (Alachlor-OA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>0.030</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.028</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.026</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.024</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.022</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.020</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.018</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.016</td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report

PM02 B

Alachlor-t-acid (Alachlor-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.52</td>
<td>0.114</td>
<td>110</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.444</td>
<td>0.178</td>
<td>93.6</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.495</td>
<td>0.074</td>
<td>104</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.435</td>
<td>0.065</td>
<td>91.7</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.464</td>
<td>0.162</td>
<td>97.8</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.076</td>
<td>0.046</td>
<td>16</td>
<td>-7.47</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.405</td>
<td>0.1215</td>
<td>85.3</td>
<td>-1.3</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.559</td>
<td>0.112</td>
<td>118</td>
<td>1.58</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.425 ± 0.158</td>
<td>0.475 ± 0.0605</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.076</td>
<td>0.405</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.559</td>
<td>0.559</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.149</td>
<td>0.0533</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>35.2</td>
<td>11.2 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Alachlor-t-acid (Alachlor-OA)

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.50</td>
</tr>
</tbody>
</table>
Recovery Rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>140</td>
</tr>
<tr>
<td>LC0007</td>
<td>130</td>
</tr>
<tr>
<td>LC0008</td>
<td>120</td>
</tr>
<tr>
<td>LC0009</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0011</td>
<td>90</td>
</tr>
<tr>
<td>LC0021</td>
<td>80</td>
</tr>
<tr>
<td>LC0025</td>
<td>70</td>
</tr>
<tr>
<td>LC0026</td>
<td>60</td>
</tr>
</tbody>
</table>

The recovery rates are expressed in hectares.
Parameter oriented report

PM02 A

Aldrin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.042</td>
<td>0.007</td>
<td>111</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.047</td>
<td>0.00586</td>
<td>124</td>
<td>1.06</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.1027</td>
<td>0.0021</td>
<td>271</td>
<td>7.57</td>
<td>H</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.035</td>
<td>0.012</td>
<td>92.2</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.037</td>
<td>0.006</td>
<td>97.5</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.055</td>
<td>0.019</td>
<td>145</td>
<td>1.99</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.0345</td>
<td>0.0135</td>
<td>90.9</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.03</td>
<td>0.006</td>
<td>79.1</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.01</td>
<td>0.0025</td>
<td>26.4</td>
<td>-3.27</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.031</td>
<td>0.0093</td>
<td>81.7</td>
<td>-0.81</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.03</td>
<td>0.007</td>
<td>79.1</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0413 ± 0.0211</td>
<td>0.0379 ± 0.00855</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.01</td>
<td>0.03</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.103</td>
<td>0.055</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0233</td>
<td>0.00855</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>56.5</td>
<td>22.5 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>9 -</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Aldrin

Recovery rate

Recovery [%]

Laboratory

LC0004
LC0005
LC0006
LC0007
LC0008
LC0010
LC0011
LC0016
LC0019
LC0022
LC0023
Parameter oriented report

PM02 B

Aldrin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.005 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.00022</td>
<td>0.0004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.009 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.002 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.001 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.005 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0022</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0022</td>
<td>0.0022</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0022</td>
<td>0.0022</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Aldrin

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.035</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.030</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.025</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.020</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.015</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.010</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.005</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

AMPA

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.006</td>
<td>0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.0086</td>
<td>0.0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.227</td>
<td>0.07</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td><0.02 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.2 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0805 ± 0.22</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.006</td>
<td>0.006</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.227</td>
<td>0.227</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.127</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>158</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: AMPA

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Result (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Laboratory

µg/l
Parameter oriented report

PM02 B

AMPA

Unit µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.651</td>
<td>0.007</td>
<td>91</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.659</td>
<td>0.152</td>
<td>92.1</td>
<td>-0.32</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.567</td>
<td>0.02</td>
<td>79.3</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.694</td>
<td>0.278</td>
<td>97</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td></td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0009</td>
<td>1.04</td>
<td>0.38</td>
<td>145</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.742</td>
<td>0.223</td>
<td>104</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.814</td>
<td>0.1228</td>
<td>85.9</td>
<td>-0.58</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>2.15</td>
<td>0.67</td>
<td>301</td>
<td>8.19</td>
<td>H</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.947</td>
<td>0.123</td>
<td>132</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.4</td>
<td>0.1</td>
<td>55.9</td>
<td>-1.8</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.79</td>
<td>0.237</td>
<td>110</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.763</td>
<td>0.153</td>
<td>107</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.835 ± 0.387</td>
<td>0.715 ± 0.159</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.4</td>
<td>0.4</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.15</td>
<td>1.04</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.447</td>
<td>0.175</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>53.5</td>
<td>24.5</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: AMPA

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td>LC0003</td>
</tr>
<tr>
<td>160</td>
<td>LC0005</td>
</tr>
<tr>
<td>140</td>
<td>LC0006</td>
</tr>
<tr>
<td>120</td>
<td>LC0007</td>
</tr>
<tr>
<td>100</td>
<td>LC0009</td>
</tr>
<tr>
<td>80</td>
<td>LC0010</td>
</tr>
<tr>
<td>60</td>
<td>LC0011</td>
</tr>
<tr>
<td>40</td>
<td>LC0014</td>
</tr>
<tr>
<td>20</td>
<td>LC0017</td>
</tr>
<tr>
<td></td>
<td>LC0019</td>
</tr>
<tr>
<td></td>
<td>LC0022</td>
</tr>
<tr>
<td></td>
<td>LC0025</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: AMPA

Z-score

Laboratory

LC0003, LC0005, LC0006, LC0007, LC0009, LC0010, LC0011, LC0014, LC0017, LC0019, LC0022, LC0025
Parameter oriented report

PM02 A

Atrazine

Unit: μg/l

Mean ± CI (99%): 0.154 ± 0.00877
Minimum - Maximum: 0.128 - 0.178
Control test value ± U: 0.151 ± 0.0227

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.144</td>
<td>0.022</td>
<td>93.4</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.155</td>
<td>0.002</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.178</td>
<td>0.0606</td>
<td>115</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.159</td>
<td>0.02</td>
<td>103</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.134</td>
<td>0.047</td>
<td>86.9</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.148</td>
<td>0.022</td>
<td>96</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.137</td>
<td>0.027</td>
<td>88.9</td>
<td>-1.25</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.128</td>
<td>0.038</td>
<td>83</td>
<td>-1.91</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.1589</td>
<td>0.0572</td>
<td>103</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.157</td>
<td>0.01</td>
<td>102</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.154</td>
<td>0.031</td>
<td>99.9</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.151</td>
<td>0.03</td>
<td>97.9</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.149</td>
<td>0.03</td>
<td>96.6</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.174</td>
<td>0.023</td>
<td>113</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.159</td>
<td>0.032</td>
<td>103</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.13</td>
<td>0.0325</td>
<td>84.3</td>
<td>-1.76</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.155</td>
<td>0.02325</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.152</td>
<td>0.0456</td>
<td>98.6</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.164</td>
<td>0.0492</td>
<td>106</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.174</td>
<td>0.034</td>
<td>113</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.167</td>
<td>0.033</td>
<td>108</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.164</td>
<td>0.017</td>
<td>106</td>
<td>0.72</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.154 ± 0.00877</td>
<td>0.154 ± 0.00877</td>
<td>μg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.128</td>
<td>0.128</td>
<td>μg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.178</td>
<td>0.178</td>
<td>μg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0137</td>
<td>0.0137</td>
<td>μg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>8.89 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>22</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water
Ordinance - PM02
Sample: PM02A, Parameter: Atrazine

Z-score

Laboratory

LC0001 LC0003 LC0005 LC0006 LC0007 LC0008 LC0009 LC0010 LC0011 LC0012 LC0013 LC0015 LC0016 LC0017 LC0018 LC0019 LC0020 LC0021 LC0022 LC0024 LC0025 LC0026

Z-score

0 1 2 3

-3 -2 -1 0 1 2 3

82/715
Parameter oriented report

Sample: PM02B, **Parameter**: Atrazine

Atrazine

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: 0.003 - 0.006
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.003</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.006</td>
<td>0.0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0045 ± 0.0045</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>Minimum</td>
<td>0.003</td>
<td>0.003 µg/l</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.006</td>
<td>0.006 µg/l</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.00212</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>47.1</td>
<td>- %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2 -</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine
Parameter oriented report

PM02 A

Atrazine-2-hydroxy

Unit \(\mu g/l\)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report

PM02 B

Atrazine-2-hydroxy

Unit µg/l
Mean ± CI (99%) 1.52 ± 0.174
Minimum - Maximum 1.27 - 1.73
Control test value ± U 1.61 ± 0.242

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>1.56</td>
<td>0.327</td>
<td>103</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>1.432</td>
<td>0.489</td>
<td>94.1</td>
<td>-0.58</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>1.435</td>
<td>0.215</td>
<td>94.3</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>1.61</td>
<td>0.4</td>
<td>106</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>1.27</td>
<td>0.381</td>
<td>83.5</td>
<td>-1.64</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>2.815</td>
<td>0.137</td>
<td>185</td>
<td>8.44</td>
<td>H</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>1.61</td>
<td>0.483</td>
<td>106</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>1.734</td>
<td>0.347</td>
<td>114</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.68 ± 0.508</td>
<td>1.52 ± 0.174</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.27</td>
<td>1.27</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.81</td>
<td>1.73</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.479</td>
<td>0.153</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>28.4</td>
<td>10.1 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-2-hydroxy

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0012</th>
<th>LC0022</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-2-hydroxy

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>140</td>
</tr>
<tr>
<td>LC0007</td>
<td>130</td>
</tr>
<tr>
<td>LC0008</td>
<td>120</td>
</tr>
<tr>
<td>LC0009</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0012</td>
<td>90</td>
</tr>
<tr>
<td>LC0022</td>
<td>80</td>
</tr>
<tr>
<td>LC0025</td>
<td>70</td>
</tr>
</tbody>
</table>

Recovery rate range is between 70% and 140%.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-2-hydroxy

Laboratory

LC0005
LC0007
LC0008
LC0009
LC0010
LC0012
LC0022
LC0025

Z-score

3
2
1
0
-1
-2
-3
Z-score
Parameter oriented report

PM02 A

Atrazine-desethyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.005</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.006</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0055 ± 0.0015</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.005</td>
<td>0.005</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.006</td>
<td>0.006</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.000707</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.9</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Atrazine-desethyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.198</td>
<td>0.002</td>
<td>93.3</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.206</td>
<td>0.0412</td>
<td>97</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.225</td>
<td>0.019</td>
<td>106</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.194</td>
<td>0.068</td>
<td>91.4</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.203</td>
<td>0.03</td>
<td>95.6</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.195</td>
<td>0.023</td>
<td>91.9</td>
<td>-0.76</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.183</td>
<td>0.055</td>
<td>86.2</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.237</td>
<td>0.0711</td>
<td>112</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.213</td>
<td>0.01</td>
<td>100</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.203</td>
<td>0.041</td>
<td>95.6</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.204</td>
<td>0.3</td>
<td>96.1</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.201</td>
<td>0.04</td>
<td>94.7</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.272</td>
<td>0.041</td>
<td>128</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.224</td>
<td>0.045</td>
<td>106</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.217</td>
<td>0.03255</td>
<td>102</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.217</td>
<td>0.0651</td>
<td>102</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.23</td>
<td>0.069</td>
<td>108</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.232</td>
<td>0.046</td>
<td>109</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.228</td>
<td>0.046</td>
<td>107</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.164</td>
<td>0.015</td>
<td>77.2</td>
<td>-2.12</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.212 ± 0.0153</td>
<td>0.212 ± 0.0153</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.164</td>
<td>0.164</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.272</td>
<td>0.272</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0228</td>
<td>0.0228</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>10.8</td>
<td>10.8 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B, **Parameter:** Atrazine-desethyl
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-desethyl

Graphical presentation of results

Results
Parameter oriented report

PM02 A

Atrazine-desethyl-desisopropyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.014</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.014</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.014</td>
<td>0.014</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.014</td>
<td>0.014</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sample: PM02A, Parameter: Atrazine-desethyl-desisopropyl
Parameter oriented report

PM02 B

Atrazine-desethyl-desisopropyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.872</td>
<td>0.384</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.642</td>
<td>0.194</td>
<td>73.6</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.864</td>
<td>0.13</td>
<td>99.1</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.918</td>
<td>0.321</td>
<td>105</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>1.091</td>
<td>0.218</td>
<td>125</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.645</td>
<td>0.1935</td>
<td>74</td>
<td>-1.26</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>1.07</td>
<td>0.21</td>
<td>123</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.872 ± 0.204</td>
<td>0.872 ± 0.204</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.642</td>
<td>0.642</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.09</td>
<td>1.09</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.18</td>
<td>0.18</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>20.6%</td>
<td>20.6%</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-desethyl-desisopropyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0016</th>
<th>LC0022</th>
<th>LC0024</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02B, Parameter: Atrazine-desethyl-desisopropyl

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>LC0006</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0016</th>
<th>LC0022</th>
<th>LC0024</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-desethyl-desisopropyl

z-score
3
2
1
0
-1
-2
-3
Z-score

Laboratory
LC0005
LC0007
LC0008
LC0010
LC0016
LC0022
LC0024

102/715
Parameter oriented report

PM02 A

Atrazine-desisopropyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.035 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 B

Atrazine-desisopropyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.399</td>
<td>0.004</td>
<td>86.8</td>
<td>-1.23</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.461</td>
<td>0.0922</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.425</td>
<td>0.149</td>
<td>92.4</td>
<td>-0.71</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.436</td>
<td>0.065</td>
<td>94.8</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.45</td>
<td>0.09</td>
<td>97.9</td>
<td>-0.2</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.37</td>
<td>0.13</td>
<td>80.5</td>
<td>-1.82</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.514</td>
<td>0.011</td>
<td>112</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.438</td>
<td>0.088</td>
<td>95.3</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.424</td>
<td>0.08</td>
<td>92.2</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.505</td>
<td>0.101</td>
<td>110</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.419</td>
<td>0.063</td>
<td>91.1</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.479</td>
<td>0.096</td>
<td>104</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.442</td>
<td>0.0663</td>
<td>96.1</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.482</td>
<td>0.1446</td>
<td>105</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.527</td>
<td>0.1581</td>
<td>115</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.436</td>
<td>0.088</td>
<td>94.8</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.564</td>
<td>0.113</td>
<td>123</td>
<td>2.11</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.506</td>
<td>0.111</td>
<td>110</td>
<td>0.94</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.46 ± 0.0348</td>
<td>0.46 ± 0.0348</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.37</td>
<td>0.37</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.564</td>
<td>0.564</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0493</td>
<td>0.0493</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>10.7</td>
<td>10.7 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>18</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-desisopropyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>0.10</td>
</tr>
<tr>
<td></td>
<td>0.15</td>
</tr>
<tr>
<td></td>
<td>0.20</td>
</tr>
<tr>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.30</td>
</tr>
<tr>
<td></td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>0.60</td>
</tr>
<tr>
<td></td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>0.70</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Atrazine-desisopropyl

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>140</td>
</tr>
<tr>
<td>LC0005</td>
<td>130</td>
</tr>
<tr>
<td>LC0007</td>
<td>120</td>
</tr>
<tr>
<td>LC0008</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0012</td>
<td>90</td>
</tr>
<tr>
<td>LC0013</td>
<td>80</td>
</tr>
<tr>
<td>LC0015</td>
<td>70</td>
</tr>
<tr>
<td>LC0016</td>
<td>60</td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02B, Parameter: Atrazine-desisopropyl

Z-score

Laboratory
Parameter oriented report

PM02 A

Azoxystrobin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.118</td>
<td>0.01</td>
<td>83.5</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.154</td>
<td>0.0386</td>
<td>109</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.117</td>
<td>0.041</td>
<td>82.8</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.123</td>
<td>0.018</td>
<td>87</td>
<td>-0.81</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.132</td>
<td>0.04</td>
<td>93.4</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.151</td>
<td>0.019</td>
<td>107</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.141</td>
<td>0.028</td>
<td>99.8</td>
<td>-0.01</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.142</td>
<td>0.07</td>
<td>100</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.182</td>
<td>0.055</td>
<td>129</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.172</td>
<td>0.031</td>
<td>122</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.16</td>
<td>0.04</td>
<td>113</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.151</td>
<td>0.0453</td>
<td>107</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.095</td>
<td>0.0285</td>
<td>67.2</td>
<td>-2.05</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.132</td>
<td>0.026</td>
<td>93.4</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.15</td>
<td>0.03</td>
<td>106</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.141 ± 0.0175</td>
<td>0.141 ± 0.0175</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.095</td>
<td>0.095</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.182</td>
<td>0.182</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0226</td>
<td>0.0226</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>16</td>
<td>16</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Azoxystrobin

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
</tr>
<tr>
<td>150</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>40</td>
</tr>
</tbody>
</table>

Recovery rate

Laboratory

<table>
<thead>
<tr>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
</tr>
<tr>
<td>LC0006</td>
</tr>
<tr>
<td>LC0007</td>
</tr>
<tr>
<td>LC0008</td>
</tr>
<tr>
<td>LC0010</td>
</tr>
<tr>
<td>LC0012</td>
</tr>
<tr>
<td>LC0013</td>
</tr>
<tr>
<td>LC0015</td>
</tr>
<tr>
<td>LC0016</td>
</tr>
<tr>
<td>LC0017</td>
</tr>
<tr>
<td>LC0019</td>
</tr>
<tr>
<td>LC0021</td>
</tr>
<tr>
<td>LC0022</td>
</tr>
<tr>
<td>LC0024</td>
</tr>
<tr>
<td>LC0025</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Azoxystrobin

Z-score

Laboratory

LC0004 LC0005 LC0007 LC0008 LC0010 LC0012 LC0013 LC0015 LC0016 LC0017 LC0019 LC0021 LC0022 LC0024 LC0025

z-score
3 2 1 0 -1 -2 -3

Z-score
Parameter oriented report

PM02 B

Azoxystrobin

Unit: µg/l

Mean ± CI (99%) -

Minimum - Maximum -

Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

![Graphical representation of pesticide levels](image-url)
Parameter oriented report

PM02 A
Azoxystrobin-O-demethyl (CyPM)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Azoxystrobin-O-demethyl (CyPM)

Graphical presentation of results

Results

Laboratory LC0005, LC0007, LC0008, LC0022

[Graph showing the results with µg/l on the y-axis and Laboratory on the x-axis]
Parameter oriented report

PM02 B
Azoxystrobin-O-demethyl (CyPM)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.72</td>
<td>0.137</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.858</td>
<td>0.343</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.846</td>
<td>0.127</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.334</td>
<td>0.1002</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.69 ± 0.368</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.334</td>
<td>0.334</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.858</td>
<td>0.858</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.245</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>35.5</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Azoxytrobin-O-demethyl (CyPM)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>1.0</td>
</tr>
<tr>
<td>LC0007</td>
<td>1.2</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0202</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Parameter oriented report

Sample: PM02A, Parameter: Bentazone

Bentazone

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.094</td>
<td>0.014</td>
<td>103</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.1</td>
<td>0.02</td>
<td>110</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.096</td>
<td>0.005</td>
<td>105</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.102</td>
<td>0.0143</td>
<td>112</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.091</td>
<td>0.032</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.09</td>
<td>0.031</td>
<td>98.9</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.087</td>
<td>0.013</td>
<td>95.6</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.085</td>
<td>0.022</td>
<td>93.4</td>
<td>-0.52</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.079</td>
<td>0.028</td>
<td>86.8</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.112</td>
<td>0.034</td>
<td>123</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.087</td>
<td>0.004</td>
<td>95.6</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.101</td>
<td>0.02</td>
<td>111</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.086</td>
<td>0.02</td>
<td>94.5</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.107</td>
<td>0.021</td>
<td>118</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.101</td>
<td>0.013</td>
<td>111</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.086</td>
<td>0.017</td>
<td>94.5</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.07</td>
<td>0.0175</td>
<td>76.9</td>
<td>-1.81</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.068</td>
<td>0.0102</td>
<td>74.7</td>
<td>-1.98</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.094</td>
<td>0.0282</td>
<td>103</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.072</td>
<td>0.0216</td>
<td>79.1</td>
<td>-1.64</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.101</td>
<td>0.02</td>
<td>111</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.094</td>
<td>0.019</td>
<td>103</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.091 ± 0.00744</td>
<td>0.091 ± 0.00744</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.068</td>
<td>0.068</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.112</td>
<td>0.112</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0116</td>
<td>0.0116</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Bentazone

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0003</td>
<td>0.13</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.11</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Bentazone

Recovery [\%]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Bentazone

Z-score

Laboratory

Z-score

122/715
Parameter oriented report

PM02 B
Bentazone

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Bentazone

Graphical presentation of results

Results

[Graph showing results for different laboratories with bentazone levels in µg/l]
Parameter oriented report

PM02 A

Bromacil

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.182</td>
<td>0.0418</td>
<td>111</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.16</td>
<td>0.056</td>
<td>97.7</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.158</td>
<td>0.024</td>
<td>96.5</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.14</td>
<td>0.034</td>
<td>85.5</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.188</td>
<td>0.066</td>
<td>115</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.07</td>
<td>0.042</td>
<td>42.8</td>
<td>-6.17</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.157</td>
<td>0.031</td>
<td>95.9</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.16</td>
<td>0.04</td>
<td>97.7</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.173</td>
<td>0.0259</td>
<td>106</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.173</td>
<td>0.0519</td>
<td>106</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.146</td>
<td>0.0438</td>
<td>89.2</td>
<td>-1.16</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.155 ± 0.0287</td>
<td>0.164 ± 0.0144</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.07</td>
<td>0.14</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.188</td>
<td>0.188</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0317</td>
<td>0.0152</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>20.4</td>
<td>9.28</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Bromacil

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>LC0005</td>
</tr>
<tr>
<td>130</td>
<td>LC0007</td>
</tr>
<tr>
<td>120</td>
<td>LC0008</td>
</tr>
<tr>
<td>110</td>
<td>LC0009</td>
</tr>
<tr>
<td>100</td>
<td>LC0010</td>
</tr>
<tr>
<td>90</td>
<td>LC0016</td>
</tr>
<tr>
<td>80</td>
<td>LC0019</td>
</tr>
<tr>
<td>70</td>
<td>LC0020</td>
</tr>
<tr>
<td>60</td>
<td>LC0021</td>
</tr>
</tbody>
</table>

Recovery rate range: 60% to 140%
Parameter oriented report

PM02 B

Bromacil

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory LC0005 LC0007 LC0008 LC0009 LC0010 LC0011 LC0016 LC0019 LC0020 LC0021 LC0022

µg/l

0.10

0.09

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

130/715
Parameter oriented report

PM02 A

Chloridazon

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.087</td>
<td>0.013</td>
<td>99.7</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.098</td>
<td>0.02</td>
<td>112</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.0881</td>
<td>0.0123</td>
<td>101</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.081</td>
<td>0.028</td>
<td>92.8</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.084</td>
<td>0.013</td>
<td>96.2</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.084</td>
<td>0.019</td>
<td>96.2</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.117</td>
<td>0.035</td>
<td>134</td>
<td>3.93</td>
<td>H</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.0693</td>
<td>0.021</td>
<td>79.4</td>
<td>-2.38</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.089</td>
<td>0.004</td>
<td>102</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.084</td>
<td>0.017</td>
<td>96.2</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.095</td>
<td>0.02</td>
<td>109</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.051</td>
<td>0.008</td>
<td>58.4</td>
<td>-4.8</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.089</td>
<td>0.018</td>
<td>102</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.09</td>
<td>0.0225</td>
<td>103</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.113</td>
<td>0.0339</td>
<td>129</td>
<td>3.4</td>
<td>H</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.089</td>
<td>0.0267</td>
<td>102</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.087</td>
<td>0.018</td>
<td>99.7</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.102</td>
<td>0.02</td>
<td>117</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.08</td>
<td>0.017</td>
<td>91.7</td>
<td>-0.96</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0883 ± 0.00987</td>
<td>0.0873 ± 0.00567</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.051</td>
<td>0.0693</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.117</td>
<td>0.102</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0143</td>
<td>0.00756</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>16.2</td>
<td>8.66%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>19</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Recovery rate

Recovery [%]

Laboratory

Sample: PM02A, Parameter: Chloridazon
Parameter oriented report

PM02 B

Chloridazon

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td><0.002 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

Laboratory

Sample: PM02B, Parameter: Chloridazon
Parameter oriented report

PM02 A

Chloridazon-desphenyl

Unit: µg/l
Mean ± CI (99%) -
Minimum - Maximum -
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.04 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Chloridazon-desphenyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>LC0006</td>
</tr>
<tr>
<td>0.01</td>
<td>LC0007</td>
</tr>
<tr>
<td>0.02</td>
<td>LC0008</td>
</tr>
<tr>
<td>0.03</td>
<td>LC0009</td>
</tr>
<tr>
<td>0.04</td>
<td>LC0010</td>
</tr>
<tr>
<td>0.05</td>
<td>LC0011</td>
</tr>
<tr>
<td>0.06</td>
<td>LC0013</td>
</tr>
<tr>
<td>0.07</td>
<td>LC0015</td>
</tr>
<tr>
<td>0.08</td>
<td>LC0016</td>
</tr>
<tr>
<td>0.09</td>
<td>LC0018</td>
</tr>
<tr>
<td>0.10</td>
<td>LC0021</td>
</tr>
<tr>
<td>0.11</td>
<td>LC0022</td>
</tr>
<tr>
<td>0.12</td>
<td>LC0025</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Chloridazon-desphenyl

Unit µg/l

Mean ± CI (99%) 3.11 ± 0.194
Minimum - Maximum 2.75 - 3.43
Control test value ± U 3.42 ± 0.513

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>3.31</td>
<td>0.728</td>
<td>106</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>3.26</td>
<td>1.304</td>
<td>105</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>3.196</td>
<td>0.479</td>
<td>103</td>
<td>0.37</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>2.94</td>
<td>0.79</td>
<td>94.5</td>
<td>-0.77</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>2.75</td>
<td>0.825</td>
<td>88.4</td>
<td>-1.61</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>3.1</td>
<td>0.93</td>
<td>99.6</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>2.823</td>
<td>0.565</td>
<td>90.7</td>
<td>-1.29</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>2.919</td>
<td>0.3</td>
<td>93.8</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>3.432</td>
<td>1.716</td>
<td>110</td>
<td>1.42</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>3.32</td>
<td>0.996</td>
<td>107</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.98</td>
<td>0.894</td>
<td>95.8</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>3.316</td>
<td>0.663</td>
<td>107</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>3.11 ± 0.194</td>
<td>3.11 ± 0.194</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.75</td>
<td>2.75</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.43</td>
<td>3.43</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.225</td>
<td>0.225</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>7.21</td>
<td>7.21</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Chloridazon-desphenyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>4.50</td>
</tr>
<tr>
<td>LC0007</td>
<td>4.25</td>
</tr>
<tr>
<td>LC0008</td>
<td>4.00</td>
</tr>
<tr>
<td>LC0009</td>
<td>3.75</td>
</tr>
<tr>
<td>LC0010</td>
<td>3.50</td>
</tr>
<tr>
<td>LC0011</td>
<td>3.25</td>
</tr>
<tr>
<td>LC0013</td>
<td>3.00</td>
</tr>
<tr>
<td>LC0015</td>
<td>2.75</td>
</tr>
<tr>
<td>LC0018</td>
<td>2.50</td>
</tr>
<tr>
<td>LC0021</td>
<td>2.25</td>
</tr>
<tr>
<td>LC0022</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Graphical presentation of results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Chloridazon-desphenyl

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>130</th>
<th>120</th>
<th>110</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recovery rate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory: LC0005, LC0007, LC0008, LC0009, LC0010, LC0011, LC0013, LC0015, LC0018, LC0021, LC0022, LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Chloridazon-desphenyl

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>3</td>
</tr>
<tr>
<td>LC0007</td>
<td>2</td>
</tr>
<tr>
<td>LC0008</td>
<td>1</td>
</tr>
<tr>
<td>LC0009</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>-1</td>
</tr>
<tr>
<td>LC0011</td>
<td>-2</td>
</tr>
<tr>
<td>LC0013</td>
<td>-3</td>
</tr>
<tr>
<td>LC0015</td>
<td>-2</td>
</tr>
<tr>
<td>LC0018</td>
<td>-1</td>
</tr>
<tr>
<td>LC0021</td>
<td>0</td>
</tr>
<tr>
<td>LC0022</td>
<td>1</td>
</tr>
<tr>
<td>LC0025</td>
<td>2</td>
</tr>
</tbody>
</table>

Z-score
Parameter oriented report

PM02 A

Chloridazon-methyl-desphenyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0013</th>
<th>LC0016</th>
<th>LC0018</th>
<th>LC0021</th>
<th>LC0022</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>µg/l</td>
<td>0.00</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Chloridazon-methyl-desphenyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.127</td>
<td>0.019</td>
<td>110</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.114</td>
<td>0.046</td>
<td>98.9</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.114</td>
<td>0.017</td>
<td>98.9</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.109</td>
<td>0.031</td>
<td>94.6</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.111</td>
<td>0.033</td>
<td>96.3</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.1374</td>
<td>0.0412</td>
<td>119</td>
<td>2.13</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.125</td>
<td>0.025</td>
<td>108</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.114</td>
<td>0.034</td>
<td>98.9</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.115</td>
<td>0.023</td>
<td>99.8</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.095</td>
<td>0.0285</td>
<td>82.4</td>
<td>-1.95</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.11</td>
<td>0.033</td>
<td>95.4</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.134</td>
<td>0.027</td>
<td>116</td>
<td>1.8</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.117 ± 0.0102</td>
<td>0.115 ± 0.00942</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.095</td>
<td>0.095</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.137</td>
<td>0.134</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0118</td>
<td>0.0104</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>10.1</td>
<td>9.03 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.17</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.13</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.11</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Chloridazon-methyl-desphenyl
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Chloridazon-methyl-desphenyl

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>H</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory

LC0005 LC0007 LC0008 LC0009 LC0010 LC0011 LC0013 LC0016 LC0018 LC0021 LC0022 LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02B, Parameter: Chloridazon-methyl-desphenyl

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>3</td>
</tr>
<tr>
<td>LC0007</td>
<td>2</td>
</tr>
<tr>
<td>LC0008</td>
<td>1</td>
</tr>
<tr>
<td>LC0009</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>-1</td>
</tr>
<tr>
<td>LC0011</td>
<td>-2</td>
</tr>
<tr>
<td>LC0013</td>
<td>-3</td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>H</td>
</tr>
</tbody>
</table>

H: High
Parameter oriented report

PM02 A

Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>3.17</td>
<td>1.24</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>2.867</td>
<td>1.147</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>3.02 ± 0.454</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.87</td>
<td>2.87</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.17</td>
<td>3.17</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.214</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>7.1</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02B, Parameter: Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>4.25</td>
</tr>
<tr>
<td>LC0007</td>
<td>3.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Chlorothalonil sulfonic acid (Chlorothalonil-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.22</td>
<td>0.066</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.22 µg/l</td>
<td>- µg/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.22 µg/l</td>
<td>0.22 µg/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.22 µg/l</td>
<td>0.22 µg/l</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>- µg/l</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>- %</td>
<td>- %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Chlorothalonil sulfonic acid (Chlorothalonil-ESA)

Graphical presentation of results

Results

[Graph showing the concentration levels for different laboratories.]

Laboratory

LC0005
LC0007
LC0011
LC0018
LC0022
LC0025

Concentration (µg/l)
Parameter oriented report

PM02 B

Chlorothalonil sulfonic acid (Chlorothalonil-ESA)

Unit: µg/l

Mean ± CI (99%) -
Minimum - Maximum 1.76 - 1.93
Control test value ± U 1.74 ± 0.262

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>1.76</td>
<td>0.493</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>1.934</td>
<td>0.774</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.1</td>
<td>0.242</td>
<td>-</td>
<td>-</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>1.852</td>
<td>0.556</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.48</td>
<td>0.744</td>
<td>-</td>
<td>-</td>
<td>H</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>1.893</td>
<td>0.3786</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.84 ± 0.541</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>1.1</td>
<td>1.76</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.48</td>
<td>1.93</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.442</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>24</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>4</td>
<td>-</td>
</tr>
</tbody>
</table>

155/715
Sample: PM02B, Parameter: Chlorothalonil sulfonic acid (Chlorothalonil-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>3.25</td>
</tr>
<tr>
<td>LC0007</td>
<td>3.00</td>
</tr>
<tr>
<td>LC0011</td>
<td>2.75</td>
</tr>
<tr>
<td>LC0018</td>
<td>2.50</td>
</tr>
<tr>
<td>LC0022</td>
<td>2.25</td>
</tr>
<tr>
<td>LC0025</td>
<td>2.00</td>
</tr>
<tr>
<td>H</td>
<td></td>
</tr>
</tbody>
</table>

Graph showing the concentration of Chlorothalonil sulfonic acid across different laboratories.
Parameter oriented report

PM02 A

Clopyralid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result µg/l</th>
<th>± U µg/l</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.268</td>
<td>0.0804</td>
<td>76.4</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.323</td>
<td>0.113</td>
<td>92.1</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.356</td>
<td>0.053</td>
<td>102</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.382</td>
<td>0.134</td>
<td>109</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.419</td>
<td>0.105</td>
<td>120</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.448</td>
<td>0.09</td>
<td>128</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.237</td>
<td>0.0711</td>
<td>67.6</td>
<td>-1.58</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.372</td>
<td>0.074</td>
<td>106</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.351 ± 0.0762</td>
<td>0.351 ± 0.0762</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.237</td>
<td>0.237</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.448</td>
<td>0.448</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0718</td>
<td>0.0718</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>20.5</td>
<td>20.5 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Clopyralid

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.5</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.4</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.2</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.1</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Clopyralid

Recovery rate

180
160
140
120
100
80
60
40
20

Laboratory

LC0005 LC0007 LC0008 LC0010 LC0016 LC0017 LC0022 LC0024

Recovery [%]

159/715
Parameter oriented report

PM02 B
Clopyralid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.01 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Clothianidin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.15</td>
<td>0.03</td>
<td>92.6</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.176</td>
<td>0.0511</td>
<td>109</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.171</td>
<td>0.014</td>
<td>106</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.155</td>
<td>0.054</td>
<td>95.7</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.154</td>
<td>0.023</td>
<td>95.1</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.163</td>
<td>0.049</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.16</td>
<td>0.008</td>
<td>98.8</td>
<td>-0.12</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.136</td>
<td>0.03</td>
<td>84</td>
<td>-1.61</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.238</td>
<td>0.048</td>
<td>147</td>
<td>4.7</td>
<td>H</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.244</td>
<td>0.037</td>
<td>151</td>
<td>5.07</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.29</td>
<td>0.0725</td>
<td>179</td>
<td>7.91</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.162</td>
<td>0.0486</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.199</td>
<td>0.04</td>
<td>123</td>
<td>2.29</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.156</td>
<td>0.0312</td>
<td>96.3</td>
<td>-0.37</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.182 ± 0.0356</td>
<td>0.162 ± 0.0146</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.136</td>
<td>0.136</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.29</td>
<td>0.199</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0444</td>
<td>0.0162</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>24.4</td>
<td>9.99 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>14</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Clothianidin

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.24</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Graphical representation of results.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Clothianidin

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>115</td>
</tr>
<tr>
<td>LC0005</td>
<td>120</td>
</tr>
<tr>
<td>LC0006</td>
<td>118</td>
</tr>
<tr>
<td>LC0007</td>
<td>100</td>
</tr>
<tr>
<td>LC0008</td>
<td>70</td>
</tr>
<tr>
<td>LC0010</td>
<td>90</td>
</tr>
<tr>
<td>LC0012</td>
<td>80</td>
</tr>
<tr>
<td>LC0015</td>
<td>70</td>
</tr>
<tr>
<td>LC0016</td>
<td>60</td>
</tr>
<tr>
<td>LC0017</td>
<td>80</td>
</tr>
<tr>
<td>LC0019</td>
<td>100</td>
</tr>
<tr>
<td>LC0022</td>
<td>120</td>
</tr>
<tr>
<td>LC0024</td>
<td>140</td>
</tr>
<tr>
<td>LC0025</td>
<td>130</td>
</tr>
</tbody>
</table>

Recovery rate range: 60% to 140%
Parameter oriented report

PM02 B

Clothianidin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.003 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Clothianidin

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Graphical representation of the results shows no significant levels of Clothianidin in the samples tested.
Parameter oriented report

PM02 A

Dicamba

Unit µg/l

<table>
<thead>
<tr>
<th>Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02 Sample: PM02A, Parameter: Dicamba</th>
</tr>
</thead>
</table>

Dicamba

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.686</td>
<td>0.04</td>
<td>100</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.704</td>
<td>0.169</td>
<td>103</td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.664</td>
<td>0.117</td>
<td>97.2</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.699</td>
<td>0.245</td>
<td>102</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.699</td>
<td>0.105</td>
<td>102</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.705</td>
<td>0.155</td>
<td>103</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.72</td>
<td>0.252</td>
<td>105</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.107</td>
<td>0.0642</td>
<td>15.7</td>
<td>-17.6</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.625</td>
<td>0.125</td>
<td>91.5</td>
<td>-1.78</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.63</td>
<td>0.0945</td>
<td>92.2</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.849</td>
<td>0.2547</td>
<td>124</td>
<td>5.05</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.701</td>
<td>0.2103</td>
<td>103</td>
<td>0.54</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.813</td>
<td>0.163</td>
<td>119</td>
<td>3.96</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.662 ± 0.148</td>
<td>0.683 ± 0.0311</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.107</td>
<td>0.625</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.849</td>
<td>0.72</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.178</td>
<td>0.0328</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>26.9</td>
<td>4.8 %</td>
</tr>
<tr>
<td>n</td>
<td>13</td>
<td>10</td>
</tr>
</tbody>
</table>

- LOQ: Limit of Quantification
- FN: Fail Number
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dicamba

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>1.0</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.9</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.7</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.5</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.4</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.2</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.1</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.0</td>
</tr>
</tbody>
</table>

170/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dicamba

Recovery [%]

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>120</td>
</tr>
<tr>
<td>LC0006</td>
<td>115</td>
</tr>
<tr>
<td>LC0007</td>
<td>110</td>
</tr>
<tr>
<td>LC0008</td>
<td>105</td>
</tr>
<tr>
<td>LC0009</td>
<td>100</td>
</tr>
<tr>
<td>LC0010</td>
<td>95</td>
</tr>
<tr>
<td>LC0011</td>
<td>90</td>
</tr>
<tr>
<td>LC0016</td>
<td>85</td>
</tr>
</tbody>
</table>

H indicates out of range values.
Parameter oriented report

PM02 B

Dicamba

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: 0.065 - 0.065
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.065</td>
<td>0.039</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.07 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.065</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.065</td>
<td>0.065</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.065</td>
<td>0.065</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.11</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.13</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.17</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.19</td>
</tr>
<tr>
<td>LC0023</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.21</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Dichlorprop

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.584</td>
<td>0.088</td>
<td>96.3</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.64</td>
<td>0.13</td>
<td>106</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.625</td>
<td>0.03</td>
<td>103</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.641</td>
<td>0.103</td>
<td>106</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.589</td>
<td>0.02</td>
<td>97.1</td>
<td>-0.26</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.624</td>
<td>0.218</td>
<td>103</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.807</td>
<td>0.091</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.598</td>
<td>0.09</td>
<td>98.6</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.452</td>
<td>0.136</td>
<td>74.5</td>
<td>-2.33</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.189</td>
<td>0.113</td>
<td>31.2</td>
<td>-6.3</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.687</td>
<td>0.137</td>
<td>113</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.543</td>
<td>0.1</td>
<td>89.6</td>
<td>-0.96</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.531</td>
<td>0.106</td>
<td>87.6</td>
<td>-1.14</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.686</td>
<td>0.124</td>
<td>113</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.608</td>
<td>0.122</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.59</td>
<td>0.1475</td>
<td>97.3</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.733</td>
<td>0.10995</td>
<td>121</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.662</td>
<td>0.1986</td>
<td>109</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.502</td>
<td>0.1506</td>
<td>82.8</td>
<td>-1.58</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.576</td>
<td>0.115</td>
<td>95</td>
<td>-0.46</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.649</td>
<td>0.13</td>
<td>107</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.586 ± 0.0731</td>
<td>0.606 ± 0.0444</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.189</td>
<td>0.452</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.733</td>
<td>0.733</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.112</td>
<td>0.0662</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>19</td>
<td>10.9 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>21</td>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dichlorprop

Graphical presentation of results

Results

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dichlorprop

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>LC0001</td>
</tr>
<tr>
<td>130</td>
<td>LC0002</td>
</tr>
<tr>
<td>120</td>
<td>LC0003</td>
</tr>
<tr>
<td>110</td>
<td>LC0004</td>
</tr>
<tr>
<td>100</td>
<td>LC0005</td>
</tr>
<tr>
<td>90</td>
<td>LC0006</td>
</tr>
<tr>
<td>80</td>
<td>LC0007</td>
</tr>
<tr>
<td>70</td>
<td>LC0008</td>
</tr>
<tr>
<td>60</td>
<td>LC0009</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dichlorprop

Z-score

Laboratory
Parameter oriented report

PM02 B

Dichlorprop

Unit: µg/l
Mean ± CI (99%): 0.222 ± 0.0162
Minimum - Maximum: 0.173 - 0.266
Control test value ± U: 0.228 ± 0.0341

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.214</td>
<td>0.032</td>
<td>96.5</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.21</td>
<td>0.042</td>
<td>94.7</td>
<td>-0.52</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.256</td>
<td>0.02</td>
<td>115</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.235</td>
<td>0.0376</td>
<td>106</td>
<td>0.57</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.212</td>
<td>0.009</td>
<td>95.6</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.191</td>
<td>0.067</td>
<td>86.1</td>
<td>-1.34</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.221</td>
<td>0.033</td>
<td>99.6</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.208</td>
<td>0.031</td>
<td>93.8</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.173</td>
<td>0.052</td>
<td>78</td>
<td>-2.13</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.068</td>
<td>0.041</td>
<td>30.7</td>
<td>-6.7</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.308</td>
<td>0.062</td>
<td>139</td>
<td>3.75</td>
<td>H</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.205</td>
<td>0.05</td>
<td>92.4</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.212</td>
<td>0.042</td>
<td>95.6</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.266</td>
<td>0.048</td>
<td>120</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.218</td>
<td>0.044</td>
<td>98.3</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.47</td>
<td>0.1175</td>
<td>212</td>
<td>10.8</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.245</td>
<td>0.03675</td>
<td>110</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.25</td>
<td>0.075</td>
<td>113</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.221</td>
<td>0.0663</td>
<td>99.6</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.223</td>
<td>0.045</td>
<td>101</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.233</td>
<td>0.047</td>
<td>105</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.23 ± 0.0463</td>
<td>0.222 ± 0.0162</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.068</td>
<td>0.173</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.47</td>
<td>0.266</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0707</td>
<td>0.023</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>30.7</td>
<td>10.4 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>21</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory

180/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dichlorprop

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>140</th>
<th>130</th>
<th>120</th>
<th>110</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>LC0001</td>
<td>LC0002</td>
<td>LC0004</td>
<td>LC0005</td>
<td>LC0006</td>
<td>LC0007</td>
<td>LC0008</td>
<td>LC0010</td>
<td>LC0011</td>
</tr>
</tbody>
</table>

Recovery rate graph showing recovery percentages for each laboratory sample.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dichlorprop

Z-score

Laboratory

182/715
Parameter oriented report

PM02 A

Parameter: Dieldrin

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.075</td>
<td>0.005</td>
<td>125</td>
<td>0.92</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.0629</td>
<td>0.0084</td>
<td>105</td>
<td>0.18</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.1258</td>
<td>0.0033</td>
<td>210</td>
<td>4.05 H</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.068</td>
<td>0.024</td>
<td>113</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.078</td>
<td>0.012</td>
<td>130</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.069</td>
<td>0.024</td>
<td>115</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.0668</td>
<td>0.0354</td>
<td>111</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.042</td>
<td>0.0084</td>
<td>70</td>
<td>-1.1</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.03</td>
<td>0.0075</td>
<td>50</td>
<td>-1.84</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.067</td>
<td>0.0201</td>
<td>112</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.041</td>
<td>0.01</td>
<td>68.4</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.066 ± 0.0227</td>
<td>0.06 ± 0.0154</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.03</td>
<td>0.03</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.126</td>
<td>0.078</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0251</td>
<td>0.0163</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>38.1</td>
<td>27.1</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dieldrin

Recovery rate

Recovery [%]

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>LC0004</td>
</tr>
<tr>
<td>175</td>
<td>LC0005</td>
</tr>
<tr>
<td>150</td>
<td>LC0006</td>
</tr>
<tr>
<td>125</td>
<td>LC0007</td>
</tr>
<tr>
<td>100</td>
<td>LC0008</td>
</tr>
<tr>
<td>75</td>
<td>LC0010</td>
</tr>
<tr>
<td>50</td>
<td>LC0011</td>
</tr>
<tr>
<td>25</td>
<td>LC0016</td>
</tr>
<tr>
<td>0</td>
<td>LC0019</td>
</tr>
<tr>
<td></td>
<td>LC0022</td>
</tr>
<tr>
<td></td>
<td>LC0023</td>
</tr>
</tbody>
</table>

Recovery rate

185/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dieldrin

Z-score

Laboratory

186/715
Parameter oriented report

PM02 B

Dieldrin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.009 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dieldrin

Graphical presentation of results

Results
Parameter oriented report

PM02 A

Dimethachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.45</td>
<td>0.09</td>
<td>104</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.51</td>
<td>0.03</td>
<td>118</td>
<td>1.72</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.454</td>
<td>0.0998</td>
<td>105</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.401</td>
<td>0.14</td>
<td>92.8</td>
<td>-0.69</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.444</td>
<td>0.067</td>
<td>103</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.435</td>
<td>0.083</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.387</td>
<td>0.116</td>
<td>89.5</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.447</td>
<td>0.014</td>
<td>103</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.39</td>
<td>0.078</td>
<td>90.2</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.369</td>
<td>0.07</td>
<td>85.4</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.396</td>
<td>0.079</td>
<td>91.6</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.44</td>
<td>0.11</td>
<td>102</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.372</td>
<td>0.1116</td>
<td>86.1</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.494</td>
<td>0.098</td>
<td>114</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.495</td>
<td>0.099</td>
<td>115</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.432 ± 0.0351</td>
<td>0.432 ± 0.0351</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.369</td>
<td>0.369</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.51</td>
<td>0.51</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0453</td>
<td>0.0453</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>10.5</td>
<td>10.5 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.60</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.45</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>-1</td>
</tr>
<tr>
<td>LC0004</td>
<td>3</td>
</tr>
<tr>
<td>LC0005</td>
<td>2</td>
</tr>
<tr>
<td>LC0007</td>
<td>1</td>
</tr>
<tr>
<td>LC0008</td>
<td>0</td>
</tr>
<tr>
<td>LC0009</td>
<td>-1</td>
</tr>
<tr>
<td>LC0010</td>
<td>-2</td>
</tr>
<tr>
<td>LC0012</td>
<td>-3</td>
</tr>
<tr>
<td>LC0013</td>
<td>-2</td>
</tr>
<tr>
<td>LC0015</td>
<td>-3</td>
</tr>
<tr>
<td>LC0016</td>
<td>-2</td>
</tr>
<tr>
<td>LC0019</td>
<td>-1</td>
</tr>
<tr>
<td>LC0022</td>
<td>2</td>
</tr>
<tr>
<td>LC0024</td>
<td>3</td>
</tr>
<tr>
<td>LC0025</td>
<td>2</td>
</tr>
</tbody>
</table>

192/715
Parameter oriented report

PM02 B

Dimethachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.025</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.025</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.025</td>
<td>0.025</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.025</td>
<td>0.025</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.11</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.449</td>
<td>0.0628</td>
<td>97.2</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.4</td>
<td>0.16</td>
<td>86.6</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.467</td>
<td>0.07</td>
<td>101</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.47</td>
<td>0.141</td>
<td>102</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.533</td>
<td>0.32</td>
<td>115</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.527</td>
<td>0.105</td>
<td>114</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.497</td>
<td>0.249</td>
<td>108</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.388</td>
<td>0.1164</td>
<td>84</td>
<td>-1.43</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.427</td>
<td>0.085</td>
<td>92.4</td>
<td>-0.68</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.462 ± 0.0516</td>
<td>0.462 ± 0.0516</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.388</td>
<td>0.388</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.533</td>
<td>0.533</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0516</td>
<td>0.0516</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>11.2</td>
<td>11.2 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.7</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.5</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.4</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Note: The graphical presentation shows the results of the analysis across different laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

Recovery rate

Recovery [%]

Laboratory

199/715
Sample: PM02B, Parameter: Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Z-score

Laboratory

LC0005
LC0007
LC0008
LC0010
LC0011
LC0016
LC0018
LC0022
LC0025

z-score

3
2
1
0
-1
-2
-3

Z-score

200/715
Parameter oriented report

PM02 A

Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Concentration (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.192</td>
<td>0.0403</td>
<td>95.9</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.169</td>
<td>0.067</td>
<td>84.4</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.287</td>
<td>0.043</td>
<td>143</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.186</td>
<td>0.065</td>
<td>92.9</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.051</td>
<td>0.031</td>
<td>25.5</td>
<td>-3.48</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.212</td>
<td>0.042</td>
<td>106</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.341</td>
<td>0.068</td>
<td>170</td>
<td>3.28</td>
<td>H</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.154</td>
<td>0.0462</td>
<td>76.9</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.202</td>
<td>0.04</td>
<td>101</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.199 ± 0.0815</td>
<td>0.2 ± 0.0487</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.051</td>
<td>0.154</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.341</td>
<td>0.287</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0815</td>
<td>0.0429</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>40.9</td>
<td>21.4 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.19</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)

Laboratory
LC0005
LC0007
LC0008
LC0010
LC0011
LC0016
LC0018
LC0022
LC0025

Z-score
3
2
1
0
-1
-2
-3
Z-score

206/715
Parameter oriented report

PM02 A

Dimethachlor Metabolite - CGA 369873

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor Metabolite - CGA 369873

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>0.10</th>
<th>0.09</th>
<th>0.08</th>
<th>0.07</th>
<th>0.06</th>
<th>0.05</th>
<th>0.04</th>
<th>0.03</th>
<th>0.02</th>
<th>0.01</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>LC0007</td>
<td>LC0008</td>
<td>LC0016</td>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Dimethachlor Metabolite - CGA 369873

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.09 - 0.167</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.112 ± 0.0168</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.119</td>
<td>0.0286</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.09</td>
<td>0.036</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.103</td>
<td>0.015</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.167</td>
<td>0.0501</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.12 ± 0.0505</td>
<td>-</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.09</td>
<td>0.09</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.167</td>
<td>0.167</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0337</td>
<td>-</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>28.1</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor Metabolite - CGA 369873

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.14</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td><0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)

Graphical presentation of results

Results

[Graph showing results with values ranging from 0.000 to 0.030 µg/l]
Parameter oriented report

PM02 B

Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.618</td>
<td>0.142</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.514</td>
<td>0.077</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.566 ± 0.156</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.514</td>
<td>0.514</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.618</td>
<td>0.618</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0735</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>13</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)

Graphical presentation of results

Results

[Graphical representation of results]

<table>
<thead>
<tr>
<th>µg/l</th>
<th>0.80</th>
<th>0.75</th>
<th>0.70</th>
<th>0.65</th>
<th>0.60</th>
<th>0.55</th>
<th>0.50</th>
<th>0.45</th>
<th>0.40</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Dimethachlor Metabolite - CGA 373464 (free acid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.412</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.412</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.412</td>
<td>0.412</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.412</td>
<td>0.412</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.45</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Dimethachlor Metabolite - CGA 373464 (free acid)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.733</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.405</td>
<td>0.162</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>Parameter</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.569 ± 0.492</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.405</td>
<td>0.405</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.733</td>
<td>0.733</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.232</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>22.5%</td>
<td>22%</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethachlor Metabolite - CGA 373464 (free acid)

Laboratory

LC0004
LC0007
µg/l
0.8
0.7
0.6
0.5
0.4
0.3
0.2

Graphical presentation of results

Results
Parameter oriented report

PM02 A

Dimethenamide

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.552</td>
<td>0.083</td>
<td>103</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.54</td>
<td>0.11</td>
<td>101</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.513</td>
<td>0.03</td>
<td>95.5</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.634</td>
<td>0.114</td>
<td>118</td>
<td>2.24</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.506</td>
<td>0.177</td>
<td>94.2</td>
<td>-0.72</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.549</td>
<td>0.082</td>
<td>102</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.51</td>
<td>0.097</td>
<td>94.9</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.488</td>
<td>0.146</td>
<td>90.8</td>
<td>-1.14</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.08</td>
<td>0.648</td>
<td>201</td>
<td>12.5</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.601</td>
<td>0.009</td>
<td>112</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.516</td>
<td>0.103</td>
<td>96.1</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.598</td>
<td>0.12</td>
<td>111</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.491</td>
<td>0.0982</td>
<td>91.4</td>
<td>-1.07</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.52</td>
<td>0.13</td>
<td>96.8</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.579</td>
<td>0.1737</td>
<td>108</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.486</td>
<td>0.1458</td>
<td>90.5</td>
<td>-1.18</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.514</td>
<td>0.102</td>
<td>95.7</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.535</td>
<td>0.107</td>
<td>99.6</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.567 ± 0.0952</td>
<td>0.537 ± 0.0315</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.486</td>
<td>0.486</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.08</td>
<td>0.634</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.135</td>
<td>0.0433</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>23.7</td>
<td>8.06 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>18</td>
<td>17</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethenamide

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethenamide

Z-score

Laboratory
Parameter oriented report

PM02 B

Dimethenamide

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results
Results

Laboratory

µg/l
Parameter oriented report

PM02 A

Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.98</td>
<td>0.255</td>
<td>108</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.801</td>
<td>0.32</td>
<td>87.9</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.851</td>
<td>0.128</td>
<td>93.4</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.948</td>
<td>0.161</td>
<td>104</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.956</td>
<td>0.335</td>
<td>105</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.01</td>
<td>0.606</td>
<td>111</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>1.176</td>
<td>0.235</td>
<td>129</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>1.086</td>
<td>0.543</td>
<td>119</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.451</td>
<td>0.1353</td>
<td>49.5</td>
<td>-2.33</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.851</td>
<td>0.17</td>
<td>93.4</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.911 ± 0.187</td>
<td>0.911 ± 0.187</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.451</td>
<td>0.451</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.18</td>
<td>1.18</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.197</td>
<td>0.197</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>21.6%</td>
<td>21.6%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>1.8</td>
</tr>
<tr>
<td>LC0007</td>
<td>1.6</td>
</tr>
<tr>
<td>LC0008</td>
<td>1.4</td>
</tr>
<tr>
<td>LC0009</td>
<td>1.2</td>
</tr>
<tr>
<td>LC0010</td>
<td>1.0</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.4</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Laboratory LC0025 is not included in the results.
 Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory:
- LC0005
- LC0007
- LC0008
- LC0010
- LC0011
- LC0013
- LC0018
- LC0022
- LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>-1</td>
</tr>
<tr>
<td>LC0007</td>
<td>-2</td>
</tr>
<tr>
<td>LC0008</td>
<td>-3</td>
</tr>
<tr>
<td>LC0009</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>1</td>
</tr>
<tr>
<td>LC0011</td>
<td>2</td>
</tr>
<tr>
<td>LC0013</td>
<td>3</td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>

Graphical representation of Z-scores for different laboratories.
Parameter oriented report

PM02 A

Dimethenamid-P-acid (Dimethenamid-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Dimethenamid-P-acid (Dimethenamid-OA)

Graphical presentation of results

Results

![Graphical presentation of results](image-url)
Parameter oriented report

PM02 B

Dimethenamid-P-acid (Dimethenamid-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.434</td>
<td>0.0739</td>
<td>117</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.363</td>
<td>0.145</td>
<td>97.9</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.362</td>
<td>0.054</td>
<td>97.6</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.384</td>
<td>0.046</td>
<td>104</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.413</td>
<td>0.145</td>
<td>111</td>
<td>0.73</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.039</td>
<td>0.023</td>
<td>10.5</td>
<td>-5.79</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.269</td>
<td>0.0807</td>
<td>72.5</td>
<td>-1.78</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.323 ± 0.154</td>
<td>0.371 ± 0.0703</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.039</td>
<td>0.269</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.434</td>
<td>0.434</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.136</td>
<td>0.0574</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>42</td>
<td>15.5 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>6</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.45</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethenamid-P-acid (Dimethenamid-OA)

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>160</td>
</tr>
<tr>
<td>LC0007</td>
<td>150</td>
</tr>
<tr>
<td>LC0008</td>
<td>140</td>
</tr>
<tr>
<td>LC0009</td>
<td>130</td>
</tr>
<tr>
<td>LC0010</td>
<td>120</td>
</tr>
<tr>
<td>LC0011</td>
<td>110</td>
</tr>
<tr>
<td>LC0022</td>
<td>100</td>
</tr>
<tr>
<td>LC0005</td>
<td>90</td>
</tr>
<tr>
<td>LC0007</td>
<td>80</td>
</tr>
<tr>
<td>LC0008</td>
<td>70</td>
</tr>
<tr>
<td>LC0009</td>
<td>60</td>
</tr>
<tr>
<td>LC0010</td>
<td>50</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Dimethenamid-P-acid (Dimethenamid-OA)

Laboratory
LC0005
LC0007
LC0008
LC0009
LC0010
LC0011
LC0022

z-score
3
2
1
0
-1
-2
-3

Z-score
Parameter oriented report

PM02 A

Diuron

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.295 ± 0.0188</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.234 - 0.332</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.285 ± 0.0427</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.31</td>
<td>0.06</td>
<td>105</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.092</td>
<td>0.001</td>
<td>31.2</td>
<td>-7.06</td>
<td>H</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.302</td>
<td>0.0544</td>
<td>102</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.32</td>
<td>0.021</td>
<td>109</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.283</td>
<td>0.099</td>
<td>96</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.244</td>
<td>0.037</td>
<td>82.8</td>
<td>-1.77</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.296</td>
<td>0.062</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.27</td>
<td>0.081</td>
<td>91.6</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.331</td>
<td>0.0993</td>
<td>112</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.278</td>
<td>0.004</td>
<td>94.3</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.282</td>
<td>0.056</td>
<td>95.6</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.33</td>
<td>0.06</td>
<td>112</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.265</td>
<td>0.053</td>
<td>89.9</td>
<td>-1.04</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.332</td>
<td>0.05</td>
<td>113</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.309</td>
<td>0.062</td>
<td>105</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.29</td>
<td>0.0725</td>
<td>98.4</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.234</td>
<td>0.0351</td>
<td>79.4</td>
<td>-2.12</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.269</td>
<td>0.0807</td>
<td>91.2</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.312</td>
<td>0.0936</td>
<td>106</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.323</td>
<td>0.064</td>
<td>110</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.329</td>
<td>0.066</td>
<td>112</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.283</td>
<td>0.035</td>
<td>96</td>
<td>-0.41</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.286 ± 0.033</td>
<td>0.295 ± 0.0188</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.092</td>
<td>0.234</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.332</td>
<td>0.332</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0515</td>
<td>0.0287</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>18</td>
<td>9.74 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>21</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Diuron

Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Diuron

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Diuron

Z-score

Laboratory

240/715
Parameter oriented report

PM02 B

Diuron

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory

LC0002 LC0003 LC0004 LC0005 LC0006 LC0007 LC0008 LC0009 LC0010 LC0011 LC0012 LC0013 LC0014 LC0015 LC0016 LC0017 LC0018 LC0019 LC0020 LC0021 LC0022 LC0023 LC0024 LC0025 LC0026

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

µg/l
Parameter oriented report

Ethofumesate

Unit: µg/l
Mean ± CI (99%) 0.153 ± 0.0132
Minimum - Maximum 0.127 - 0.179
Control test value ± U 0.172 ± 0.0258

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.16</td>
<td>0.032</td>
<td>105</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.127</td>
<td>0.02</td>
<td>83.1</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.158</td>
<td>0.0568</td>
<td>103</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.149</td>
<td>0.052</td>
<td>97.5</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.117</td>
<td>0.018</td>
<td>76.5</td>
<td>-2.26</td>
<td>H</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.154</td>
<td>0.042</td>
<td>101</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.161</td>
<td>0.056</td>
<td>105</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.149</td>
<td>0.03</td>
<td>97.5</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.159</td>
<td>0.03</td>
<td>104</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.105</td>
<td>0.021</td>
<td>68.7</td>
<td>-3.02</td>
<td>H</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.172</td>
<td>0.026</td>
<td>113</td>
<td>1.21</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.131</td>
<td>0.0393</td>
<td>85.7</td>
<td>-1.38</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.159</td>
<td>0.032</td>
<td>104</td>
<td>0.39</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.179</td>
<td>0.036</td>
<td>117</td>
<td>1.65</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.129</td>
<td>0.02</td>
<td>84.4</td>
<td>-1.5</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.147 ± 0.0162</td>
<td>0.153 ± 0.0132</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.105</td>
<td>0.127</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.179</td>
<td>0.179</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0209</td>
<td>0.0159</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>14.2</td>
<td>10.4 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>PM0002</th>
<th>PM0004</th>
<th>PM0005</th>
<th>PM0007</th>
<th>PM0008</th>
<th>PM0009</th>
<th>PM0010</th>
<th>PM0013</th>
<th>PM0015</th>
<th>PM0016</th>
<th>PM0017</th>
<th>PM0022</th>
<th>PM0024</th>
<th>PM0025</th>
<th>PM0026</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.19</td>
<td>0.18</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
<td>0.13</td>
<td>0.12</td>
<td>0.11</td>
<td>0.10</td>
<td>0.09</td>
<td>0.08</td>
<td>0.07</td>
<td>0.06</td>
<td>0.05</td>
<td>0.04</td>
</tr>
</tbody>
</table>

Graphical Presentation of Results

The graphical presentation illustrates the measured concentrations of Ethofumesate for each laboratory sample. The green shaded area represents the acceptable concentration limit, while the red line indicates the detection limit. The blue bars show individual results for each laboratory sample, with the height indicating the concentration level.

Sample: PM02A, **Parameter:** Ethofumesate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Ethofumesate

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>140</th>
<th>130</th>
<th>120</th>
<th>110</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate range: [60, 140]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Ethofumesate

Z-score

Laboratory

H

Z-score

246/715
Parameter oriented report

PM02 B

Ethofumesate

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.035 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.003 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>LC0002</th>
<th>LC0004</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0013</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0017</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
<th>LC0026</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02A

Flufenacet

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.49</td>
<td>0.1</td>
<td>114</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.454</td>
<td>0.0908</td>
<td>106</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.347</td>
<td>0.122</td>
<td>80.7</td>
<td>-1.48</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.411</td>
<td>0.062</td>
<td>95.6</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.402</td>
<td>0.141</td>
<td>93.5</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.428</td>
<td>0.257</td>
<td>99.6</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.446</td>
<td>0.009</td>
<td>104</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.439</td>
<td>0.08</td>
<td>102</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.416</td>
<td>0.083</td>
<td>96.8</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.498</td>
<td>0.075</td>
<td>116</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.55</td>
<td>0.1375</td>
<td>128</td>
<td>2.15</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.404</td>
<td>0.0606</td>
<td>94</td>
<td>-0.46</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.389</td>
<td>0.1167</td>
<td>90.5</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.332</td>
<td>0.0996</td>
<td>77.2</td>
<td>-1.75</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.648</td>
<td>0.13</td>
<td>151</td>
<td>3.9</td>
<td>H</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.441</td>
<td>0.0882</td>
<td>103</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.443 ± 0.0576</td>
<td>0.43 ± 0.0434</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.332</td>
<td>0.332</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.648</td>
<td>0.55</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0768</td>
<td>0.056</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>17.3</td>
<td>13 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

- Sample: PM02A, Parameter: Flufenacet

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.70</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.65</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.60</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.45</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.20</td>
</tr>
</tbody>
</table>

H
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Flufenacet

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>150</td>
</tr>
<tr>
<td>LC0005</td>
<td>140</td>
</tr>
<tr>
<td>LC0007</td>
<td>130</td>
</tr>
<tr>
<td>LC0009</td>
<td>120</td>
</tr>
<tr>
<td>LC0010</td>
<td>110</td>
</tr>
<tr>
<td>LC0012</td>
<td>100</td>
</tr>
<tr>
<td>LC0015</td>
<td>90</td>
</tr>
<tr>
<td>LC0016</td>
<td>80</td>
</tr>
<tr>
<td>LC0017</td>
<td>70</td>
</tr>
<tr>
<td>LC0019</td>
<td>60</td>
</tr>
<tr>
<td>LC0020</td>
<td>50</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Flufenacet

Z-score

Laboratory

<table>
<thead>
<tr>
<th>LC0002</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0017</th>
<th>LC0019</th>
<th>LC0020</th>
<th>LC0021</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z-score

Laboratory

<table>
<thead>
<tr>
<th>LC0002</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0017</th>
<th>LC0019</th>
<th>LC0020</th>
<th>LC0021</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>-1</td>
<td>-2</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B
Flufenacet

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report

PM02 A

Flufenacet sulfonic acid (Flufenacet-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Flufenacet sulfonic acid (Flufenacet-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.024</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.018</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.014</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.010</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.008</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.006</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.004</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.002</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Flufenacet sulfonic acid (Flufenacet-ESA)

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.908</td>
<td>0.2</td>
<td>114</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.698</td>
<td>0.279</td>
<td>87.3</td>
<td>-0.58</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.81</td>
<td>0.121</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.898</td>
<td>0.314</td>
<td>112</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.38</td>
<td>0.828</td>
<td>173</td>
<td>3.3</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.983</td>
<td>0.2949</td>
<td>123</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.501</td>
<td>0.1503</td>
<td>62.7</td>
<td>-1.7</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.883 ± 0.308</td>
<td>0.8 ± 0.215</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.501</td>
<td>0.501</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.38</td>
<td>0.983</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.272</td>
<td>0.176</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>30.8</td>
<td>22 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02, Parameter: Flufenacet sulfonic acid (Flufenacet-ESA)

Graphical presentation of results

Results

[Graph showing results for different laboratories]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Flufenacet sulfonic acid (Flufenacet-ESA)

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>715</td>
</tr>
<tr>
<td>LC0007</td>
<td>259</td>
</tr>
<tr>
<td>LC0008</td>
<td>140</td>
</tr>
<tr>
<td>LC0010</td>
<td>120</td>
</tr>
<tr>
<td>LC0011</td>
<td>100</td>
</tr>
<tr>
<td>LC0021</td>
<td>160</td>
</tr>
<tr>
<td>LC0022</td>
<td>180</td>
</tr>
</tbody>
</table>

Recovery rate:

- LC0005: 715/259
- LC0007: 259/715
- LC0008: 140/259
- LC0010: 120/259
- LC0011: 100/259
- LC0021: 160/259
- LC0022: 180/259
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Flufenacet sulfonic acid (Flufenacet-ESA)

Laboratory
LC0005
LC0007
LC0008
LC0010
LC0011
LC0021
LC0022

Z-score
3
2
1
0
-1
-2
-3

260/715
Parameter oriented report

PM02 A

Flufenacet oxanilic acid (Flufenacet-OA)

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Flufenacet oxanilic acid (Flufenacet-OA)

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>0.030</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.028</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.026</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.024</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.022</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.020</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.018</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.016</td>
</tr>
<tr>
<td>LC0023</td>
<td>0.014</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.012</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.010</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.008</td>
</tr>
<tr>
<td>LC0027</td>
<td>0.006</td>
</tr>
<tr>
<td>LC0028</td>
<td>0.004</td>
</tr>
<tr>
<td>LC0029</td>
<td>0.002</td>
</tr>
<tr>
<td>LC0030</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Flufenacet oxanilic acid (Flufenacet-OA)

Unit \(\mu g/l \)

Mean ± CI (99%) \(0.191 \pm 0.0874 \)

Minimum - Maximum \(0.039 - 0.275 \)

Control test value ± U \(0.237 \pm 0.0355 \)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.169</td>
<td>0.0304</td>
<td>88.7</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.235</td>
<td>0.094</td>
<td>123</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.244</td>
<td>0.037</td>
<td>128</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.196</td>
<td>0.069</td>
<td>103</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.039</td>
<td>0.023</td>
<td>20.5</td>
<td>-1.97</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.275</td>
<td>0.0825</td>
<td>144</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.176</td>
<td>0.0528</td>
<td>92.4</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.191 ± 0.0874</td>
<td>0.191 ± 0.0874</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.039</td>
<td>0.039</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.275</td>
<td>0.275</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0771</td>
<td>0.0771</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>40.4</td>
<td>40.4 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Flufenacet oxanilic acid (Flufenacet-OA)

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>225</th>
<th>200</th>
<th>175</th>
<th>150</th>
<th>125</th>
<th>100</th>
<th>75</th>
<th>50</th>
<th>25</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>LC0005</td>
<td>LC0007</td>
<td>LC0008</td>
<td>LC0010</td>
<td>LC0011</td>
<td>LC0021</td>
<td>LC0022</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate graph showing the recovery percentages for each laboratory.
Sample: PM02B, Parameter: Flufenacet oxanilic acid (Flufenacet-OA)
Parameter oriented report

PM02 A

Glufosinate

Unit µg/l

Mean ± CI (99%) 0.148 ± 0.0493
Minimum - Maximum 0.088 - 0.215
Control test value ± U 0.114 ± 0.0343

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.122</td>
<td>0.0598</td>
<td>82.3</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.126</td>
<td>0.004</td>
<td>85</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.135</td>
<td>0.054</td>
<td>91</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.088</td>
<td>0.013</td>
<td>59.3</td>
<td>-1.39</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.215</td>
<td>0.034</td>
<td>145</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.189</td>
<td>0.057</td>
<td>127</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>0.468</td>
<td>0.21</td>
<td>316</td>
<td>7.36</td>
<td>H</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.163</td>
<td>0.033</td>
<td>110</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.188 ± 0.127</td>
<td>0.148 ± 0.0493</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.088</td>
<td>0.088</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.468</td>
<td>0.215</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.12</td>
<td>0.0434</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>63.7</td>
<td>29.3 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Glufosinate

Graphical presentation of results

Results

Laboratory

µg/l
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Glufosinate

Laboratory

LC0005
LC0006
LC0007
LC0008
LC0009
LC0010
LC0014
LC0025

z-score

3
2
1
0
-1
-2
-3

Z-score

270/715
Parameter oriented report

PM02 B

Glufosinate

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.03 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>LC0006</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0022</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Glyphosate

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.384</td>
<td>0.004</td>
<td>105</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.392</td>
<td>0.122</td>
<td>107</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.297</td>
<td>0.022</td>
<td>81.1</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.328</td>
<td>0.131</td>
<td>89.6</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.326</td>
<td>0.049</td>
<td>89.1</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.424</td>
<td>0.072</td>
<td>116</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.272</td>
<td>0.082</td>
<td>74.3</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.438</td>
<td>0.0876</td>
<td>120</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>2.11</td>
<td>0.8</td>
<td>576</td>
<td>27.2</td>
<td>H</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.441</td>
<td>0.057</td>
<td>120</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.4</td>
<td>0.1</td>
<td>109</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.27</td>
<td>0.081</td>
<td>73.8</td>
<td>-1.5</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.421</td>
<td>0.084</td>
<td>115</td>
<td>0.86</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.5 ± 0.406</td>
<td>0.366 ± 0.0555</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.27</td>
<td>0.27</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.11</td>
<td>0.441</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.488</td>
<td>0.0641</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>97.5%</td>
<td>17.5%</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>13</td>
<td>12</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

[Graph with data points and error bars showing the range of glyphosate concentrations in various laboratories.]

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Glyphosate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Glyphosate

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0</td>
</tr>
<tr>
<td>LC0005</td>
<td>0</td>
</tr>
<tr>
<td>LC0006</td>
<td>0</td>
</tr>
<tr>
<td>LC0007</td>
<td>0</td>
</tr>
<tr>
<td>LC0008</td>
<td>0</td>
</tr>
<tr>
<td>LC0009</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>0</td>
</tr>
<tr>
<td>LC0011</td>
<td>0</td>
</tr>
<tr>
<td>LC0014</td>
<td>0</td>
</tr>
<tr>
<td>LC0017</td>
<td>0</td>
</tr>
<tr>
<td>LC0019</td>
<td>0</td>
</tr>
<tr>
<td>LC0022</td>
<td>0</td>
</tr>
<tr>
<td>LC0025</td>
<td>0</td>
</tr>
</tbody>
</table>

276/715
Parameter oriented report

PM02 B

Glyphosate

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>< 0.011 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.01 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.2 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Glyphosate

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.200</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.040</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.040</td>
</tr>
</tbody>
</table>

Graphical presentation of results
Parameter oriented report

PM02 A

Heptachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.074</td>
<td>0.005</td>
<td>152</td>
<td>0.91</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.0635</td>
<td>0.0136</td>
<td>131</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.0864</td>
<td>0.0042</td>
<td>178</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.042</td>
<td>0.015</td>
<td>86.4</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.01</td>
<td>0.002</td>
<td>20.6</td>
<td>-1.37</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.083</td>
<td>0.029</td>
<td>171</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.057</td>
<td>0.0234</td>
<td>117</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.018</td>
<td>0.0045</td>
<td>37</td>
<td>-1.09</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.021</td>
<td>0.0063</td>
<td>43.2</td>
<td>-0.98</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.031</td>
<td>0.008</td>
<td>63.8</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.0486 ± 0.0266</td>
<td>0.0486 ± 0.0266</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.01</td>
<td>0.01</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0864</td>
<td>0.0864</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0281</td>
<td>0.0281</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>57.8%</td>
<td>57.8%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Heptachlor

µg/l

0.14
0.12
0.10
0.08
0.06
0.04
0.02
0.00

Laboratory

LC0004
LC0005
LC0006
LC0007
LC0008
LC0010
LC0011
LC0016
LC0019
LC0021
LC0023
Parameter oriented report

PM02 B

Heptachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.0015</td>
<td>0.0002</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.009 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0015</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0015</td>
<td>0.0015</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0015</td>
<td>0.0015</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Heptachlor

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.035</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.030</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.025</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.020</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.015</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.010</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.005</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.000</td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Heptachlor epoxid

Unit μg/l

Mean ± Cl (99%) -
Minimum - Maximum 0.018 - 0.037
Control test value ± U <0.0025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.018</td>
<td>0.003</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.009 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.037</td>
<td>0.009</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.0275 ± 0.0285</td>
<td>-</td>
<td>μg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.018</td>
<td>0.018</td>
<td>μg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.037</td>
<td>0.037</td>
<td>μg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0134</td>
<td>-</td>
<td>μg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>48.9</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Heptachlor epoxid

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.185 ± 0.0222</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.148 - 0.209</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.208 ± 0.0625</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.2</td>
<td>0.01</td>
<td>108</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.184</td>
<td>0.0242</td>
<td>99.7</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.347</td>
<td>0.0138</td>
<td>188</td>
<td>8.3</td>
<td>H</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.189</td>
<td>0.066</td>
<td>102</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.188</td>
<td>0.028</td>
<td>102</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.209</td>
<td>0.073</td>
<td>113</td>
<td>1.25</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.1482</td>
<td>0.0726</td>
<td>80.3</td>
<td>-1.86</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.068</td>
<td>0.017</td>
<td>36.8</td>
<td>-5.95</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.174</td>
<td>0.0522</td>
<td>94.3</td>
<td>-0.54</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.19 ± 0.0725</td>
<td>0.185 ± 0.0222</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.068</td>
<td>0.148</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.347</td>
<td>0.209</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0725</td>
<td>0.0196</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>38.2</td>
<td>10.6 %</td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>7</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Heptachlor epoxid

Recovery rate

Laboratory LC0004 LC0005 LC0006 LC0007 LC0008 LC0009 LC0010 LC0011 LC0012 LC0013 LC0014 LC0015

Recovery [%]

140
130
120
110
100
90
80
70
60

Recovery rate

289/715

Sample: PM02B, Parameter: Heptachlor epoxid
Sample: PM02B, Parameter: Heptachlor epoxid

Laboratory

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>3</td>
</tr>
<tr>
<td>LC0005</td>
<td>2</td>
</tr>
<tr>
<td>LC0006</td>
<td>1</td>
</tr>
<tr>
<td>LC0007</td>
<td>0</td>
</tr>
<tr>
<td>LC0008</td>
<td>-1</td>
</tr>
<tr>
<td>LC0009</td>
<td>-2</td>
</tr>
<tr>
<td>LC0010</td>
<td>-3</td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Hexazinone

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.245</td>
<td>0.0393</td>
<td>111</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.202</td>
<td>0.001</td>
<td>91.9</td>
<td>-0.66</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.204</td>
<td>0.072</td>
<td>92.8</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.234</td>
<td>0.035</td>
<td>106</td>
<td>0.53</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.219</td>
<td>0.035</td>
<td>99.7</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.189</td>
<td>0.057</td>
<td>86</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.822</td>
<td>0.493</td>
<td>374</td>
<td>22.5</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.225</td>
<td>0.004</td>
<td>102</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.213</td>
<td>0.0426</td>
<td>96.9</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.23</td>
<td>0.05</td>
<td>105</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.174</td>
<td>0.035</td>
<td>79.2</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.28</td>
<td>0.042</td>
<td>127</td>
<td>2.25</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.25</td>
<td>0.0625</td>
<td>114</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.188</td>
<td>0.0282</td>
<td>85.6</td>
<td>-1.19</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.239</td>
<td>0.0717</td>
<td>109</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.210</td>
<td>0.0657</td>
<td>99.7</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.205</td>
<td>0.018</td>
<td>93.3</td>
<td>-0.55</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.255 ± 0.108</td>
<td>0.22 ± 0.0201</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.174</td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.822</td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.148</td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>58.1</td>
<td></td>
<td>12.2 %</td>
</tr>
<tr>
<td>n</td>
<td>17</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Hexazinone

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Laboratory

<table>
<thead>
<tr>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
</tr>
<tr>
<td>LC0006</td>
</tr>
<tr>
<td>LC0007</td>
</tr>
<tr>
<td>LC0008</td>
</tr>
<tr>
<td>LC0009</td>
</tr>
<tr>
<td>LC0010</td>
</tr>
<tr>
<td>LC0011</td>
</tr>
<tr>
<td>LC0012</td>
</tr>
<tr>
<td>LC0013</td>
</tr>
<tr>
<td>LC0014</td>
</tr>
<tr>
<td>LC0015</td>
</tr>
<tr>
<td>LC0016</td>
</tr>
<tr>
<td>LC0017</td>
</tr>
<tr>
<td>LC0018</td>
</tr>
<tr>
<td>LC0019</td>
</tr>
<tr>
<td>LC0020</td>
</tr>
<tr>
<td>LC0021</td>
</tr>
<tr>
<td>LC0022</td>
</tr>
<tr>
<td>LC0023</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Hexazinone

Z-score

Laboratory

294/715
Parameter oriented report

PM02 B

Hexazinone

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory

LC0005 LC0006 LC0007 LC0008 LC0009 LC0010 LC0011 LC0013 LC0015 LC0016 LC0017 LC0018 LC0020 LC0021 LC0022 LC0026
Parameter oriented report

PM02 A

Imidacloprid

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.307 ± 0.0287</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.248 - 0.366</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.303 ± 0.0455</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.31</td>
<td>0.062</td>
<td>101</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.29</td>
<td>0.11</td>
<td>94.4</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.285</td>
<td>0.1</td>
<td>92.7</td>
<td>-0.62</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.318</td>
<td>0.048</td>
<td>103</td>
<td>0.3</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.276</td>
<td>0.083</td>
<td>89.8</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.314</td>
<td>0.016</td>
<td>102</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.295</td>
<td>0.059</td>
<td>96</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.248</td>
<td>0.05</td>
<td>80.7</td>
<td>-1.65</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.272</td>
<td>0.068</td>
<td>88.5</td>
<td>-0.98</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.365</td>
<td>0.066</td>
<td>119</td>
<td>1.61</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.348</td>
<td>0.1044</td>
<td>113</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.281</td>
<td>0.0843</td>
<td>91.4</td>
<td>-0.73</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.366</td>
<td>0.074</td>
<td>119</td>
<td>1.64</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.334</td>
<td>0.067</td>
<td>109</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.307 ± 0.0287</td>
<td>0.307 ± 0.0287</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.248</td>
<td>0.248</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.366</td>
<td>0.366</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0358</td>
<td>0.0358</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>11.7%</td>
<td>11.7%</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>14</td>
<td>14</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Imidacloprid

Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Imidacloprid

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>140</th>
<th>130</th>
<th>120</th>
<th>110</th>
<th>100</th>
<th>90</th>
<th>80</th>
<th>70</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laboratory</td>
<td>LC0002</td>
<td>LC0005</td>
<td>LC0007</td>
<td>LC0010</td>
<td>LC0012</td>
<td>LC0013</td>
<td>LC0015</td>
<td>LC0016</td>
<td>LC0017</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Recovery rate graph showing the recovery rates for different laboratories.
Parameter oriented report

PM02 B

Imidacloprid

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.04 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Imidacloprid

Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Iodosulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.347</td>
<td>0.104</td>
<td>85.6</td>
<td>-1.12</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.367</td>
<td>0.129</td>
<td>90.6</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.37</td>
<td>0.056</td>
<td>91.3</td>
<td>-0.88</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.072</td>
<td>0.043</td>
<td>17.8</td>
<td>-6.43</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.437</td>
<td>0.032</td>
<td>108</td>
<td>0.61</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.396</td>
<td>0.0792</td>
<td>97.7</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.356</td>
<td>0.06</td>
<td>87.9</td>
<td>-0.95</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.436</td>
<td>0.131</td>
<td>108</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.485</td>
<td>0.097</td>
<td>120</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.35</td>
<td>0.0875</td>
<td>86.4</td>
<td>-1.06</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.428</td>
<td>0.1284</td>
<td>106</td>
<td>0.44</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.485</td>
<td>0.098</td>
<td>120</td>
<td>1.54</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.377 ± 0.0936</td>
<td>0.405 ± 0.0469</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.072</td>
<td>0.347</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.485</td>
<td>0.485</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.108</td>
<td>0.0518</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>28.7</td>
<td>12.8 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>11</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Iodosulfuron-methyl

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Iodosulfuron-methyl

z-score

Z-score

Laboratory
Parameter oriented report

PM02 B

Iodosulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.035 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Isoproturon

Unit: µg/l
Mean ± CI (99%) 0.301 ± 0.0199
Minimum - Maximum 0.249 - 0.358
Control test value ± U 0.302 ± 0.0454

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.293</td>
<td>0.044</td>
<td>97.2</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.31</td>
<td>0.062</td>
<td>103</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.089</td>
<td>0.001</td>
<td>29.5</td>
<td>-7.01</td>
<td>H</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.335</td>
<td>0.0771</td>
<td>111</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.265</td>
<td>0.093</td>
<td>87.9</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.286</td>
<td>0.043</td>
<td>94.9</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.293</td>
<td>0.067</td>
<td>97.2</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.355</td>
<td>0.124</td>
<td>118</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.267</td>
<td>0.08</td>
<td>88.6</td>
<td>-1.14</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.287</td>
<td>0.013</td>
<td>95.2</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.272</td>
<td>0.054</td>
<td>90.2</td>
<td>-0.97</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.287</td>
<td>0.06</td>
<td>95.2</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.249</td>
<td>0.05</td>
<td>82.6</td>
<td>-1.73</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.358</td>
<td>0.046</td>
<td>119</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.31</td>
<td>0.062</td>
<td>103</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.35</td>
<td>0.0875</td>
<td>116</td>
<td>1.6</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.293</td>
<td>0.04395</td>
<td>97.2</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.298</td>
<td>0.0894</td>
<td>98.9</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.311</td>
<td>0.0933</td>
<td>103</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.286</td>
<td>0.058</td>
<td>94.9</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.336</td>
<td>0.067</td>
<td>111</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.289</td>
<td>0.021</td>
<td>95.9</td>
<td>-0.41</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.292 ± 0.0346</td>
<td>0.301 ± 0.0199</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.089</td>
<td>0.249</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.358</td>
<td>0.358</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0541</td>
<td>0.0303</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>18.5</td>
<td>10.1</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>21</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Isoproturon

Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Isoproturon

Z-score

Laboratory

312/715
Parameter oriented report

PM02 B

Isoproturon

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

[Graph showing the concentration levels of Isoproturon in different laboratories.]
Parameter oriented report

PM02 A

Isoproturon-desmethyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Isoproturon-desmethyl

Graphical presentation of results

Results

Laboratory

µg/l

0.10
0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.00

LC0006 LC0007 LC0008 LC0009 LC0010 LC0016 LC0022
Parameter oriented report

PM02 B

Isoproturon-desmethyl

Unit: µg/l

Mean ± CI (99%) 0.147 ± 0.0118
Minimum - Maximum 0.131 - 0.16
Control test value ± U 0.128 ± 0.0193

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.147</td>
<td>0.0264</td>
<td>99.8</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.139</td>
<td>0.049</td>
<td>94.4</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.131</td>
<td>0.02</td>
<td>88.9</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.143</td>
<td>0.026</td>
<td>97.1</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.157</td>
<td>0.055</td>
<td>107</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.16</td>
<td>0.032</td>
<td>109</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.154</td>
<td>0.0462</td>
<td>105</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.147 ± 0.0118</td>
<td>0.147 ± 0.0118</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.131</td>
<td>0.131</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.16</td>
<td>0.16</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0104</td>
<td>0.0104</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>7.09</td>
<td>7.09 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Isoproturon-desmethyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Concentration (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: MCPA

MCPA

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.237 ± 0.0108</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.205 - 0.272</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.234 ± 0.035</td>
</tr>
</tbody>
</table>

Labcode Results

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.227</td>
<td>0.034</td>
<td>95.9</td>
<td>-0.6</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.22</td>
<td>0.044</td>
<td>93</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.245</td>
<td>0.01</td>
<td>104</td>
<td>0.52</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.237</td>
<td>0.0237</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.255</td>
<td>0.1</td>
<td>108</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.232</td>
<td>0.081</td>
<td>98</td>
<td>-0.29</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.234</td>
<td>0.035</td>
<td>98.9</td>
<td>-0.16</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.222</td>
<td>0.049</td>
<td>93.8</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.205</td>
<td>0.062</td>
<td>86.6</td>
<td>-1.96</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.209</td>
<td>0.0627</td>
<td>88.3</td>
<td>-1.71</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.253</td>
<td>0.012</td>
<td>107</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.299</td>
<td>0.06</td>
<td>126</td>
<td>3.86</td>
<td>H</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.235</td>
<td>0.05</td>
<td>99.3</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.249</td>
<td>0.05</td>
<td>105</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.248</td>
<td>0.037</td>
<td>105</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.237</td>
<td>0.047</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.44</td>
<td>0.11</td>
<td>186</td>
<td>12.6</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.224</td>
<td>0.0336</td>
<td>94.7</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.249</td>
<td>0.0747</td>
<td>105</td>
<td>0.77</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.167</td>
<td>0.0501</td>
<td>70.6</td>
<td>-4.31</td>
<td>H</td>
</tr>
<tr>
<td>LC0023</td>
<td>0.236</td>
<td>0.047</td>
<td>99.7</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.244</td>
<td>0.048</td>
<td>103</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.272</td>
<td>0.054</td>
<td>115</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of Parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.245 ± 0.0308</td>
<td>0.237 ± 0.0108</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.167</td>
<td>0.205</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.44</td>
<td>0.272</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0493</td>
<td>0.0161</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>20.1</td>
<td>6.82 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>23</td>
<td>20</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: MCPA

Graphical presentation of results

Results

![Graphical presentation of results](image-url)
Parameter oriented report

PM02 B

MCPA

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.022</td>
<td>0.0044</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.022</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.022</td>
<td>0.022</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.022</td>
<td>0.022</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: MCPA

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Result (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.11</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report

PM02 A
MCPB

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.0217</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.0217</td>
<td>0.0217</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.0217</td>
<td>0.0217</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: MCPB

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.11</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

MCPB

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.499</td>
<td>0.075</td>
<td>103</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.465</td>
<td>0.02</td>
<td>95.9</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.503</td>
<td>0.106</td>
<td>104</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.504</td>
<td>0.022</td>
<td>104</td>
<td>0.38</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.473</td>
<td>0.166</td>
<td>97.6</td>
<td>-0.23</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.488</td>
<td>0.073</td>
<td>101</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.525</td>
<td>0.1</td>
<td>108</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.373</td>
<td>0.131</td>
<td>77</td>
<td>-2.22</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.458</td>
<td>0.137</td>
<td>94.5</td>
<td>-0.53</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.326</td>
<td>0.098</td>
<td>67.3</td>
<td>-3.15</td>
<td>H</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.49</td>
<td>0.1225</td>
<td>101</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.419</td>
<td>0.06285</td>
<td>86.5</td>
<td>-1.3</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.524</td>
<td>0.1572</td>
<td>108</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.439</td>
<td>0.1317</td>
<td>90.6</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.581</td>
<td>0.116</td>
<td>120</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.529</td>
<td>0.106</td>
<td>109</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.475 ± 0.0471</td>
<td>0.485 ± 0.039</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.326</td>
<td>0.373</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.581</td>
<td>0.581</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0628</td>
<td>0.0503</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>13.2</td>
<td>10.4 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>16</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: MCPB

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>140</td>
</tr>
<tr>
<td>LC0004</td>
<td>130</td>
</tr>
<tr>
<td>LC0005</td>
<td>120</td>
</tr>
<tr>
<td>LC0006</td>
<td>110</td>
</tr>
<tr>
<td>LC0008</td>
<td>100</td>
</tr>
<tr>
<td>LC0009</td>
<td>90</td>
</tr>
<tr>
<td>LC0010</td>
<td>80</td>
</tr>
<tr>
<td>LC0013</td>
<td>70</td>
</tr>
<tr>
<td>LC0016</td>
<td>60</td>
</tr>
</tbody>
</table>

H

Recovery rate
Parameter oriented report

PM02 A

MCPP (Mecoprop)

Unit: µg/l

Mean ± CI (99%) 0.118 ± 0.00973
Minimum - Maximum 0.091 - 0.15
Control test value ± U 0.115 ± 0.0173

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.116</td>
<td>0.017</td>
<td>98.6</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.12</td>
<td>0.024</td>
<td>102</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.124</td>
<td>0.01</td>
<td>105</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.113</td>
<td>0.0216</td>
<td>96.1</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.116</td>
<td>0.002</td>
<td>98.6</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.108</td>
<td>0.038</td>
<td>91.8</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.115</td>
<td>0.017</td>
<td>97.8</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.108</td>
<td>0.018</td>
<td>91.8</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.102</td>
<td>0.031</td>
<td>86.7</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.105</td>
<td>0.032</td>
<td>89.3</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.118</td>
<td>0.009</td>
<td>100</td>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.146</td>
<td>0.029</td>
<td>124</td>
<td>1.87</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.107</td>
<td>0.02</td>
<td>91</td>
<td>-0.7</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.098</td>
<td>0.02</td>
<td>83.3</td>
<td>-1.29</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.137</td>
<td>0.027</td>
<td>116</td>
<td>1.27</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.111</td>
<td>0.033</td>
<td>94.4</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.15</td>
<td>0.0225</td>
<td>128</td>
<td>2.13</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.128</td>
<td>0.0384</td>
<td>109</td>
<td>0.68</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.091</td>
<td>0.0273</td>
<td>77.4</td>
<td>-1.75</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>0.135</td>
<td>0.027</td>
<td>115</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.108</td>
<td>0.022</td>
<td>91.8</td>
<td>-0.63</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.132</td>
<td>0.026</td>
<td>112</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.118 ± 0.00973</td>
<td>0.118 ± 0.00973</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.091</td>
<td>0.091</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.15</td>
<td>0.15</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0152</td>
<td>0.0152</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.9</td>
<td>12.9 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>22</td>
<td>-</td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: MCPP (Mecoprop)

Graphical presentation of results

Results
Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

Laboratory

Sample: PM02A, Parameter: MCPP (Mecoprop)
Parameter oriented report

PM02 B

MCPP (Mecoprop)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

[Graph showing results with values from 0.00 to 0.10 µg/l in increments of 0.05, with sample codes LC0001 to LC0025 on the x-axis and values on the y-axis.]
Parameter oriented report

PM02 A

Mesosulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.261</td>
<td>0.0444</td>
<td>115</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.203</td>
<td>0.071</td>
<td>89.1</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.236</td>
<td>0.035</td>
<td>104</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.034</td>
<td>0.02</td>
<td>14.9</td>
<td>-8.05</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.222</td>
<td>0.004</td>
<td>97.5</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.221</td>
<td>0.0444</td>
<td>97</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.192</td>
<td>0.057</td>
<td>84.3</td>
<td>-1.48</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.258</td>
<td>0.0774</td>
<td>113</td>
<td>1.26</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.229</td>
<td>0.0458</td>
<td>101</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.206 ± 0.0684</td>
<td>0.228 ± 0.0255</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.034</td>
<td>0.192</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.261</td>
<td>0.261</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0684</td>
<td>0.0241</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>33.2</td>
<td>10.6 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>9</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Mesosulfuron-methyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.34</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.32</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.28</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.26</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.24</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Graphical representation showing the results for the different laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Mesosulfuron-methyl

Laboratory

z-score

3
2
1
0
-1
-2
-3

Z-score

342/715
Parameter oriented report

PM02 B

Mesosulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Mesosulfuron-methyl

Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Metalaxyl

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.533 ± 0.0393</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.451 - 0.634</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.607 ± 0.0911</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.6</td>
<td>0.03</td>
<td>113</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.598</td>
<td>0.156</td>
<td>112</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.478</td>
<td>0.167</td>
<td>89.7</td>
<td>-1.05</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.541</td>
<td>0.081</td>
<td>102</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.533</td>
<td>0.16</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.487</td>
<td>0.146</td>
<td>91.4</td>
<td>-0.88</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.576</td>
<td>0.027</td>
<td>108</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.527</td>
<td>0.105</td>
<td>98.9</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.569</td>
<td>0.1</td>
<td>107</td>
<td>0.69</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.451</td>
<td>0.09</td>
<td>84.6</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.634</td>
<td>0.082</td>
<td>119</td>
<td>1.93</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.51</td>
<td>0.1275</td>
<td>95.7</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.51</td>
<td>0.0765</td>
<td>95.7</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.455</td>
<td>0.1365</td>
<td>85.4</td>
<td>-1.49</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.525</td>
<td>0.106</td>
<td>98.5</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.533</td>
<td>0.107</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.533 ± 0.0393</td>
<td>0.533 ± 0.0393</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.451</td>
<td>0.451</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.634</td>
<td>0.634</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0524</td>
<td>0.0524</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>9.84</td>
<td>9.84 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>16</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Metalaxyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
<th>LC0004</th>
<th>LC0006</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0012</th>
<th>LC0013</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0017</th>
<th>LC0019</th>
<th>LC0020</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>0.60</td>
<td></td>
</tr>
<tr>
<td>0.55</td>
<td></td>
</tr>
<tr>
<td>0.50</td>
<td></td>
</tr>
<tr>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>0.30</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metalaxyl

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>140</td>
</tr>
<tr>
<td>LC0005</td>
<td>130</td>
</tr>
<tr>
<td>LC0007</td>
<td>120</td>
</tr>
<tr>
<td>LC0008</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0012</td>
<td>90</td>
</tr>
<tr>
<td>LC0013</td>
<td>80</td>
</tr>
<tr>
<td>LC0015</td>
<td>70</td>
</tr>
<tr>
<td>LC0017</td>
<td>60</td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate range: 60 to 140%
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metalaxyl

Z-score

Laboratory

Z-score

348/715
Parameter oriented report

PM02 B

Metalaxyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metalaxyl

Graphical presentation of results

Results

\[\begin{align*}
\text{LC0004} & : 0.09 \\
\text{LC0005} & : 0.08 \\
\text{LC0007} & : 0.07 \\
\text{LC0008} & : 0.06 \\
\text{LC0009} & : 0.05 \\
\text{LC0010} & : 0.04 \\
\text{LC0013} & : 0.03 \\
\text{LC0015} & : 0.02 \\
\text{LC0016} & : 0.01 \\
\text{LC0017} & : 0.00 \\
\text{LC0019} & : 0.00 \\
\text{LC0020} & : 0.00 \\
\text{LC0022} & : 0.00 \\
\text{LC0024} & : 0.00 \\
\text{LC0025} & : 0.00
\end{align*} \]
Parameter oriented report

PM02 A

Metamitron

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.58</td>
<td>0.11</td>
<td>114</td>
<td>1.04</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.489</td>
<td>0.142</td>
<td>95.9</td>
<td>-0.31</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.469</td>
<td>0.164</td>
<td>91.9</td>
<td>-0.61</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.434</td>
<td>0.065</td>
<td>85.1</td>
<td>-1.13</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.522</td>
<td>0.125</td>
<td>102</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.518</td>
<td>0.181</td>
<td>102</td>
<td>0.12</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>1.724</td>
<td>1.034</td>
<td>338</td>
<td>18</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.434</td>
<td>0.024</td>
<td>85.1</td>
<td>-1.13</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.467</td>
<td>0.093</td>
<td>91.5</td>
<td>-0.64</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.476</td>
<td>0.09</td>
<td>93.3</td>
<td>-0.51</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.462</td>
<td>0.092</td>
<td>90.6</td>
<td>-0.71</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.229</td>
<td>0.041</td>
<td>44.9</td>
<td>-4.18</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.534</td>
<td>0.107</td>
<td>105</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.43</td>
<td>0.1075</td>
<td>84.3</td>
<td>-1.19</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.481</td>
<td>0.07215</td>
<td>94.3</td>
<td>-0.43</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.554</td>
<td>0.1662</td>
<td>109</td>
<td>0.65</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.466</td>
<td>0.1398</td>
<td>91.4</td>
<td>-0.66</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.619</td>
<td>0.124</td>
<td>121</td>
<td>1.62</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.666</td>
<td>0.133</td>
<td>131</td>
<td>2.32</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.581</td>
<td>0.083</td>
<td>114</td>
<td>1.05</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.557 ± 0.194</td>
<td>0.51 ± 0.0476</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.229</td>
<td>0.43</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.72</td>
<td>0.666</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.289</td>
<td>0.0673</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>51.9</td>
<td>13.2 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Recovery rate

Laboratory
Parameter oriented report

Sample: PM02B, Parameter: Metamitron

Metamitron

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.16</td>
<td>0.032</td>
<td>102</td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.163</td>
<td>0.0471</td>
<td>104</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.15</td>
<td>0.053</td>
<td>95.7</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.133</td>
<td>0.02</td>
<td>84.9</td>
<td>-1.05</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.159</td>
<td>0.038</td>
<td>101</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.168</td>
<td>0.059</td>
<td>107</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.13</td>
<td>0.005</td>
<td>82.9</td>
<td>-1.18</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.147</td>
<td>0.029</td>
<td>93.8</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.139</td>
<td>0.03</td>
<td>88.7</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.123</td>
<td>0.025</td>
<td>78.5</td>
<td>-1.49</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.145</td>
<td>0.026</td>
<td>92.5</td>
<td>-0.52</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.168</td>
<td>0.034</td>
<td>107</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.14</td>
<td>0.035</td>
<td>89.3</td>
<td>-0.74</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.161</td>
<td>0.02415</td>
<td>103</td>
<td>0.19</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.177</td>
<td>0.0531</td>
<td>113</td>
<td>0.89</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.137</td>
<td>0.0411</td>
<td>87.4</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.199</td>
<td>0.04</td>
<td>127</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.211</td>
<td>0.042</td>
<td>135</td>
<td>2.39</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.168</td>
<td>0.024</td>
<td>107</td>
<td>0.5</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.157 ± 0.0156</td>
<td>0.157 ± 0.0156</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.123</td>
<td>0.123</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.211</td>
<td>0.211</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0227</td>
<td>0.0227</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>14.5</td>
<td>14.5 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>19</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metamitron

Z-score

Laboratory
Parameter oriented report

PM02 A

Metazachlor

Unit µg/l

Mean ± CI (99%) 0.26 ± 0.00676
Minimum - Maximum 0.241 - 0.274
Control test value ± U 0.264 ± 0.0397

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.263</td>
<td>0.039</td>
<td>101</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.27</td>
<td>0.054</td>
<td>104</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.316</td>
<td>0.02</td>
<td>122</td>
<td>6.02</td>
<td>H</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.264</td>
<td>0.037</td>
<td>102</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.25</td>
<td>0.087</td>
<td>96.1</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.267</td>
<td>0.04</td>
<td>103</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.247</td>
<td>0.057</td>
<td>95</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.212</td>
<td>0.064</td>
<td>81.5</td>
<td>-5.17</td>
<td>H</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.256</td>
<td>0.077</td>
<td>98.4</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.263</td>
<td>0.004</td>
<td>101</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.256</td>
<td>0.051</td>
<td>98.4</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.257</td>
<td>0.05</td>
<td>98.8</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.256</td>
<td>0.051</td>
<td>98.4</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.304</td>
<td>0.046</td>
<td>117</td>
<td>4.73</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.274</td>
<td>0.055</td>
<td>105</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.27</td>
<td>0.0675</td>
<td>104</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.252</td>
<td>0.0378</td>
<td>96.9</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.272</td>
<td>0.0816</td>
<td>105</td>
<td>1.28</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.263</td>
<td>0.0789</td>
<td>101</td>
<td>0.32</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.307</td>
<td>0.061</td>
<td>118</td>
<td>5.05</td>
<td>H</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.241</td>
<td>0.025</td>
<td>92.7</td>
<td>-2.05</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Characteristics of parameter</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.265 ± 0.015</td>
<td>0.26 ± 0.00676</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.212</td>
<td>0.241</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.316</td>
<td>0.274</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0229</td>
<td>0.0093</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>8.65</td>
<td>3.57 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>21</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Metazachlor

Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metazachlor

Recovery rate

Recovery [%]

115
110
105
100
95
90
85

Laboratory

LC0001 LC0002 LC0004 LC0007 LC0008 LC0010 LC0012 LC0013 LC0015 LC0016 LC0017 LC0018 LC0019 LC0020 LC0021 LC0022 LC0025 LC0026
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metazachlor

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-3</td>
</tr>
<tr>
<td>LC0002</td>
<td>-2</td>
</tr>
<tr>
<td>LC0004</td>
<td>-1</td>
</tr>
<tr>
<td>LC0005</td>
<td>0</td>
</tr>
<tr>
<td>LC0007</td>
<td>1</td>
</tr>
<tr>
<td>LC0008</td>
<td>2</td>
</tr>
<tr>
<td>LC0009</td>
<td>3</td>
</tr>
</tbody>
</table>

- The graph shows the Z-scores for various laboratories.
- Laboratories LC0001, LC0002, LC0004, LC0005, LC0007, LC0008, and LC0009 have Z-scores below the critical value of 2.
- Laboratories LC0009, LC0010, LC0011, LC0012, LC0013, LC0015, LC0016, LC0017, LC0018, LC0019, LC0020, LC0021, LC0022, LC0023, and LC0025 have Z-scores above the critical value of 2.
Parameter oriented report

PM02 B

Metazachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td><0.025 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td><0.025 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td><0.005 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td><0.005 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td><0.005 (LOQ)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Chemical concentrations in µg/l

Laboratory
Parameter oriented report

PM02 A

Metazachlor ethane sulfonic acid (Metazachlor-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Metazachlor ethane sulfonic acid (Metazachlor-ESA)

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.05</td>
</tr>
</tbody>
</table>

366/715
Parameter oriented report

PM02 B

Metazachlor ethane sulfonic acid (Metazachlor-ESA)

Unit \(\mu g/l\)

Mean ± CI (99%) \(2.77 ± 0.367\)

Minimum - Maximum \(2.08 - 3.26\)

Control test value ± U \(2.66 ± 0.4\)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>3.14</td>
<td>0.629</td>
<td>114</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>2.394</td>
<td>0.958</td>
<td>86.5</td>
<td>-0.84</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>2.819</td>
<td>0.423</td>
<td>102</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>2.99</td>
<td>0.45</td>
<td>108</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>3.1</td>
<td>0.93</td>
<td>112</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>2.181</td>
<td>1.31</td>
<td>78.8</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>2.079</td>
<td>0.187</td>
<td>75.2</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>2.698</td>
<td>0.539</td>
<td>97.5</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>3.249</td>
<td>0.975</td>
<td>117</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>2.765</td>
<td>0.553</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>3.175</td>
<td>0.9525</td>
<td>115</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.11</td>
<td>0.633</td>
<td>76.3</td>
<td>-1.49</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>3.261</td>
<td>0.652</td>
<td>118</td>
<td>1.12</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>(2.77 ± 0.367)</td>
<td>(2.77 ± 0.367)</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.08</td>
<td>2.08</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.26</td>
<td>3.26</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.441</td>
<td>0.441</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>16</td>
<td>16</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor ethane sulfonic acid (Metazachlor-ESA)

Graphical presentation of results

Results

µg/l

Laboratory

368/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor ethane sulfonic acid (Metazachlor-ESA)

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0013</th>
<th>LC0016</th>
<th>LC0018</th>
<th>LC0021</th>
<th>LC0022</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>160</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor ethane sulfonic acid (Metazachlor-ESA)

Z-score

Laboratory LC0005, LC0007, LC0008, LC0009, LC0010, LC0011, LC0012, LC0013, LC0016, LC0018, LC0021, LC0022, LC0025
Parameter oriented report

PM02 A

Metazachlor oxanilic acid (Metazachlor-OA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Metazachlor oxanilic acid (Metazachlor-OA)

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>1.57</td>
<td>0.315</td>
<td>119</td>
<td>1.07</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>1.123</td>
<td>0.449</td>
<td>85</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>1.219</td>
<td>0.138</td>
<td>92.3</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>1.35</td>
<td>0.23</td>
<td>102</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>1.42</td>
<td>0.497</td>
<td>107</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.124</td>
<td>0.0744</td>
<td>9.4</td>
<td>-5.13</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>1.627</td>
<td>0.027</td>
<td>123</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>1.08</td>
<td>0.216</td>
<td>81.8</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>1.291</td>
<td>0.387</td>
<td>97.7</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>1.438</td>
<td>0.288</td>
<td>109</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>1.22</td>
<td>0.366</td>
<td>92.4</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.875</td>
<td>0.2625</td>
<td>66.2</td>
<td>-1.91</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>1.639</td>
<td>0.328</td>
<td>124</td>
<td>1.36</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.23 ± 0.333</td>
<td>1.32 ± 0.202</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.124</td>
<td>0.875</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.64</td>
<td>1.64</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.4</td>
<td>0.233</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>32.6</td>
<td>17.7 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>13</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor oxanilic acid (Metazachlor-OA)

Graphical presentation of results

Results

Graphical representation of the results for Metazachlor oxanilic acid (Metazachlor-OA) in PM02B samples, showing the concentration levels across different laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor oxanilic acid (Metazachlor-OA)

Recovery rate

Recovery [%]

50 60 70 80 90 100 110 120 130 140 150 160

Laboratory

LC0005 LC0007 LC0008 LC0009 LC0010 LC0011 LC0012 LC0013 LC0016 LC0018 LC0021 LC0022 LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metazachlor oxanilic acid (Metazachlor-OA)

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>3</td>
</tr>
<tr>
<td>LC0007</td>
<td>2</td>
</tr>
<tr>
<td>LC0008</td>
<td>1</td>
</tr>
<tr>
<td>LC0009</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>-1</td>
</tr>
<tr>
<td>LC0011</td>
<td>-2</td>
</tr>
<tr>
<td>LC0012</td>
<td>-3</td>
</tr>
<tr>
<td>LC0013</td>
<td>0</td>
</tr>
<tr>
<td>LC0014</td>
<td>1</td>
</tr>
<tr>
<td>LC0015</td>
<td>2</td>
</tr>
<tr>
<td>LC0016</td>
<td>3</td>
</tr>
<tr>
<td>LC0017</td>
<td>0</td>
</tr>
<tr>
<td>LC0018</td>
<td>1</td>
</tr>
<tr>
<td>LC0019</td>
<td>2</td>
</tr>
<tr>
<td>LC0020</td>
<td>3</td>
</tr>
<tr>
<td>LC0021</td>
<td>0</td>
</tr>
<tr>
<td>LC0022</td>
<td>1</td>
</tr>
<tr>
<td>LC0023</td>
<td>2</td>
</tr>
<tr>
<td>LC0024</td>
<td>3</td>
</tr>
<tr>
<td>LC0025</td>
<td>0</td>
</tr>
</tbody>
</table>

Z-score plot showing the distribution of laboratory results.
Parameter oriented report

PM02 A

Metolachlor

Unit: µg/l

Mean ± CI (99%): 0.403 ± 0.0313
Minimum - Maximum: 0.282 - 0.5
Control test value ± U: 0.434 ± 0.0651

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.45</td>
<td>0.09</td>
<td>112</td>
<td>0.96</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.389</td>
<td>0.004</td>
<td>96.5</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.495</td>
<td>0.03</td>
<td>123</td>
<td>1.88</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.449</td>
<td>0.0763</td>
<td>111</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.383</td>
<td>0.134</td>
<td>95</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.419</td>
<td>0.063</td>
<td>104</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.405</td>
<td>0.069</td>
<td>101</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.364</td>
<td>0.109</td>
<td>90.3</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.37</td>
<td>0.115</td>
<td>91.8</td>
<td>-0.67</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.378</td>
<td>0.018</td>
<td>93.8</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.389</td>
<td>0.078</td>
<td>96.5</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.432</td>
<td>0.09</td>
<td>107</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.282</td>
<td>0.056</td>
<td>70</td>
<td>-2.47</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.5</td>
<td>0.075</td>
<td>124</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.398</td>
<td>0.08</td>
<td>98.8</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.44</td>
<td>0.11</td>
<td>109</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.386</td>
<td>0.0579</td>
<td>95.8</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.381</td>
<td>0.1143</td>
<td>94.6</td>
<td>-0.45</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.359</td>
<td>0.1077</td>
<td>89.1</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.394</td>
<td>0.078</td>
<td>97.8</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.446</td>
<td>0.089</td>
<td>111</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.356</td>
<td>0.06</td>
<td>88.3</td>
<td>-0.96</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.403 ± 0.0313</td>
<td>0.403 ± 0.0313</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.282</td>
<td>0.282</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.5</td>
<td>0.5</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0489</td>
<td>0.0489</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.1</td>
<td>12.1 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>22</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Metolachlor
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metolachlor

Z-score

Laboratory

LC0002
LC0003
LC0004
LC0005
LC0007
LC0008
LC0009
LC0010
LC0011
LC0012
LC0013
LC0015
LC0016
LC0017
LC0018
LC0019
LC0020
LC0021
LC0022
LC0024
LC0025
LC0026

Z-score

-3
-2
-1
0
1
2
3
Parameter oriented report

PM02 B

Metolachlor

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.035 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0003</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0006</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0014</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0023</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.02</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Metribuzin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.093</td>
<td>0.01</td>
<td>104</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.103</td>
<td>0.0206</td>
<td>115</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.088</td>
<td>0.031</td>
<td>98.3</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.083</td>
<td>0.012</td>
<td>92.7</td>
<td>-0.58</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.064</td>
<td>0.015</td>
<td>71.5</td>
<td>-2.26</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.084</td>
<td>0.025</td>
<td>93.8</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.364</td>
<td>0.218</td>
<td>407</td>
<td>24.3 H</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.095</td>
<td>0.011</td>
<td>106</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.086</td>
<td>0.172</td>
<td>96.1</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.075</td>
<td>0.015</td>
<td>83.8</td>
<td>-1.29</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.134</td>
<td>0.02</td>
<td>150</td>
<td>3.94 H</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.093</td>
<td>0.019</td>
<td>104</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.11</td>
<td>0.0275</td>
<td>123</td>
<td>1.81</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.086</td>
<td>0.0258</td>
<td>96.1</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.087</td>
<td>0.0261</td>
<td>97.2</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.101</td>
<td>0.02</td>
<td>113</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.095</td>
<td>0.019</td>
<td>106</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.108 ± 0.0492</td>
<td>0.0895 ± 0.00875</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.064</td>
<td>0.064</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.364</td>
<td>0.11</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0676</td>
<td>0.0113</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>62.4</td>
<td>12.6 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>17</td>
<td>15</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metribuzin

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.16</td>
</tr>
</tbody>
</table>

Laboratory

Graphical representation of results for various laboratories showing the concentrations of Metribuzin in µg/l.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metribuzin

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery %</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>130</td>
</tr>
<tr>
<td>LC0005</td>
<td>140</td>
</tr>
<tr>
<td>LC0007</td>
<td>150</td>
</tr>
<tr>
<td>LC0008</td>
<td>120</td>
</tr>
<tr>
<td>LC0009</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0011</td>
<td>90</td>
</tr>
<tr>
<td>LC0012</td>
<td>80</td>
</tr>
<tr>
<td>LC0013</td>
<td>70</td>
</tr>
<tr>
<td>LC0014</td>
<td>60</td>
</tr>
<tr>
<td>LC0015</td>
<td>50</td>
</tr>
</tbody>
</table>

Recovery rate: 385/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metribuzin

Z-score

Laboratory
Parameter oriented report

PM02 B
Metribuzin

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td><0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metribuzin

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>0.10</th>
<th>0.09</th>
<th>0.08</th>
<th>0.07</th>
<th>0.06</th>
<th>0.05</th>
<th>0.04</th>
<th>0.03</th>
<th>0.02</th>
<th>0.01</th>
<th>0.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report

PM02 A

Metribuzin-desamino

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0023</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Sample: PM02A, Parameter: Metribuzin-desamino
Parameter oriented report

PM02 B

Metribuzin-desamino

Unit: µg/l

Mean ± CI (99%): 0.256 ± 0.0346
Minimum - Maximum: 0.206 - 0.298
Control test value ± U: 0.244 ± 0.0367

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.263</td>
<td>0.0263</td>
<td>103</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.206</td>
<td>0.072</td>
<td>80.5</td>
<td>-1.64</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.267</td>
<td>0.04</td>
<td>104</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.229</td>
<td>0.08</td>
<td>89.5</td>
<td>-0.89</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.353</td>
<td>0.812</td>
<td>529</td>
<td>36</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.298</td>
<td>0.089</td>
<td>116</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.253</td>
<td>0.0759</td>
<td>98.8</td>
<td>-0.1</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.276</td>
<td>0.055</td>
<td>108</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.393 ± 0.412</td>
<td>0.256 ± 0.0346</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.206</td>
<td>0.206</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.35</td>
<td>0.298</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.389</td>
<td>0.0305</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>98.9</td>
<td>11.9 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metribuzin-desamino

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Result (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.35</td>
</tr>
</tbody>
</table>

Graphical representation of the results with the concentrations ranging from 0.10 to 0.40 µg/l across different laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metribuzin-desamino

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>110</td>
</tr>
<tr>
<td>LC0007</td>
<td>120</td>
</tr>
<tr>
<td>LC0008</td>
<td>130</td>
</tr>
<tr>
<td>LC0010</td>
<td>140</td>
</tr>
<tr>
<td>LC0011</td>
<td>150</td>
</tr>
<tr>
<td>LC0016</td>
<td>80</td>
</tr>
<tr>
<td>LC0022</td>
<td>90</td>
</tr>
<tr>
<td>LC0025</td>
<td>100</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Metribuzin-desamino

Laboratory

LC0005
LC0007
LC0008
LC0010
LC0011
LC0016
LC0022
LC0025

Z-score

3
2
1
0
-1
-2
-3

Z-score
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metsulfuron-methyl

Metsulfuron-methyl

Unit: µg/l
Mean ± CI (99%) 0.254 ± 0.0343
Minimum - Maximum 0.197 - 0.32
Control test value ± U 0.216 ± 0.0324

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.252</td>
<td>0.0505</td>
<td>99.2</td>
<td>-0.06</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.228</td>
<td>0.08</td>
<td>89.7</td>
<td>-0.72</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.224</td>
<td>0.034</td>
<td>88.2</td>
<td>-0.83</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.249</td>
<td>0.087</td>
<td>98</td>
<td>-0.14</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.081</td>
<td>0.049</td>
<td>31.9</td>
<td>-4.78</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.273</td>
<td>0.055</td>
<td>107</td>
<td>0.52</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.291</td>
<td>0.044</td>
<td>115</td>
<td>1.02</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.32</td>
<td>0.08</td>
<td>126</td>
<td>1.82</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.233</td>
<td>0.03495</td>
<td>91.7</td>
<td>-0.58</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.197</td>
<td>0.0591</td>
<td>77.5</td>
<td>-1.58</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.274</td>
<td>0.054</td>
<td>108</td>
<td>0.55</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.238 ± 0.0565</td>
<td>0.254 ± 0.0343</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.081</td>
<td>0.197</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.32</td>
<td>0.32</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0625</td>
<td>0.0362</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>26.2</td>
<td>14.2 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0011</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metsulfuron-methyl
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metsulfuron-methyl

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>110</td>
</tr>
<tr>
<td>LC0007</td>
<td>120</td>
</tr>
<tr>
<td>LC0008</td>
<td>130</td>
</tr>
<tr>
<td>LC0010</td>
<td>140</td>
</tr>
<tr>
<td>LC0011</td>
<td>150</td>
</tr>
<tr>
<td>LC0016</td>
<td>90</td>
</tr>
<tr>
<td>LC0017</td>
<td>80</td>
</tr>
<tr>
<td>LC0019</td>
<td>70</td>
</tr>
<tr>
<td>LC0020</td>
<td>60</td>
</tr>
<tr>
<td>LC0022</td>
<td>50</td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate graph showing the recovery percentage of the sample across different laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Metsulfuron-methyl

Z-score

Laboratory

LC0005
LC0007 LC0008 LC0010 LC0011
LC0016
LC0017
LC0019 LC0020 LC0022 LC0024

z-score
3
2
1
0
-1
-2
-3
Parameter oriented report

PM02 B

Metsulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.02 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results
Parameter oriented report

PM02 A

N,N-Dimethylsulfamide (DMS)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02A, Parameter: N,N-Dimethylsulfamide (DMS)
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.03</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

N,N-Dimethylsulfamide (DMS)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.99</td>
<td>0.297</td>
<td>92.8</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>1.068</td>
<td>0.427</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.977</td>
<td>0.147</td>
<td>91.6</td>
<td>-0.44</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.749</td>
<td>0.24</td>
<td>70.2</td>
<td>-1.55</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>1.203</td>
<td>0.045</td>
<td>113</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.952</td>
<td>0.286</td>
<td>89.2</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>1.156</td>
<td>0.578</td>
<td>108</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>1.44</td>
<td>0.432</td>
<td>135</td>
<td>1.82</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.07 ± 0.217</td>
<td>1.07 ± 0.217</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.749</td>
<td>0.749</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.44</td>
<td>1.44</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.205</td>
<td>0.205</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>19.2</td>
<td>19.2</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: N,N-Dimethylsulfamide (DMS)

Graphical presentation of results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>2.0</td>
</tr>
<tr>
<td>LC0007</td>
<td>1.8</td>
</tr>
<tr>
<td>LC0008</td>
<td>1.6</td>
</tr>
<tr>
<td>LC0009</td>
<td>1.4</td>
</tr>
<tr>
<td>LC0012</td>
<td>1.2</td>
</tr>
<tr>
<td>LC0016</td>
<td>1.0</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: N,N-Dimethylsulfamide (DMS)

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0009</th>
<th>LC0012</th>
<th>LC0016</th>
<th>LC0018</th>
<th>LC0022</th>
</tr>
</thead>
<tbody>
<tr>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate graph with data points for each laboratory.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: N,N-Dimethylsulfamide (DMS)

Laboratory
LC0005
LC0007
LC0008
LC0009
LC0012
LC0016
LC0018
LC0022

Z-score

Laboratory

LC0005 LC0007 LC0008 LC0009 LC0012 LC0016 LC0018 LC0022

Z-score
-3 -2 -1 0 1 2 3
Parameter oriented report

PM02 A

Nicosulfurone

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>1.26</td>
<td>0.189</td>
<td>137</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.84</td>
<td>0.17</td>
<td>91.4</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.468</td>
<td>0.03</td>
<td>50.9</td>
<td>-1.63</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.82</td>
<td>0.353</td>
<td>89.3</td>
<td>-0.36</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.785</td>
<td>0.328</td>
<td>85.5</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>1.048</td>
<td>0.157</td>
<td>114</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>2.37</td>
<td>0.711</td>
<td>258</td>
<td>5.25</td>
<td>H</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.398</td>
<td>0.239</td>
<td>43.3</td>
<td>-1.88</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.975</td>
<td>0.021</td>
<td>106</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.965</td>
<td>0.193</td>
<td>105</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.858</td>
<td>0.1</td>
<td>93.4</td>
<td>-0.22</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.91</td>
<td>0.182</td>
<td>99.1</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>1.46</td>
<td>0.365</td>
<td>159</td>
<td>1.96</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>2.94</td>
<td>0.441</td>
<td>320</td>
<td>7.31</td>
<td>H</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.95</td>
<td>0.885</td>
<td>321</td>
<td>7.35</td>
<td>H</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.93</td>
<td>0.186</td>
<td>101</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>1.143</td>
<td>0.229</td>
<td>124</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.24 ± 0.562</td>
<td>0.919 ± 0.222</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.398</td>
<td>0.398</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>2.95</td>
<td>1.46</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.772</td>
<td>0.276</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>62.1</td>
<td>30.1 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>17</td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Nicosulfuron

Results

Graphical presentation of results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Nicosulfuron

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>LC0001</th>
<th>LC0002</th>
<th>LC0004</th>
<th>LC0005</th>
<th>LC0007</th>
<th>LC0008</th>
<th>LC0010</th>
<th>LC0011</th>
<th>LC0012</th>
<th>LC0013</th>
<th>LC0015</th>
<th>LC0016</th>
<th>LC0019</th>
<th>LC0020</th>
<th>LC0022</th>
<th>LC0024</th>
<th>LC0025</th>
</tr>
</thead>
<tbody>
<tr>
<td>225</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report

PM02 B

Nicosulfurone

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.003 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Nicosulfuron

Graphical presentation of results

Results

µg/l
Parameter oriented report

PM02 A

Pethoxamid

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.176 ± 0.0111</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.159 - 0.198</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.186 ± 0.028</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.18</td>
<td>0.036</td>
<td>102</td>
<td>0.33</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.185</td>
<td>0.0396</td>
<td>105</td>
<td>0.78</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.159</td>
<td>0.056</td>
<td>90.2</td>
<td>-1.56</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.176</td>
<td>0.026</td>
<td>99.8</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.166</td>
<td>0.058</td>
<td>94.1</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.398</td>
<td>0.239</td>
<td>226</td>
<td>19.9</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.221</td>
<td>0.016</td>
<td>125</td>
<td>4.02</td>
<td>H</td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.198</td>
<td>0.04</td>
<td>112</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.177</td>
<td>0.053</td>
<td>100</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.174</td>
<td>0.0522</td>
<td>98.7</td>
<td>-0.21</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.172</td>
<td>0.034</td>
<td>97.5</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.201 ± 0.0611</td>
<td>0.176 ± 0.0111</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.159</td>
<td>0.159</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.398</td>
<td>0.198</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0676</td>
<td>0.0111</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>33.7</td>
<td>6.31</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Pethoxamid
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Pethoxamid

Recovery rate

Laboratory

Recovery [%]

130
120
110
100
90
80
70
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Pethoxamid

Z-score

Laboratory

416/715
Parameter oriented report

PM02 B

Pethoxamid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory

µg/l
Parameter oriented report

PM02 A

Propazine

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.49 ± 0.0258</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.419 - 0.536</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.488 ± 0.0732</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>0.496</td>
<td>0.005</td>
<td>101</td>
<td>0.17</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.536</td>
<td>0.0751</td>
<td>109</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.501</td>
<td>0.175</td>
<td>102</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.487</td>
<td>0.073</td>
<td>99.3</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.458</td>
<td>0.082</td>
<td>93.4</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.446</td>
<td>0.156</td>
<td>91</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>3.12</td>
<td>1.872</td>
<td>636</td>
<td>76.4</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.526</td>
<td>0.105</td>
<td>107</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.476</td>
<td>0.08</td>
<td>97.1</td>
<td>-0.41</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.511</td>
<td>0.102</td>
<td>104</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.516</td>
<td>0.103</td>
<td>105</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.48</td>
<td>0.12</td>
<td>97.9</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.419</td>
<td>0.06285</td>
<td>85.5</td>
<td>-2.07</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.497</td>
<td>0.1491</td>
<td>101</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.444</td>
<td>0.1332</td>
<td>90.6</td>
<td>-1.34</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.533</td>
<td>0.107</td>
<td>109</td>
<td>1.24</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.518</td>
<td>0.068</td>
<td>106</td>
<td>0.81</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.645 ± 0.465</td>
<td>0.49 ± 0.0258</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.419</td>
<td>0.419</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.12</td>
<td>0.536</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.639</td>
<td>0.0344</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>99</td>
<td>7.02 %</td>
</tr>
<tr>
<td>n</td>
<td>17</td>
<td>16</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propazine

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>0.70</th>
<th>0.65</th>
<th>0.60</th>
<th>0.55</th>
<th>0.50</th>
<th>0.45</th>
<th>0.40</th>
<th>0.35</th>
<th>0.30</th>
<th>0.25</th>
</tr>
</thead>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propazine

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>70</td>
</tr>
<tr>
<td>LC0005</td>
<td>80</td>
</tr>
<tr>
<td>LC0007</td>
<td>90</td>
</tr>
<tr>
<td>LC0008</td>
<td>100</td>
</tr>
<tr>
<td>LC0009</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>120</td>
</tr>
<tr>
<td>LC0011</td>
<td>130</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propazine

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>3</td>
</tr>
<tr>
<td>LC0007</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>2</td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>1</td>
</tr>
<tr>
<td>LC0011</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0</td>
</tr>
<tr>
<td>LC0015</td>
<td>-1</td>
</tr>
<tr>
<td>LC0016</td>
<td>-2</td>
</tr>
<tr>
<td>LC0018</td>
<td>-3</td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
</tr>
</tbody>
</table>

422/715
Parameter oriented report

PM02 B

Propazine

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation rel.</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Propazine

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Propazine-2-hydroxy

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0006</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.01</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Propazine-2-hydroxy

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.23</td>
<td>0.053</td>
<td>112</td>
<td>1.37</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.187</td>
<td>0.065</td>
<td>91.2</td>
<td>-0.98</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.205</td>
<td>0.031</td>
<td>100</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.199</td>
<td>0.04</td>
<td>97.1</td>
<td>-0.33</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.186</td>
<td>0.0567</td>
<td>90.7</td>
<td>-1.04</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.223</td>
<td>0.045</td>
<td>109</td>
<td>0.98</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.205 ± 0.0224</td>
<td>0.205 ± 0.0224</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.186</td>
<td>0.186</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.23</td>
<td>0.23</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0183</td>
<td>0.0183</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>8.92</td>
<td>8.92</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.28</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.26</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.24</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Propazine-2-hydroxy

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>130</td>
</tr>
<tr>
<td>LC0007</td>
<td>120</td>
</tr>
<tr>
<td>LC0008</td>
<td>110</td>
</tr>
<tr>
<td>LC0016</td>
<td>100</td>
</tr>
<tr>
<td>LC0022</td>
<td>90</td>
</tr>
<tr>
<td>LC0025</td>
<td>80</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Propazine-2-hydroxy

Laboratory

LC0005
LC0007
LC0008
LC0016
LC0022
LC0025

Z-score
Parameter oriented report

PM02 A

Propiconazole

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.152 ± 0.0146</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.125 - 0.191</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>0.166 ± 0.0248</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.145</td>
<td>0.01</td>
<td>95.6</td>
<td>-0.35</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.185</td>
<td>0.048</td>
<td>122</td>
<td>1.71</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.137</td>
<td>0.048</td>
<td>90.3</td>
<td>-0.76</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.125</td>
<td>0.019</td>
<td>82.4</td>
<td>-1.38</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.138</td>
<td>0.026</td>
<td>90.9</td>
<td>-0.71</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.161</td>
<td>0.048</td>
<td>106</td>
<td>0.48</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.146</td>
<td>0.088</td>
<td>96.2</td>
<td>-0.3</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.157</td>
<td>0.009</td>
<td>103</td>
<td>0.27</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.137</td>
<td>0.027</td>
<td>90.3</td>
<td>-0.76</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.137</td>
<td>0.03</td>
<td>90.3</td>
<td>-0.76</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.158</td>
<td>0.032</td>
<td>104</td>
<td>0.32</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.191</td>
<td>0.038</td>
<td>126</td>
<td>2.02</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.15</td>
<td>0.0375</td>
<td>98.8</td>
<td>-0.09</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.131</td>
<td>0.0393</td>
<td>86.3</td>
<td>-1.07</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.15</td>
<td>0.03</td>
<td>98.8</td>
<td>-0.09</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.18</td>
<td>0.036</td>
<td>119</td>
<td>1.45</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.152 ± 0.0146</td>
<td>0.152 ± 0.0146</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.125</td>
<td>0.125</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.191</td>
<td>0.191</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0194</td>
<td>0.0194</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propiconazole

Laboratory

LC0004
LC0005
LC0007
LC0008
LC0009
LC0010
LC0011
LC0012
LC0013
LC0015
LC0016
LC0017
LC0019
LC0022
LC0024
LC0025

µg/l

0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

432/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propiconazole

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>90</td>
</tr>
<tr>
<td>LC0005</td>
<td>100</td>
</tr>
<tr>
<td>LC0007</td>
<td>110</td>
</tr>
<tr>
<td>LC0008</td>
<td>120</td>
</tr>
<tr>
<td>LC0010</td>
<td>130</td>
</tr>
<tr>
<td>LC0011</td>
<td>140</td>
</tr>
<tr>
<td>LC0012</td>
<td>150</td>
</tr>
</tbody>
</table>

Recovery rate

The diagram shows the recovery rates for each laboratory sample. The recovery rates range from 50% to 150%, with most samples falling within the 90% to 110% range, indicating good recovery consistency across laboratories.
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Propiconazole

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>3</td>
</tr>
<tr>
<td>LC0005</td>
<td>2</td>
</tr>
<tr>
<td>LC0006</td>
<td>1</td>
</tr>
<tr>
<td>LC0007</td>
<td>0</td>
</tr>
<tr>
<td>LC0008</td>
<td>-1</td>
</tr>
<tr>
<td>LC0009</td>
<td>-2</td>
</tr>
<tr>
<td>LC0010</td>
<td>-3</td>
</tr>
<tr>
<td>LC0011</td>
<td>3</td>
</tr>
<tr>
<td>LC0012</td>
<td>2</td>
</tr>
<tr>
<td>LC0013</td>
<td>1</td>
</tr>
<tr>
<td>LC0014</td>
<td>0</td>
</tr>
<tr>
<td>LC0015</td>
<td>-1</td>
</tr>
<tr>
<td>LC0016</td>
<td>-2</td>
</tr>
<tr>
<td>LC0017</td>
<td>-3</td>
</tr>
<tr>
<td>LC0018</td>
<td>3</td>
</tr>
<tr>
<td>LC0019</td>
<td>2</td>
</tr>
<tr>
<td>LC0020</td>
<td>1</td>
</tr>
<tr>
<td>LC0021</td>
<td>0</td>
</tr>
<tr>
<td>LC0022</td>
<td>-1</td>
</tr>
<tr>
<td>LC0023</td>
<td>-2</td>
</tr>
<tr>
<td>LC0024</td>
<td>-3</td>
</tr>
<tr>
<td>LC0025</td>
<td>3</td>
</tr>
</tbody>
</table>

Z-score distribution for Propiconazole samples.
Parameter oriented report

PM02 B

Propiconazole

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.345</td>
<td>0.02</td>
<td>95</td>
<td>-0.37</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.427</td>
<td>0.111</td>
<td>118</td>
<td>1.33</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.317</td>
<td>0.111</td>
<td>87.3</td>
<td>-0.95</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.3</td>
<td>0.045</td>
<td>82.6</td>
<td>-1.31</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.35</td>
<td>0.066</td>
<td>96.4</td>
<td>-0.27</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.348</td>
<td>0.104</td>
<td>95.9</td>
<td>-0.31</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.35</td>
<td>0.21</td>
<td>96.4</td>
<td>-0.27</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.39</td>
<td>0.025</td>
<td>107</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.334</td>
<td>0.067</td>
<td>92</td>
<td>-0.6</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.356</td>
<td>0.08</td>
<td>98.1</td>
<td>-0.14</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.289</td>
<td>0.058</td>
<td>79.6</td>
<td>-1.53</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.446</td>
<td>0.089</td>
<td>123</td>
<td>1.72</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.41</td>
<td>0.1025</td>
<td>113</td>
<td>0.97</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.333</td>
<td>0.0999</td>
<td>91.7</td>
<td>-0.62</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.368</td>
<td>0.072</td>
<td>101</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.445</td>
<td>0.089</td>
<td>123</td>
<td>1.7</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.363 ± 0.0362</td>
<td>0.363 ± 0.0362</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.289</td>
<td>0.289</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.446</td>
<td>0.446</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0482</td>
<td>0.0482</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>13.3</td>
<td>13.3 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>16</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report

PM02 A

s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.015 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.001</td>
<td>0.0001</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.001</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.001</td>
<td>0.001</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.001</td>
<td>0.001</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Sample: PM02A, Parameter: s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
Parameter oriented report

PM02 B

s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>2.69</td>
<td>0.431</td>
<td>97.9</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>2.458</td>
<td>0.983</td>
<td>89.5</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>2.816</td>
<td>0.422</td>
<td>103</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>3</td>
<td>0.42</td>
<td>109</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>2.65</td>
<td>0.795</td>
<td>96.5</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>2.75</td>
<td>0.605</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>2.566</td>
<td>0.113</td>
<td>93.5</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>2.829</td>
<td>0.565</td>
<td>103</td>
<td>0.26</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>2.952</td>
<td>0.886</td>
<td>107</td>
<td>0.65</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>3.136</td>
<td>0.627</td>
<td>114</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>2.84</td>
<td>0.852</td>
<td>103</td>
<td>0.29</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>2.15</td>
<td>0.645</td>
<td>78.3</td>
<td>-1.88</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>3.41</td>
<td>0.68</td>
<td>124</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>2.309</td>
<td>0.462</td>
<td>84.1</td>
<td>-1.38</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>2.645</td>
<td>0.444</td>
<td>96.3</td>
<td>-0.32</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>2.75 ± 0.245</td>
<td>2.75 ± 0.245</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.15</td>
<td>2.15</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.41</td>
<td>3.41</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.317</td>
<td>0.317</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>11.5</td>
<td>11.5</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)

Graphical presentation of results

Results

µg/l

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)

Z-score

Z-score

Laboratory

444/715
Parameter oriented report

PM02 A

s-Metolachlor oxanilic acid (Metolachlor-OA)

Unit \(\mu g/l \)

Mean ± CI (99%) -
Minimum - Maximum -
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td><0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

\[
\begin{array}{c|c|c|c|c|c|c|c|c}
\text{Laboratory} & \text{LC0005} & \text{LC0007} & \text{LC0008} & \text{LC0009} & \text{LC0010} & \text{LC0011} & \text{LC0012} & \text{LC0013} & \text{LC0014} \\
\mu g/l & 0.00 & 0.00 & 0.02 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 \\
\end{array}
\]
Parameter oriented report

PM02 B

s-Metolachlor oxanilic acid (Metolachlor-OA)

<table>
<thead>
<tr>
<th>Unit</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.09 ± 0.142</td>
</tr>
<tr>
<td>Minimum - Maximum</td>
<td>0.814 - 1.48</td>
</tr>
<tr>
<td>Control test value ± U</td>
<td>1.02 ± 0.153</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>1.06</td>
<td>0.295</td>
<td>97.1</td>
<td>-0.18</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.975</td>
<td>0.39</td>
<td>89.3</td>
<td>-0.68</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>1.081</td>
<td>0.162</td>
<td>99.1</td>
<td>-0.06</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>1.2</td>
<td>0.31</td>
<td>110</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.987</td>
<td>0.296</td>
<td>90.4</td>
<td>-0.61</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.11</td>
<td>0.167</td>
<td>102</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>1.168</td>
<td>0.003</td>
<td>107</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>1.252</td>
<td>0.25</td>
<td>115</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>1</td>
<td>0.3</td>
<td>91.6</td>
<td>-0.53</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>1.479</td>
<td>0.296</td>
<td>136</td>
<td>2.27</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>1.17</td>
<td>0.351</td>
<td>107</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.814</td>
<td>0.2442</td>
<td>74.6</td>
<td>-1.62</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.891</td>
<td>0.178</td>
<td>81.6</td>
<td>-1.17</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>1.09 ± 0.142</td>
<td>1.09 ± 0.142</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.814</td>
<td>0.814</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.48</td>
<td>1.48</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.171</td>
<td>0.171</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>15.7</td>
<td>15.7</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>13</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>

Parameter oriented report

Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor oxanilic acid (Metolachlor-OA)
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor oxanilic acid (Metolachlor-OA)

Z-score

Laboratory

LC0005 LC0007 LC0008 LC0009 LC0010 LC0011 LC0012 LC0013 LC0016 LC0018 LC0021 LC0022 LC0025

z-score

-3 -2 -1 0 1 2 3

450/715
Parameter oriented report

PM02 A

s-Metolachlor Metabolite CGA 368208

Unit \(\mu g/l \)
Mean ± Cl (99%) -
Minimum - Maximum -
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results
Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC00005</td>
<td>0.030</td>
</tr>
<tr>
<td>LC00007</td>
<td>0.028</td>
</tr>
<tr>
<td>LC00008</td>
<td>0.026</td>
</tr>
<tr>
<td>LC00009</td>
<td>0.024</td>
</tr>
<tr>
<td>LC00010</td>
<td>0.022</td>
</tr>
<tr>
<td>LC00011</td>
<td>0.020</td>
</tr>
<tr>
<td>LC00012</td>
<td>0.018</td>
</tr>
<tr>
<td>LC00013</td>
<td>0.016</td>
</tr>
<tr>
<td>LC00014</td>
<td>0.014</td>
</tr>
<tr>
<td>LC00015</td>
<td>0.012</td>
</tr>
<tr>
<td>LC00016</td>
<td>0.010</td>
</tr>
<tr>
<td>LC00017</td>
<td>0.008</td>
</tr>
<tr>
<td>LC00018</td>
<td>0.006</td>
</tr>
<tr>
<td>LC00019</td>
<td>0.004</td>
</tr>
<tr>
<td>LC00020</td>
<td>0.002</td>
</tr>
<tr>
<td>LC00021</td>
<td>0.000</td>
</tr>
</tbody>
</table>
Parameter oriented report
PM02 B
s-Metolachlor Metabolite CGA 368208

Unit \(\mu g/l\)

Mean ± CI (99%) -
Minimum - Maximum 0.333 - 0.394
Control test value ± U 0.426 ± 0.064

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.363</td>
<td>0.0654</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.394</td>
<td>0.158</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.333</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.363 ± 0.0528</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.333</td>
<td>0.333 (\mu g/l)</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.394</td>
<td>0.394 (\mu g/l)</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0305</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>8.39</td>
<td>-</td>
<td>- %</td>
</tr>
<tr>
<td>n</td>
<td>3</td>
<td>3</td>
<td>-</td>
</tr>
</tbody>
</table>

453/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor Metabolite CGA 368208

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.35</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

s-Metolachlor Metabolite NOA 413173

Unit: µg/l

Mean ± CI (99%): -
Minimum - Maximum: -
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

455/715
Graphical presentation of results

Results

µg/l

LC0005
LC0007
LC0008
LC0021
LC0022

Laboratory
Parameter oriented report

s-Metolachlor Metabolite NOA 413173

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.386</td>
<td>0.162</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.383</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.377</td>
<td>0.057</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.46</td>
<td>0.138</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.235</td>
<td>0.0705</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.368 ± 0.11</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.235</td>
<td>0.235</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.46</td>
<td>0.46</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0818</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>22.2</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>5</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: s-Metolachlor Metabolite NOA 413173

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.65</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.60</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.55</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.50</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.45</td>
</tr>
</tbody>
</table>

458/715
Parameter oriented report

PM02 A

Simazine

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC00001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC00002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC00003</td>
<td>0.163</td>
<td>0.002</td>
<td>133</td>
<td>4.19</td>
<td>H</td>
</tr>
<tr>
<td>LC00004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC00005</td>
<td>0.131</td>
<td>0.0262</td>
<td>107</td>
<td>0.87</td>
<td></td>
</tr>
<tr>
<td>LC00006</td>
<td>0.12</td>
<td>0.025</td>
<td>97.9</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td>LC00007</td>
<td>0.111</td>
<td>0.039</td>
<td>90.5</td>
<td>-1.2</td>
<td></td>
</tr>
<tr>
<td>LC00008</td>
<td>0.121</td>
<td>0.018</td>
<td>98.7</td>
<td>-0.17</td>
<td></td>
</tr>
<tr>
<td>LC00009</td>
<td>0.113</td>
<td>0.014</td>
<td>92.2</td>
<td>-1</td>
<td></td>
</tr>
<tr>
<td>LC00010</td>
<td>0.105</td>
<td>0.032</td>
<td>85.6</td>
<td>-1.83</td>
<td></td>
</tr>
<tr>
<td>LC00011</td>
<td>0.1449</td>
<td>0.0681</td>
<td>118</td>
<td>2.31</td>
<td></td>
</tr>
<tr>
<td>LC00012</td>
<td>0.123</td>
<td>0.007</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC00013</td>
<td>0.114</td>
<td>0.023</td>
<td>93</td>
<td>-0.89</td>
<td></td>
</tr>
<tr>
<td>LC00014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC00015</td>
<td>0.115</td>
<td>0.02</td>
<td>93.8</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>LC00016</td>
<td>0.118</td>
<td>0.024</td>
<td>96.2</td>
<td>-0.48</td>
<td></td>
</tr>
<tr>
<td>LC00017</td>
<td>0.161</td>
<td>0.024</td>
<td>131</td>
<td>3.99</td>
<td>H</td>
</tr>
<tr>
<td>LC00018</td>
<td>0.123</td>
<td>0.025</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC00019</td>
<td>0.22</td>
<td>0.055</td>
<td>179</td>
<td>10.1</td>
<td>H</td>
</tr>
<tr>
<td>LC00020</td>
<td>0.135</td>
<td>0.02025</td>
<td>110</td>
<td>1.29</td>
<td></td>
</tr>
<tr>
<td>LC00021</td>
<td>0.133</td>
<td>0.0399</td>
<td>108</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>LC00022</td>
<td>0.123</td>
<td>0.0369</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC00023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC00024</td>
<td>0.127</td>
<td>0.026</td>
<td>104</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>LC00025</td>
<td>0.128</td>
<td>0.026</td>
<td>104</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC00026</td>
<td>0.122</td>
<td>0.02</td>
<td>99.5</td>
<td>-0.06</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.131 ± 0.0165</td>
<td>0.123 ± 0.00681</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.105</td>
<td>0.105</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.22</td>
<td>0.145</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0252</td>
<td>0.00963</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>19.2</td>
<td>7.86 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>21</td>
<td>18</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Simazine

Z-score

Laboratory
Parameter oriented report

PM02 B

Simazine

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Terbuthylazine

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>0.244</td>
<td>0.037</td>
<td>96.1</td>
<td>-0.38</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>0.221</td>
<td>0.002</td>
<td>87</td>
<td>-1.27</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.283</td>
<td>0.0537</td>
<td>111</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>0.265</td>
<td>0.01</td>
<td>104</td>
<td>0.43</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.205</td>
<td>0.072</td>
<td>80.7</td>
<td>-1.89</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.253</td>
<td>0.038</td>
<td>99.7</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>0.237</td>
<td>0.04</td>
<td>93.3</td>
<td>-0.65</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.221</td>
<td>0.066</td>
<td>87</td>
<td>-1.27</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.2795</td>
<td>0.0839</td>
<td>110</td>
<td>0.99</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.27</td>
<td>0.015</td>
<td>106</td>
<td>0.62</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.256</td>
<td>0.051</td>
<td>101</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.272</td>
<td>0.05</td>
<td>107</td>
<td>0.7</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.278</td>
<td>0.056</td>
<td>109</td>
<td>0.93</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.283</td>
<td>0.037</td>
<td>111</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>0.259</td>
<td>0.052</td>
<td>102</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.26</td>
<td>0.065</td>
<td>102</td>
<td>0.24</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.292</td>
<td>0.0438</td>
<td>115</td>
<td>1.48</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.254</td>
<td>0.0762</td>
<td>100</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.22</td>
<td>0.066</td>
<td>86.7</td>
<td>-1.31</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.207</td>
<td>0.042</td>
<td>81.5</td>
<td>-1.82</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.277</td>
<td>0.055</td>
<td>109</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.249</td>
<td>0.062</td>
<td>98.1</td>
<td>-0.19</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.254 ± 0.0165</td>
<td>0.254 ± 0.0165</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.205</td>
<td>0.205</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.292</td>
<td>0.292</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0258</td>
<td>0.0258</td>
<td>µg/l</td>
</tr>
<tr>
<td>n</td>
<td>22</td>
<td>22</td>
<td>-</td>
</tr>
</tbody>
</table>
Sample: PM02A, Parameter: Terbuthylazine

Graphical presentation of results

Results

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Terbuthylazine

Z-score

Laboratory
Parameter oriented report

PM02 B

Terbuthylazine

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

[Graph showing results for different laboratories with values in µg/l]
Parameter oriented report

PM02 A

Terbutylazine-2-hydroxy

Unit: µg/l

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 B

Terbuthylazine-2-hydroxy

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.201</td>
<td>0.0221</td>
<td>98.7</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.158</td>
<td>0.055</td>
<td>77.6</td>
<td>-1.88</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.205</td>
<td>0.031</td>
<td>101</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.223</td>
<td>0.078</td>
<td>109</td>
<td>0.79</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.22</td>
<td>0.066</td>
<td>108</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.229</td>
<td>0.0687</td>
<td>112</td>
<td>1.04</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.19</td>
<td>0.038</td>
<td>93.3</td>
<td>-0.56</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.204 ± 0.0276</td>
<td>0.204 ± 0.0276</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.158</td>
<td>0.158</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.229</td>
<td>0.229</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0244</td>
<td>0.0244</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12</td>
<td>12 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>7</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbutylazine-2-hydroxy

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.325</td>
</tr>
<tr>
<td>0.300</td>
</tr>
<tr>
<td>0.275</td>
</tr>
<tr>
<td>0.250</td>
</tr>
<tr>
<td>0.225</td>
</tr>
<tr>
<td>0.200</td>
</tr>
<tr>
<td>0.175</td>
</tr>
<tr>
<td>0.150</td>
</tr>
<tr>
<td>0.125</td>
</tr>
<tr>
<td>0.100</td>
</tr>
</tbody>
</table>

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbuthylazine-2-hydroxy

Recovery rate

Recovery [%]

Laboratory

475/715

475/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbutylazine-2-hydroxy

Laboratory

LC0005
LC0007
LC0008
LC0010
LC0016
LC0022
LC0025

z-score

3
2
1
0
-1
-2
-3

Z-score
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Terbuthylazine-desethyl-2-hydroxy

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.07</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.09</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Sample: PM02A, Parameter: Terbutylazine-desethyl-2-hydroxy
Parameter oriented report

PM02 B

Terbutylazine-desethyl-2-hydroxy

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.114</td>
<td>0.025</td>
<td>93.3</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.104</td>
<td>0.037</td>
<td>85.1</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.136</td>
<td>0.02</td>
<td>111</td>
<td>0.66</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.157</td>
<td>0.055</td>
<td>129</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.119</td>
<td>0.024</td>
<td>97.4</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.103</td>
<td>0.0309</td>
<td>84.3</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.122 ± 0.0256</td>
<td>0.122 ± 0.0256</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.103</td>
<td>0.103</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.157</td>
<td>0.157</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0209</td>
<td>0.0209</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>17.1</td>
<td>17.1 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbutylazine-desethyl-2-hydroxy

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Concentration (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.22</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.18</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.16</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.14</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.12</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.08</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.06</td>
</tr>
<tr>
<td>LC0028</td>
<td>0.04</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbuthylazine-desethyl-2-hydroxy

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>160</td>
</tr>
<tr>
<td>LC0007</td>
<td>150</td>
</tr>
<tr>
<td>LC0008</td>
<td>140</td>
</tr>
<tr>
<td>LC0010</td>
<td>130</td>
</tr>
<tr>
<td>LC0016</td>
<td>120</td>
</tr>
<tr>
<td>LC0022</td>
<td>110</td>
</tr>
</tbody>
</table>

Recovery rate
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbuthylazine-desethyl-2-hydroxy

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>-2.0</td>
</tr>
<tr>
<td>LC0007</td>
<td>-2.4</td>
</tr>
<tr>
<td>LC0008</td>
<td>-2.0</td>
</tr>
<tr>
<td>LC0010</td>
<td>2.8</td>
</tr>
<tr>
<td>LC0016</td>
<td>3.0</td>
</tr>
<tr>
<td>LC0022</td>
<td>-1.2</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 A

Terbuthylazine-desethyl

Unit: µg/l
Mean ± CI (99%): -
Minimum - Maximum: 0.001 - 0.616
Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.616</td>
<td>0.37</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.035 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>< 0.005 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.001</td>
<td>0.0001</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.308 ± 0.923</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.001</td>
<td>0.001</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.616</td>
<td>0.616</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.435</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>141</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>2</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>

all results *without outliers* *Unit*
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 B

Terbuthylazine-desethyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>0.465</td>
<td>0.005</td>
<td>92.2</td>
<td>-0.95</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.519</td>
<td>0.0778</td>
<td>103</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.456</td>
<td>0.159</td>
<td>90.4</td>
<td>-1.16</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.492</td>
<td>0.074</td>
<td>97.5</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.524</td>
<td>0.157</td>
<td>104</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>1.559</td>
<td>0.935</td>
<td>309</td>
<td>25.3</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.577</td>
<td>0.019</td>
<td>114</td>
<td>1.74</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.461</td>
<td>0.092</td>
<td>91.4</td>
<td>-1.04</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.499</td>
<td>0.1</td>
<td>98.9</td>
<td>-0.13</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.519</td>
<td>0.156</td>
<td>103</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.762</td>
<td>0.114</td>
<td>151</td>
<td>6.17</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.494</td>
<td>0.099</td>
<td>97.9</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.446</td>
<td>0.0669</td>
<td>88.4</td>
<td>-1.4</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>0.536</td>
<td>0.1608</td>
<td>106</td>
<td>0.76</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.457</td>
<td>0.1371</td>
<td>90.6</td>
<td>-1.14</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.528</td>
<td>0.106</td>
<td>105</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.586</td>
<td>0.117</td>
<td>116</td>
<td>1.95</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>0.513</td>
<td>0.065</td>
<td>102</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.577 ± 0.181</td>
<td>0.504 ± 0.0313</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.446</td>
<td>0.446</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.56</td>
<td>0.586</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.255</td>
<td>0.0417</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>44.2</td>
<td>8.27 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>18</td>
<td>16</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbuthylazine-desethyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>0.8</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.7</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.5</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.4</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.2</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.1</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.04</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0021</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.0</td>
</tr>
<tr>
<td>LC0026</td>
<td>0.0</td>
</tr>
</tbody>
</table>

H: Highlighted values
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbutylazine-desethyl

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0003</td>
<td>120</td>
</tr>
<tr>
<td>LC0005</td>
<td>110</td>
</tr>
<tr>
<td>LC0007</td>
<td>100</td>
</tr>
<tr>
<td>LC0008</td>
<td>90</td>
</tr>
<tr>
<td>LC0010</td>
<td>80</td>
</tr>
<tr>
<td>LC0011</td>
<td>70</td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
</tr>
</tbody>
</table>

Recovery rate: 487/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Terbuthylazine-desethyl

Z-score

Laboratory
Parameter oriented report

PM02 A

Thiacloprid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>0.33</td>
<td>0.066</td>
<td>112</td>
<td>1.59</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.328</td>
<td>0.046</td>
<td>111</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.275</td>
<td>0.096</td>
<td>93.1</td>
<td>-0.94</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.281</td>
<td>0.042</td>
<td>95.1</td>
<td>-0.67</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.279</td>
<td>0.084</td>
<td>94.4</td>
<td>-0.76</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.401</td>
<td>0.241</td>
<td>136</td>
<td>4.85</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.282</td>
<td>0.015</td>
<td>95.4</td>
<td>-0.62</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.293</td>
<td>0.586</td>
<td>99.2</td>
<td>-0.11</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.282</td>
<td>0.05</td>
<td>95.4</td>
<td>-0.62</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.280</td>
<td>0.058</td>
<td>97.8</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.334</td>
<td>0.05</td>
<td>113</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.29</td>
<td>0.0725</td>
<td>98.2</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.273</td>
<td>0.0819</td>
<td>92.4</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.305</td>
<td>0.062</td>
<td>103</td>
<td>0.44</td>
<td>H</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.367</td>
<td>0.073</td>
<td>124</td>
<td>3.29</td>
<td>H</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.307 ± 0.0292</td>
<td>0.295 ± 0.0181</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.273</td>
<td>0.273</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.401</td>
<td>0.334</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0376</td>
<td>0.0217</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>12.3</td>
<td>7.36 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Thiacloprid

Graphical presentation of results

Results

Laboratory

µg/l

H

490/715
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Thiacloprid

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>LC0002</td>
</tr>
<tr>
<td>120</td>
<td>LC0005</td>
</tr>
<tr>
<td>110</td>
<td>LC0007</td>
</tr>
<tr>
<td>100</td>
<td>LC0008</td>
</tr>
<tr>
<td></td>
<td>LC0009</td>
</tr>
<tr>
<td></td>
<td>LC0010</td>
</tr>
<tr>
<td>90</td>
<td>LC0011</td>
</tr>
<tr>
<td>80</td>
<td>LC0012</td>
</tr>
<tr>
<td>70</td>
<td>LC0013</td>
</tr>
<tr>
<td></td>
<td>LC0014</td>
</tr>
<tr>
<td></td>
<td>LC0015</td>
</tr>
<tr>
<td></td>
<td>LC0016</td>
</tr>
<tr>
<td></td>
<td>LC0017</td>
</tr>
<tr>
<td></td>
<td>LC0018</td>
</tr>
<tr>
<td></td>
<td>LC0019</td>
</tr>
<tr>
<td></td>
<td>LC0020</td>
</tr>
<tr>
<td></td>
<td>LC0021</td>
</tr>
<tr>
<td></td>
<td>LC0022</td>
</tr>
<tr>
<td></td>
<td>LC0023</td>
</tr>
<tr>
<td></td>
<td>LC0024</td>
</tr>
<tr>
<td></td>
<td>LC0025</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Thiacloprid

Z-score

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>3</td>
</tr>
<tr>
<td>LC0005</td>
<td>2</td>
</tr>
<tr>
<td>LC0007</td>
<td>1</td>
</tr>
<tr>
<td>LC0008</td>
<td>0</td>
</tr>
<tr>
<td>LC0010</td>
<td>-1</td>
</tr>
<tr>
<td>LC0011</td>
<td>-2</td>
</tr>
<tr>
<td>LC0012</td>
<td>-3</td>
</tr>
<tr>
<td>LC0013</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td></td>
</tr>
</tbody>
</table>

492/715
Parameter oriented report

PM02 B

Thiacloprid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.003 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Thiacloprid

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0002</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.00</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Graphical representation of results:

- X-axis: Laboratory
- Y-axis: Concentration (µg/l)
- Data points for LC0016 show a concentration of 0.05 µg/l, significantly higher than the other laboratories.
Parameter oriented report

Thiamethoxam

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>< 0.003 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOD)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td></td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Thiamethoxam

Graphical presentation of results

Results

![Graphical representation of results](image-url)
Parameter oriented report

PM02 B

Thiamethoxam

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>0.12</td>
<td>0.024</td>
<td>93.8</td>
<td>-0.57</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.149</td>
<td>0.0299</td>
<td>116</td>
<td>1.49</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.134</td>
<td>0.047</td>
<td>105</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.123</td>
<td>0.018</td>
<td>96.1</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.116</td>
<td>0.035</td>
<td>90.6</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.058</td>
<td>0.035</td>
<td>45.3</td>
<td>-4.96</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.116</td>
<td>0.007</td>
<td>90.6</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.124</td>
<td>0.025</td>
<td>96.9</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>0.127</td>
<td>0.03</td>
<td>99.2</td>
<td>-0.07</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.107</td>
<td>0.021</td>
<td>83.6</td>
<td>-1.49</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.06</td>
<td>0.014</td>
<td>46.9</td>
<td>-4.81</td>
<td>H</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.14</td>
<td>0.035</td>
<td>109</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.115</td>
<td>0.0345</td>
<td>89.8</td>
<td>-0.92</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.14</td>
<td>0.028</td>
<td>109</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.153</td>
<td>0.031</td>
<td>120</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± Cl (99%)</td>
<td>0.119 ± 0.0214</td>
<td>0.128 ± 0.0118</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.058</td>
<td>0.107</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.153</td>
<td>0.153</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.0276</td>
<td>0.0141</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>23.2</td>
<td>11 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>13</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Graphical presentation of results

Results

Laboratory

0.20
0.18
0.16
0.14
0.12
0.10
0.08
0.06
0.04

µg/l

LC0002
LC0005
LC0007
LC0008
LC0010
LC0011
LC0009
LC0012
LC0013
LC0015
LC0016
LC0017
LC0019
LC0022
LC0004
LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Thiamethoxam

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
</tbody>
</table>

Laboratory:
- LC0002
- LC0005
- LC0007
- LC0008
- LC0010
- LC0011
- LC0012
- LC0013
- LC0015
- LC0016
- LC0017
- LC0019
- LC0022
- LC0024
- LC0025
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Thiamethoxam

Z-score

Laboratory: LC0002, LC0005, LC0007, LC0008, LC0010, LC0011, LC0012, LC0013, LC0015, LC0016, LC0017, LC0019, LC0022, LC0024, LC0025
Parameter oriented report

PM02 A

Thifensulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.766</td>
<td>0.05</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.861</td>
<td>0.172</td>
<td>113</td>
<td>1.03</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.737</td>
<td>0.262</td>
<td>96.3</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.879</td>
<td>0.102</td>
<td>88.7</td>
<td>-0.93</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>0.738</td>
<td>0.258</td>
<td>96.5</td>
<td>-0.29</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.205</td>
<td>0.123</td>
<td>26.8</td>
<td>-6.02</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.685</td>
<td>0.014</td>
<td>89.5</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>0.736</td>
<td>0.147</td>
<td>96.2</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.842</td>
<td>0.253</td>
<td>110</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.949</td>
<td>0.218</td>
<td>124</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.44</td>
<td>0.11</td>
<td>57.5</td>
<td>-3.49</td>
<td>H</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.703</td>
<td>0.10545</td>
<td>91.9</td>
<td>-0.67</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.614</td>
<td>0.1842</td>
<td>80.2</td>
<td>-1.62</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.875</td>
<td>0.176</td>
<td>114</td>
<td>1.18</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.762</td>
<td>0.1524</td>
<td>99.6</td>
<td>-0.03</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.706 ± 0.142</td>
<td>0.765 ± 0.0774</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.205</td>
<td>0.614</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.949</td>
<td>0.949</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.183</td>
<td>0.0931</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>26</td>
<td>12.2 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>15</td>
<td>13</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Thifensulfuron-methyl

Graphical presentation of results

Results

Laboratory

µg/l
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Sample: PM02A, Parameter: Thifensulfuron-methyl

Recovery rate

<table>
<thead>
<tr>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>150</td>
</tr>
<tr>
<td>140</td>
</tr>
<tr>
<td>130</td>
</tr>
<tr>
<td>120</td>
</tr>
<tr>
<td>110</td>
</tr>
<tr>
<td>100</td>
</tr>
<tr>
<td>90</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>70</td>
</tr>
<tr>
<td>60</td>
</tr>
<tr>
<td>50</td>
</tr>
</tbody>
</table>

Recovery: 503/715

Laboratory:
- LC0004
- LC0005
- LC0007
- LC0008
- LC0010
- LC0011
- LC0012
- LC0013
- LC0016
- LC0017
- LC0019
- LC0020
- LC0021
- LC0022
- LC0023
- LC0024
- LC0025

Umweltbundesamt
Parameter oriented report

PM02 B

Thifensulfuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results
Parameter oriented report

PM02 A
Tolylfluanid

Unit: \(\mu g/l \)
Mean \(\pm CI \) (99%) -
Minimum - Maximum 0.445 - 0.445
Control test value \(\pm U \) <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>(\pm U)</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.445</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0005</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td><0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean (\pm CI) (99%)</td>
<td>0.445</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.445</td>
<td>0.445</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.445</td>
<td>0.445</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>(\mu g/l)</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Tolyfluanid

Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 B

Tolyfluanid

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.414</td>
<td>0.02</td>
<td>-</td>
<td>-</td>
<td>FP</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.414 µg/l</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.414 µg/l</td>
<td>0.414 µg/l</td>
<td></td>
</tr>
<tr>
<td>Maximum</td>
<td>0.414 µg/l</td>
<td>0.414 µg/l</td>
<td></td>
</tr>
<tr>
<td>Standard deviation</td>
<td>- µg/l</td>
<td>- µg/l</td>
<td></td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>- %</td>
<td>- %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Tolyfluanid

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.45</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.40</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.35</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.30</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.25</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.20</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.15</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.10</td>
</tr>
</tbody>
</table>

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45

Laboratory
Parameter oriented report

PM02 A

Tribenuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result µg/l</th>
<th>± U µg/l</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>0.316</td>
<td>0.02</td>
<td>206</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.097</td>
<td>0.0428</td>
<td>63.1</td>
<td>-0.59</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.187</td>
<td>0.066</td>
<td>122</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.125</td>
<td>0.019</td>
<td>81.3</td>
<td>-0.3</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>3.1</td>
<td>1.085</td>
<td>2020</td>
<td>30.9</td>
<td>H</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.05</td>
<td>0.03</td>
<td>32.5</td>
<td>-1.09</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>0.105</td>
<td>0.003</td>
<td>68.3</td>
<td>-0.51</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.116</td>
<td>0.023</td>
<td>75.5</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.068</td>
<td>0.017</td>
<td>44.2</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>0.15</td>
<td>0.0375</td>
<td>97.6</td>
<td>-0.04</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.857</td>
<td>0.2571</td>
<td>558</td>
<td>7.37</td>
<td>H</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>0.323</td>
<td>0.064</td>
<td>210</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.458 ± 0.745</td>
<td>0.154 ± 0.0906</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.05</td>
<td>0.05</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>3.1</td>
<td>0.323</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.861</td>
<td>0.0955</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>188</td>
<td>62.1%</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>12</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triburon-methyl

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0009</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0011</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0012</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0015</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0017</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0018</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0020</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.3</td>
</tr>
<tr>
<td>LC0025</td>
<td>0.3</td>
</tr>
</tbody>
</table>

[Graph showing the results with data points and error bars.]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Tribenuron-methyl

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>300</td>
</tr>
<tr>
<td>LC0005</td>
<td>250</td>
</tr>
<tr>
<td>LC0007</td>
<td>200</td>
</tr>
<tr>
<td>LC0008</td>
<td>150</td>
</tr>
<tr>
<td>LC0010</td>
<td>100</td>
</tr>
<tr>
<td>LC0011</td>
<td>50</td>
</tr>
<tr>
<td>LC0012</td>
<td>0</td>
</tr>
</tbody>
</table>

Recovery rate

[Graph showing recovery rates for different laboratories, with LC0004 at 300%, LC0005 at 250%, LC0007 at 200%, LC0008 at 150%, LC0010 at 100%, LC0011 at 50%, and LC0012 at 0%]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Tribenuron-methyl

Z-score

Laboratory
Parameter oriented report

PM02 B

Tribenuron-methyl

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>< 0.002 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Tribenuron-methyl

Graphical presentation of results
Results

![Graphical Presentation of Results](image-url)
Parameter oriented report

PM02 A

Triclopyr

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>0.482</td>
<td>0.02</td>
<td>100</td>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.438</td>
<td>0.092</td>
<td>91.2</td>
<td>-0.79</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.452</td>
<td>0.158</td>
<td>94.2</td>
<td>-0.53</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.47</td>
<td>0.071</td>
<td>97.9</td>
<td>-0.19</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>FN</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.436</td>
<td>0.153</td>
<td>90.8</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.015</td>
<td>0.009</td>
<td>3.1</td>
<td>-8.76</td>
<td>H</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>0.483</td>
<td>0.145</td>
<td>101</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.412</td>
<td>0.082</td>
<td>85.8</td>
<td>-1.28</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.524</td>
<td>0.1572</td>
<td>109</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>0.596</td>
<td>0.12</td>
<td>124</td>
<td>2.19</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>0.507</td>
<td>0.101</td>
<td>106</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.438 ± 0.135</td>
<td>0.48 ± 0.0503</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.015</td>
<td>0.412</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.596</td>
<td>0.596</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.149</td>
<td>0.0531</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>34</td>
<td>11.1 %</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>11</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triclopyr

Laboratory

LC0004 LC0005 LC0007 LC0008 LC0010 LC0011 LC0013 LC0016 LC0022 LC0024 LC0025

[Graph showing results with values from 0.2 to 0.7 µg/l]
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triclopyr

Recovery rate

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Recovery [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0004</td>
<td>90</td>
</tr>
<tr>
<td>LC0005</td>
<td>100</td>
</tr>
<tr>
<td>LC0007</td>
<td>90</td>
</tr>
<tr>
<td>LC0008</td>
<td>110</td>
</tr>
<tr>
<td>LC0010</td>
<td>120</td>
</tr>
<tr>
<td>LC0011</td>
<td>130</td>
</tr>
<tr>
<td>LC0013</td>
<td>140</td>
</tr>
<tr>
<td>LC0016</td>
<td>100</td>
</tr>
<tr>
<td>LC0022</td>
<td>120</td>
</tr>
<tr>
<td>LC0024</td>
<td>100</td>
</tr>
<tr>
<td>LC0025</td>
<td>90</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triclopyr

Z-score

Laboratory

LC0004 LC0005 LC0007 LC0008 LC0010 LC0011 LC0013 LC0016 LC0022 LC0024 LC0025

Z-score

3 2 1 0 -1 -2 -3 520/715
Parameter oriented report

PM02 B

Triclopyr

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

Laboratory
Parameter oriented report

PM02 A

Triflusulfuron-Methyl

Unit: µg/l
Mean ± CI (99%): 0.407 ± 0.143
Minimum - Maximum: 0.119 - 0.691
Control test value ± U: 0.647 ± 0.097

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>0.369</td>
<td>0.0811</td>
<td>90.8</td>
<td>-0.25</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.385</td>
<td>0.135</td>
<td>94.7</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.354</td>
<td>0.053</td>
<td>87.1</td>
<td>-0.35</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.515</td>
<td>0.18</td>
<td>127</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>0.119</td>
<td>0.071</td>
<td>29.3</td>
<td>-1.91</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.467</td>
<td>0.093</td>
<td>115</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>0.691</td>
<td>0.138</td>
<td>170</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>0.36</td>
<td>0.09</td>
<td>88.6</td>
<td>-0.31</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>0.497</td>
<td>0.07455</td>
<td>122</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.308</td>
<td>0.0924</td>
<td>75.8</td>
<td>-0.66</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.406 ± 0.143</td>
<td>0.407 ± 0.143</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.119</td>
<td>0.119</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>0.691</td>
<td>0.691</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.15</td>
<td>0.15</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>37</td>
<td>37</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>10</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triflusulfuron-Methyl

Graphical presentation of results

Results

Laboratory
Sample: PM02A, Parameter: Triflusulfuron-Methyl

Recovery rate

Laboratory
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02A, Parameter: Triflusulfuron-Methyl

Laboratory

LC0005
LC0007
LC0008
LC0010
LC0011
LC0016
LC0017
LC0019
LC0020
LC0022

Z-score

-3
-2
-1
0
1
2
3

Laboratory
Parameter oriented report

PM02 B

Triflusulfuron-Methyl

Unit: $\mu g/l$

Statistics:
- Mean ± CI (99%): -
- Minimum - Maximum: -
- Control test value ± U: <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0005</td>
<td>< 0.025 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0007</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0008</td>
<td>< 0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0010</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0011</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0016</td>
<td>< 0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0017</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0019</td>
<td>< 0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0020</td>
<td>< 0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0022</td>
<td>< 0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Characteristics of parameter:

<table>
<thead>
<tr>
<th>characteristic</th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>$\mu g/l$</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>$\mu g/l$</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>$\mu g/l$</td>
</tr>
<tr>
<td>Standard deviation rel.</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>$\mu g/l$</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Sample: PM02B, Parameter: Triflusulfuron-Methyl

Graphical presentation of results

Results

Laboratory

µg/l
Parameter oriented report

PM02 A

Tritosulfuron

Unit: µg/l

Mean ± CI (99%) -

Minimum - Maximum 0.489 - 0.692

Control test value ± U 0.78 ± 0.117

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td>0.692</td>
<td>0.138</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td>0.612</td>
<td>0.208</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td>0.577</td>
<td>0.087</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td>1.03</td>
<td>0.361</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td>0.615</td>
<td>0.123</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td>0.489</td>
<td>0.1467</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>0.669 ± 0.231</td>
<td></td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>0.489</td>
<td>0.489</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>1.03</td>
<td>0.692</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>0.189</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>28.2</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>6</td>
<td>5</td>
<td>-</td>
</tr>
</tbody>
</table>
Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Tritosulfuron µg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0010</td>
<td>1.1</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.6</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.6</td>
</tr>
</tbody>
</table>
Parameter oriented report

PM02 B

Tritosulfuron

Unit: µg/l

Mean ± CI (99%) -
Minimum - Maximum -
Control test value ± U <0.025 (LOD)

<table>
<thead>
<tr>
<th>Labcode</th>
<th>Result</th>
<th>± U</th>
<th>Recovery [%]</th>
<th>z-score</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0003</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0005</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0006</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0007</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0008</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0010</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0011</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0012</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0013</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0014</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0016</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0017</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0018</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0019</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0020</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0022</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0023</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0024</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LC0026</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Characteristics of parameter

<table>
<thead>
<tr>
<th></th>
<th>all results</th>
<th>without outliers</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean ± CI (99%)</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Minimum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Maximum</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>-</td>
<td>-</td>
<td>µg/l</td>
</tr>
<tr>
<td>rel. Standard deviation</td>
<td>-</td>
<td>-</td>
<td>%</td>
</tr>
<tr>
<td>n</td>
<td>0</td>
<td>0</td>
<td>-</td>
</tr>
</tbody>
</table>
Parameter oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample: PM02B, Parameter: Tritosulfuron

Graphical presentation of results

Results

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Tritosulfuron (µg/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LC0005</td>
<td>0.05</td>
</tr>
<tr>
<td>LC0007</td>
<td>0.03</td>
</tr>
<tr>
<td>LC0008</td>
<td>0.02</td>
</tr>
<tr>
<td>LC0010</td>
<td>0.01</td>
</tr>
<tr>
<td>LC0016</td>
<td>0.10</td>
</tr>
<tr>
<td>LC0022</td>
<td>0.09</td>
</tr>
</tbody>
</table>
8 Laboratory oriented report

The laboratory oriented report is sorted by laboratory code.
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>-</td>
<td>0.0327</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>-</td>
<td>0.0884</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>0.0855</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.144</td>
<td>0.022</td>
<td>0.0137</td>
<td>93.4</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.094</td>
<td>0.014</td>
<td>0.0116</td>
<td>103</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.087</td>
<td>0.013</td>
<td>0.00756</td>
<td>99.7</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichloracetyl</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.584</td>
<td>0.088</td>
<td>0.0662</td>
<td>96.3</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.552</td>
<td>0.083</td>
<td>0.0433</td>
<td>103</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>- -</td>
<td>0.0287</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- -</td>
<td>0.056</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- -</td>
<td>0.0268</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.293</td>
<td>0.044</td>
<td>0.0303</td>
<td>97.2</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.227</td>
<td>0.034</td>
<td>0.0161</td>
<td>95.9</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.116</td>
<td>0.017</td>
<td>0.0152</td>
<td>98.6</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- -</td>
<td>0.0524</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>- -</td>
<td>0.0673</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.263</td>
<td>0.039</td>
<td>0.0093</td>
<td>101</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>- -</td>
<td>0.0489</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- -</td>
<td>0.0113</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ±</td>
<td>CI(99%)</td>
<td>Result ±</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ±</td>
<td>0.222</td>
<td>1.26</td>
<td>0.189</td>
<td>0.276</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ±</td>
<td>0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ±</td>
<td>0.0258</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ±</td>
<td>0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0194</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ±</td>
<td>0.00681</td>
<td>-</td>
<td>-</td>
<td>0.00963</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0165</td>
<td>0.244</td>
<td>0.037</td>
<td>0.0258</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ±</td>
<td>0.0181</td>
<td>-</td>
<td>-</td>
<td>0.0217</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ±</td>
<td>0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ±</td>
<td>0.0906</td>
<td>-</td>
<td>-</td>
<td>0.0955</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ±</td>
<td>0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ±</td>
<td>0.143</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ±</th>
<th>CI(99%)</th>
<th>Result ±</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ±</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
<td>0.0227</td>
<td>-</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ±</td>
<td>0.132</td>
<td>-</td>
<td>-</td>
<td>0.192</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ±</td>
<td>0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ±</td>
<td>0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>-</td>
<td>-</td>
<td>0.0228</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.214</td>
<td>0.032</td>
<td>0.023</td>
<td>96.5</td>
<td>-0.34</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.499 0.075</td>
<td>0.0503</td>
<td>103 0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>- -</td>
<td>0.0227</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mefufluron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylosulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>-</td>
<td>-</td>
<td>0.317</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>-</td>
<td>0.171</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>-</td>
<td>-</td>
<td>0.0417</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiachlophan</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.28</td>
<td>0.056</td>
<td>0.0327</td>
<td>92.5</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>-</td>
<td>-</td>
<td>0.0884</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>-</td>
<td>-</td>
<td>0.0137</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.1</td>
<td>0.02</td>
<td>0.0116</td>
<td>110</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.098</td>
<td>0.02</td>
<td>0.00756</td>
<td>112</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.15</td>
<td>0.03</td>
<td>0.0162</td>
<td>92.6</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.64</td>
<td>0.13</td>
<td>0.0662</td>
<td>106</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.45</td>
<td>0.09</td>
<td>0.0453</td>
<td>104</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report: Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.54 0.11</td>
<td>0.0433</td>
<td>101</td>
<td>0.07</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.31 0.06</td>
<td>0.0287</td>
<td>105</td>
<td>0.53</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.16 0.032</td>
<td>0.0159</td>
<td>105</td>
<td>0.45</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.49 0.1</td>
<td>0.056</td>
<td>114</td>
<td>1.08</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- -</td>
<td>0.0268</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.31 0.062</td>
<td>0.0358</td>
<td>101</td>
<td>0.08</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.31 0.062</td>
<td>0.0303</td>
<td>103</td>
<td>0.28</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.22 0.044</td>
<td>0.0161</td>
<td>93</td>
<td>-1.03</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.12 0.024</td>
<td>0.0152</td>
<td>102</td>
<td>0.15</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- -</td>
<td>0.0524</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.58 0.11</td>
<td>0.0673</td>
<td>114</td>
<td>1.04</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.27 0.054</td>
<td>0.0093</td>
<td>104</td>
<td>1.07</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.45 0.09</td>
<td>0.0489</td>
<td>112</td>
<td>0.96</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- -</td>
<td>0.0113</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- -</td>
<td>0.0362</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.18 0.036</td>
<td>0.0111</td>
<td>102 0.33</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>0.18 0.017</td>
<td>0.17 0.027</td>
<td>91.4</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.258 ± 0.49 0.034</td>
<td>0.0364 - -</td>
<td>0.0344</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>- -</td>
<td>0.914</td>
<td>-0.28</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.18 0.0360.011</td>
<td>0.0111 102</td>
<td>0.33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>- -</td>
<td>0.0194</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>- -</td>
<td>0.00963</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>- -</td>
<td>0.0258</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.0906 ± 0.154</td>
<td>0.0955</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triathion</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- -</td>
<td>0.0955</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- -</td>
<td>0.0955</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.33 ± 0.066</td>
<td>0.33 0.0217</td>
<td>112 1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.0175 ± 0.182</td>
<td>0.0175 0.0217</td>
<td>112 1.59</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.0765 ± 0.0774</td>
<td>0.0765 0.0774</td>
<td>0.0774 0.0774</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.48 0.0503</td>
<td>0.0503 0.0503</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritisulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.407 0.143</td>
<td>0.15 0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.17 0.034</td>
<td>0.0227</td>
<td>89</td>
<td>-0.93</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>- -</td>
<td>0.192</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- -</td>
<td>0.0143</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>0.149</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

543/715
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA) µg/l</td>
<td></td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>-</td>
<td>0.0228</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl µg/l</td>
<td></td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>-</td>
<td>0.0493</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM) µg/l</td>
<td></td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl µg/l</td>
<td></td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyi-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.003</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.21</td>
<td>0.042</td>
<td>0.023</td>
<td>94.7</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid µg/l</td>
<td></td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.16 0.032 0.0227 102 0.14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulamid (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.003</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75</td>
<td>± 0.245</td>
<td>-</td>
<td>-</td>
<td>0.317</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09</td>
<td>± 0.142</td>
<td>-</td>
<td>-</td>
<td>0.171</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204</td>
<td>± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122</td>
<td>± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504</td>
<td>± 0.0313</td>
<td>-</td>
<td>-</td>
<td>0.0417</td>
</tr>
<tr>
<td>Thioclorid</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td><0.003</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiometoxam</td>
<td>µg/l</td>
<td>0.128</td>
<td>± 0.0118</td>
<td>0.12</td>
<td>0.024</td>
<td>0.0141</td>
</tr>
<tr>
<td>Thiensulfuron-methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolylfluanid</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflufuron-Methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0002

Sample

PM02 A
PM02 B

2,4-D (2,4-Dichlorophenoxyacetic acid)
Bentazon
Chloridazon
Clothianidin
Dichlorprop
Dimethachlor
Dimethenamide
Diuron
Ethofumesate
Flufenacet
Imidacloprid
Isoproturon
MCPA
MCPP (Mecoprop)
Metamitron
Metazachlor
Metolachlor
Nicosulfuron
Pethoxamid
Thiacloprid
Thiamethoxam

Measurand

z-score

-2 0 2 -2 0 2
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>-</td>
<td>-</td>
<td>0.0327</td>
<td>-</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.865</td>
<td>0.007</td>
<td>0.0884</td>
<td>98</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.518</td>
<td>0.005</td>
<td>0.0838</td>
<td>104</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.155</td>
<td>0.002</td>
<td>0.0137</td>
<td>101</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>-</td>
<td>-</td>
<td>0.0116</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>-</td>
<td>-</td>
<td>0.00756</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>-</td>
<td>-</td>
<td>0.0662</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>- -</td>
<td>0.0433</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.092 0.001</td>
<td>0.0287</td>
<td>31.2</td>
<td>-7.06</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- -</td>
<td>0.056</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.384 0.004</td>
<td>0.0641</td>
<td>105</td>
<td>0.28</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- -</td>
<td>0.0268</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.089 0.001</td>
<td>0.0303</td>
<td>29.5</td>
<td>-7.01</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>- -</td>
<td>0.0161</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>- -</td>
<td>0.0152</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- -</td>
<td>0.0524</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>- -</td>
<td>0.0673</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>- -</td>
<td>0.0093</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.389 0.004</td>
<td>0.0489</td>
<td>96.5</td>
<td>-0.28</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- -</td>
<td>0.0113</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- -</td>
<td>0.0362</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>- -</td>
<td>0.276</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxam</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- -</td>
<td>0.0111</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.496 0.005</td>
<td>0.0344</td>
<td>101 0.17</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>- -</td>
<td>0.0194</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.163 0.002</td>
<td>0.00963</td>
<td>133 4.19</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.221 0.002</td>
<td>0.0258</td>
<td>87 -1.27</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>- -</td>
<td>0.0217</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>- -</td>
<td>0.0931</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- -</td>
<td>0.0955</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>- -</td>
<td>0.0531</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Trifluesulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- -</td>
<td>0.15</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>- -</td>
<td>0.0227</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.44 0.023</td>
<td>0.192 96.3</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- -</td>
<td>0.0143</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>0.149</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>--------</td>
<td>-----------</td>
<td>----------------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.651</td>
<td>0.007</td>
<td>0.175</td>
<td>91</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.198</td>
<td>0.002</td>
<td>0.0228</td>
<td>93.3</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.399</td>
<td>0.004</td>
<td>0.0493</td>
<td>86.8</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>-</td>
<td>-</td>
<td>0.023</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± 99% CI</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery ± U</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>-</td>
<td>0.176</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>-</td>
<td>0.0771</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>-</td>
<td>0.0196</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>-</td>
<td>0.0503</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>-</td>
<td>0.0227</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>-</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>-</td>
<td>0.233</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>-</td>
<td>0.0305</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>-</td>
<td>0.0482</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>- -</td>
<td>0.317</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.465 ± 0.005</td>
<td>0.0417</td>
<td>92.2</td>
<td>-0.95</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamefoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>- -</td>
<td>0.0141</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Measurand</td>
<td>PM02 A</td>
<td>PM02 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>-7.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>-7.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>4.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.296 0.02</td>
<td>0.0327</td>
<td>97.8</td>
<td>-0.20</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>- -</td>
<td>0.0884</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.563 0.03</td>
<td>0.0838</td>
<td>113</td>
<td>0.75</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.042 0.007</td>
<td>0.00855</td>
<td>111</td>
<td>0.47</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>- -</td>
<td>0.0137</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.118 0.01</td>
<td>0.0226</td>
<td>83.5</td>
<td>-1.03</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.096 0.005</td>
<td>0.0116</td>
<td>105</td>
<td>0.43</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- -</td>
<td>0.0152</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>- -</td>
<td>0.00756</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>- -</td>
<td>0.0718</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>- -</td>
<td>0.0162</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.686 0.04</td>
<td>0.0328</td>
<td>100</td>
<td>0.08</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.625 0.03</td>
<td>0.0662</td>
<td>103</td>
<td>0.28</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.075 0.005</td>
<td>0.0163</td>
<td>125</td>
<td>0.92</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.51 0.03</td>
<td>0.0453</td>
<td>118</td>
<td>1.72</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.412 0.05</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.513 0.03</td>
<td>0.0433</td>
<td>95.5</td>
<td>-0.56</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dluron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>- -</td>
<td>0.0287</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.127 0.02</td>
<td>0.0159</td>
<td>83.1</td>
<td>-1.63</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- -</td>
<td>0.056</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.074 0.005</td>
<td>0.0281</td>
<td>152</td>
<td>0.91</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.018 0.003</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- -</td>
<td>0.0268</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>- -</td>
<td>0.0303</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.245 0.01</td>
<td>0.0161</td>
<td>104</td>
<td>0.52</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.124 0.01</td>
<td>0.0152</td>
<td>105</td>
<td>0.42</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.6 0.03</td>
<td>0.0524</td>
<td>113</td>
<td>1.28</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>- -</td>
<td>0.0673</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.316 0.02</td>
<td>0.0093</td>
<td>122</td>
<td>6.02</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.495 0.03</td>
<td>0.0489</td>
<td>123</td>
<td>1.88</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.093 0.01</td>
<td>0.0113</td>
<td>104</td>
<td>0.31</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- -</td>
<td>-</td>
<td>0.0362</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.468 ± 0.03</td>
<td>0.276</td>
<td>50.9</td>
<td>-1.63</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- -</td>
<td>-</td>
<td>0.0111</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>- -</td>
<td>-</td>
<td>0.0344</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.145 ± 0.01</td>
<td>0.0194</td>
<td>95.6</td>
<td>-0.35</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>- -</td>
<td>-</td>
<td>0.00963</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>- -</td>
<td>-</td>
<td>0.0258</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>- -</td>
<td>-</td>
<td>0.0217</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.766 ± 0.05</td>
<td>0.0931</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.445 ± 0.02</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.316 ± 0.02</td>
<td>0.0955</td>
<td>206</td>
<td>1.70</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.482 ± 0.02</td>
<td>0.0531</td>
<td>100</td>
<td>0.04</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- -</td>
<td>0.15</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.184 ± 0.015</td>
<td>0.0227</td>
<td>96.3</td>
<td>-0.31</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>- -</td>
<td>-</td>
<td>0.192</td>
<td>- -</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- -</td>
<td>-</td>
<td>0.0143</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>-</td>
<td>0.149</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>-</td>
<td>-</td>
<td>0.0228</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.256</td>
<td>0.02</td>
<td>0.023</td>
<td>115</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.733</td>
<td>0.05</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
</tr>
<tr>
<td>Parameter (Dimethenamid-ESA)</td>
<td>Target Unit</td>
<td>± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA) µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diuron µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesesate µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA) µg/l</td>
<td>0.8 ± 0.215</td>
<td>-</td>
<td>-</td>
<td>0.176</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA) µg/l</td>
<td>0.191 ± 0.0874</td>
<td>-</td>
<td>-</td>
<td>0.0771</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.2</td>
<td>0.01</td>
<td>0.0196</td>
<td>108</td>
<td>0.79</td>
</tr>
<tr>
<td>Hexazinone µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.465</td>
<td>0.02</td>
<td>0.0503</td>
<td>95.9</td>
<td>-0.39</td>
</tr>
<tr>
<td>MCPP (Mecoprop) µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron µg/l</td>
<td>0.157 ± 0.0156</td>
<td>-</td>
<td>-</td>
<td>0.0227</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA) µg/l</td>
<td>2.77 ± 0.367</td>
<td>-</td>
<td>-</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA) µg/l</td>
<td>1.32 ± 0.202</td>
<td>-</td>
<td>-</td>
<td>0.233</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino µg/l</td>
<td>0.256 ± 0.0346</td>
<td>-</td>
<td>-</td>
<td>0.0305</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS) µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.345</td>
<td>0.02</td>
<td>0.0482</td>
<td>95</td>
<td>-0.37</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>- -</td>
<td>0.317</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>- -</td>
<td>0.0417</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiocloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>- -</td>
<td>0.0141</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluand</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.414 0.02</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.03 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Measurand</td>
<td>PM02 A</td>
<td>PM02 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuronone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The diagram shows the z-scores for each measured pesticide in samples PM02 A and PM02 B. The z-score values are indicated by the length of the bar for each pesticide.
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.303 ± 0.0454</td>
<td>0.0327</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>1.01 ± 0.244</td>
<td>0.0884</td>
<td>114</td>
<td>1.44</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.364 ± 0.127</td>
<td>0.0838</td>
<td>72.7</td>
<td>-1.63</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.047 ± 0.00586</td>
<td>0.00855</td>
<td>124</td>
<td>1.06</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.178 ± 0.0606</td>
<td>0.0137</td>
<td>115</td>
<td>1.74</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.154 ± 0.0386</td>
<td>0.0226</td>
<td>109</td>
<td>0.56</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.102 ± 0.0143</td>
<td>0.0116</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.182 ± 0.0418</td>
<td>0.0152</td>
<td>111</td>
<td>1.20</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.0881 ± 0.0123</td>
<td>0.00756</td>
<td>101</td>
<td>0.11</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.268 ± 0.0804</td>
<td>0.0718</td>
<td>76.4</td>
<td>-1.15</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.176 ± 0.0511</td>
<td>0.0162</td>
<td>109</td>
<td>0.86</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.704 ± 0.169</td>
<td>0.0328</td>
<td>103</td>
<td>0.63</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.0629 ± 0.0084</td>
<td>0.0163</td>
<td>105</td>
<td>0.18</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.454 ± 0.0998</td>
<td>0.0453</td>
<td>105</td>
<td>0.48</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537</td>
<td>±</td>
<td>0.0315</td>
<td>0.634</td>
<td>0.114</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diclofop-ester</td>
<td>µg/l</td>
<td>0.295</td>
<td>±</td>
<td>0.0188</td>
<td>0.302</td>
<td>0.0544</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153</td>
<td>±</td>
<td>0.0132</td>
<td>0.158</td>
<td>0.0568</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43</td>
<td>±</td>
<td>0.0434</td>
<td>0.454</td>
<td>0.0908</td>
</tr>
<tr>
<td>Flufenacet sulfonyl acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148</td>
<td>±</td>
<td>0.0493</td>
<td>0.122</td>
<td>0.0598</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366</td>
<td>±</td>
<td>0.0555</td>
<td>0.392</td>
<td>0.122</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486</td>
<td>±</td>
<td>0.0266</td>
<td>0.0635</td>
<td>0.0136</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22</td>
<td>±</td>
<td>0.0201</td>
<td>0.245</td>
<td>0.0393</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307</td>
<td>±</td>
<td>0.0287</td>
<td>0.29</td>
<td>0.11</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405</td>
<td>±</td>
<td>0.0469</td>
<td>0.347</td>
<td>0.104</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301</td>
<td>±</td>
<td>0.0199</td>
<td>0.335</td>
<td>0.0771</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237</td>
<td>±</td>
<td>0.0108</td>
<td>0.237</td>
<td>0.0237</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118</td>
<td>±</td>
<td>0.00973</td>
<td>0.113</td>
<td>0.0216</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228</td>
<td>±</td>
<td>0.0255</td>
<td>0.261</td>
<td>0.0444</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533</td>
<td>±</td>
<td>0.0393</td>
<td>0.598</td>
<td>0.156</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51</td>
<td>±</td>
<td>0.0476</td>
<td>0.489</td>
<td>0.142</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26</td>
<td>±</td>
<td>0.00676</td>
<td>0.264</td>
<td>0.037</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>-</td>
<td>±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403</td>
<td>±</td>
<td>0.0313</td>
<td>0.449</td>
<td>0.0763</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895</td>
<td>±</td>
<td>0.00875</td>
<td>0.103</td>
<td>0.0206</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.252 0.0505</td>
<td>0.0362</td>
<td>99.2</td>
<td>-0.06</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.82 0.353</td>
<td>0.276</td>
<td>89.3</td>
<td>-0.36</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.185 0.0396</td>
<td>0.0111</td>
<td>105</td>
<td>0.78</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.536 0.0751</td>
<td>0.0344</td>
<td>109</td>
<td>1.33</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.185 0.048</td>
<td>0.0194</td>
<td>122</td>
<td>1.71</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.131 0.0262</td>
<td>0.00963</td>
<td>107</td>
<td>0.87</td>
</tr>
<tr>
<td>Terbutylyazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.283 0.0537</td>
<td>0.0258</td>
<td>111</td>
<td>1.13</td>
</tr>
<tr>
<td>Terbutylyazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylyazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylyazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.328 0.046</td>
<td>0.0217</td>
<td>111</td>
<td>1.50</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.861 0.172</td>
<td>0.0931</td>
<td>113</td>
<td>1.03</td>
</tr>
<tr>
<td>Tolyfuanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.097 0.0428</td>
<td>0.0955</td>
<td>63.1</td>
<td>-0.59</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.438 0.092</td>
<td>0.0531</td>
<td>91.2</td>
<td>-0.79</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.369 0.0811</td>
<td>0.15</td>
<td>90.8</td>
<td>-0.25</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.692 0.138</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.198 0.0297</td>
<td>0.0227</td>
<td>104</td>
<td>0.30</td>
</tr>
<tr>
<td>2,6-Dichlorobenazonamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.97 0.712</td>
<td>0.192</td>
<td>117</td>
<td>2.27</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>0.183 0.0457</td>
<td>0.0143</td>
<td>101</td>
<td>0.09</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>0.627 0.219</td>
<td>0.149</td>
<td>155</td>
<td>1.48</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>2.85 ± 0.627</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
</tbody>
</table>
| Alachlor-t-acid (Alachlor-OA) | µg/l | 0.475 ± 0.0605 | 0.52 ± 0.114 | 0.0533 | 110 ± 0.85
| Aldrin | µg/l | - ± - | <0.01 (LOQ) | - ± - | - ± - | - ± - |
| AMPA | µg/l | 0.715 ± 0.159 | 0.659 ± 0.152 | 0.175 | 92.1 ± 0.32
| Atrazine | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Atrazine-2-hydroxy | µg/l | 1.52 ± 0.174 | 1.56 ± 0.327 | 0.153 | 103 ± 0.25
| Atrazine-desethyl | µg/l | 0.212 ± 0.0153 | 0.206 ± 0.0412 | 0.0228 | 97 ± 0.28 | |
| Atrazine-desethyl-desisopropyl | µg/l | 0.872 ± 0.204 | 0.872 ± 0.384 | 0.18 | 100 ± 0.00 |
| Atrazine-desisopropyl | µg/l | 0.46 ± 0.0348 | 0.461 ± 0.0922 | 0.0493 | 100 ± 0.02 |
| Atrazine-Desethyl-Azoxyrobin | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Atrazine-Desethyl-Desisopropyl | µg/l | - ± - | 0.72 ± 0.137 | - ± - | - ± - | - ± - |
| Bentazon | µg/l | - ± - | <0.02 (LOQ) | - ± - | - ± - | - ± - |
| Bromacil | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Chloridazon | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Chloridazon-desphenyl | µg/l | 3.11 ± 0.194 | 3.31 ± 0.728 | 0.225 | 106 ± 0.88
| Chloridazon-methyl-desphenyl | µg/l | 0.115 ± 0.00942 | 0.127 ± 0.019 | 0.0104 | 110 ± 1.13 | |
| Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid) | µg/l | - ± - | 3.17 ± 1.24 | - ± - | - ± - | - ± - |
| Chlorothalonil sulfonic acid (Chlorothalonil-ESA) | µg/l | - ± - | 1.76 ± 0.493 | - ± - | - ± - | - ± - |
| Clompyralid | µg/l | - ± - | <0.02 (LOQ) | - ± - | - ± - | - ± - |
| Clothianidin | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Dicamba | µg/l | - ± - | <0.02 (LOQ) | - ± - | - ± - | - ± - |
| Dichlorprop | µg/l | 0.222 ± 0.0162 | 0.235 ± 0.0376 | 0.023 | 106 ± 0.57 |
| Dieldrin | µg/l | - ± - | <0.01 (LOQ) | - ± - | - ± - | - ± - |
| Dimethachlor | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA) | µg/l | 0.462 ± 0.0516 | 0.449 ± 0.0628 | 0.0516 | 97.2 ± 0.25
| Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA) | µg/l | 0.2 ± 0.0487 | 0.192 ± 0.0403 | 0.0429 | 95.9 ± 0.19 | |
| Dimethachlor Metabolite - CGA 369873 | µg/l | - ± - | 0.119 ± 0.0286 | - ± - | - ± - | - ± - |
| Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester) | µg/l | - ± - | 0.618 ± 0.142 | - ± - | - ± - | - ± - |
| Dimethachlor Metabolite - CGA 373464 (free acid) | µg/l | - ± - | - ± - | - ± - | - ± - | - ± - |
| Dimethenamide | µg/l | - ± - | <0.025 | - ± - | - ± - | - ± - |
| Dimethenamide-P-sulfonic acid | µg/l | 0.911 ± 0.187 | 0.98 ± 0.255 | 0.197 | 108 ± 0.35

565/715
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.434 ± 0.0739</td>
<td>0.0574</td>
<td>117</td>
<td>1.10</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>0.908 ± 0.2</td>
<td>0.176</td>
<td>114</td>
<td>0.62</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>0.169 ± 0.0304</td>
<td>0.0771</td>
<td>88.7</td>
<td>-0.28</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.184 ± 0.0242</td>
<td>0.0196</td>
<td>99.7</td>
<td>-0.03</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.147 ± 0.0264</td>
<td>0.0104</td>
<td>99.8</td>
<td>-0.03</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.503 ± 0.106</td>
<td>0.0503</td>
<td>104</td>
<td>0.36</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.163 ± 0.0471</td>
<td>0.0227</td>
<td>104</td>
<td>0.28</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>3.14 ± 0.629</td>
<td>0.441</td>
<td>114</td>
<td>0.85</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.57 ± 0.315</td>
<td>0.233</td>
<td>119</td>
<td>1.07</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>0.263 ± 0.0263</td>
<td>0.0305</td>
<td>103</td>
<td>0.23</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>0.99 ± 0.297</td>
<td>0.205</td>
<td>92.8</td>
<td>-0.38</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nipoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>0.23 ± 0.053</td>
<td>0.0183</td>
<td>112</td>
<td>1.37</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.427 ± 0.111</td>
<td>0.0482</td>
<td>118</td>
<td>1.33</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.69 ± 0.431</td>
<td>0.317</td>
<td>97.9</td>
<td>-0.18</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.06 ± 0.295</td>
<td>0.171</td>
<td>97.1</td>
<td>-0.18</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.363 ± 0.0654</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.386 ± 0.162</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025 ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.201 ± 0.0221</td>
<td>0.0244</td>
<td>98.7</td>
<td>-0.11</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.114 ± 0.025</td>
<td>0.0209</td>
<td>93.3</td>
<td>-0.39</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.363 ± 0.0654</td>
<td>0.386 ± 0.162</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025 ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.519 ± 0.0778</td>
<td>0.0417</td>
<td>103</td>
<td>0.35</td>
</tr>
<tr>
<td>Thiamefloxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.149 ± 0.0299</td>
<td>0.0141</td>
<td>116</td>
<td>1.49</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025 ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025 ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025 ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolylfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.311 ± 0.02</td>
<td>0.0327</td>
<td>103</td>
<td>0.26</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.92 ± 0.034</td>
<td>0.0884</td>
<td>104</td>
<td>0.42</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.6604 ± 0.0415</td>
<td>0.0838</td>
<td>132</td>
<td>1.91</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.1027 ± 0.0021</td>
<td>0.00855</td>
<td>271</td>
<td>7.57</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.159 ± 0.02</td>
<td>0.0137</td>
<td>103</td>
<td>0.35</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>- ± -</td>
<td>0.0226</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.091 ± 0.032</td>
<td>0.0116</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- ± -</td>
<td>0.0152</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>- ± -</td>
<td>0.00756</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>- ± -</td>
<td>0.0718</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.171 ± 0.014</td>
<td>0.0162</td>
<td>106</td>
<td>0.56</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.664 ± 0.117</td>
<td>0.0328</td>
<td>97.2</td>
<td>-0.59</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.589 ± 0.02</td>
<td>0.0662</td>
<td>97.1</td>
<td>-0.26</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.1258 ± 0.0033</td>
<td>0.0163</td>
<td>210</td>
<td>4.05</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>- ± -</td>
<td>0.0453</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target GI</td>
<td>± CI(99%)</td>
<td>Result GI</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.32 0.021</td>
<td>0.0287</td>
<td>109</td>
<td>0.88</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- -</td>
<td>0.056</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-EA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.126 0.004</td>
<td>0.0434</td>
<td>85</td>
<td>-0.51</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.297 0.022</td>
<td>0.0641</td>
<td>81.1</td>
<td>-1.08</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.0864 0.0042</td>
<td>0.0281</td>
<td>178</td>
<td>1.35</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.202 0.001</td>
<td>0.0268</td>
<td>91.9</td>
<td>-0.66</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>- -</td>
<td>0.0303</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.255 0.1</td>
<td>0.0161</td>
<td>108</td>
<td>1.14</td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.116 0.002</td>
<td>0.0152</td>
<td>98.6</td>
<td>-0.11</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- -</td>
<td>0.0524</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>- -</td>
<td>0.0673</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>- -</td>
<td>0.0093</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>- -</td>
<td>0.0489</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- - 0.0113</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>-</td>
<td>0.276</td>
<td>-</td>
</tr>
<tr>
<td>Petboxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0194</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.12 ± 0.025</td>
<td>0.00963</td>
<td>97.9</td>
<td>-0.27</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.265 ± 0.01</td>
<td>0.0258</td>
<td>104</td>
<td>0.43</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td>-</td>
<td>0.0217</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triflufenuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.2 ± 0.008</td>
<td>0.0227</td>
<td>105</td>
<td>0.39</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.652 ± 0.021</td>
<td>0.192</td>
<td>105</td>
<td>0.61</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.0043 ± 0.0021</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- -</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.0022 0.0004</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.567 0.02</td>
<td>0.175 79.3</td>
<td>-0.85</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- -</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.225 0.019</td>
<td>0.0228 106</td>
<td>0.56</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>- -</td>
<td>0.0493</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>- -</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- -</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.212 0.009</td>
<td>0.023 95.6</td>
<td>-0.43</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- -</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- -</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- -</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.0015 0.0002</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.3471 0.0138 0.0196</td>
<td>188 8.30</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.504 0.022</td>
<td>0.0503 104 0.38</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>- -</td>
<td>0.0227</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfurance</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>-</td>
<td></td>
<td></td>
<td>0.317</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>0.171</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>-</td>
<td>0.0417</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0006

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td>7/6</td>
</tr>
<tr>
<td>AMPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td></td>
<td>8.3</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score

-2 0 2 -2 0 2
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.277 0.097 0.0327</td>
<td>91.5</td>
<td>-0.78</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0503</td>
<td>0.78 0.269 0.0884</td>
<td>88.4</td>
<td>-1.16</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.038 0.013</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.099 0.035</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.428 0.15 0.0838</td>
<td>85.5</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.035 0.012 0.00855</td>
<td>92.2</td>
<td>-0.34</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.134 0.047 0.0137</td>
<td>86.9</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.117 0.041 0.0226</td>
<td>82.8</td>
<td>-1.08</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.09 0.031 0.0116</td>
<td>98.9</td>
<td>-0.09</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.16 0.056 0.0152</td>
<td>97.7</td>
<td>-0.24</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.081 0.028 0.00756</td>
<td>92.8</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.323 0.113 0.0718</td>
<td>92.1</td>
<td>-0.39</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.155 0.054 0.0162</td>
<td>95.7</td>
<td>-0.43</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.699 0.245 0.0328</td>
<td>102</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.068 0.024 0.0163</td>
<td>113</td>
<td>0.49</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.401 0.14 0.0453</td>
<td>92.8</td>
<td>-0.69</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(CGA 50266, Dimethachlor-OA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.506</td>
<td>0.177</td>
<td>0.0433</td>
<td>94.2</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicloran</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.283</td>
<td>0.099</td>
<td>0.0287</td>
<td>96</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.149</td>
<td>0.052</td>
<td>0.0159</td>
<td>97.5</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.347</td>
<td>0.122</td>
<td>0.056</td>
<td>80.7</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.135</td>
<td>0.054</td>
<td>0.0434</td>
<td>91</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.328</td>
<td>0.131</td>
<td>0.0641</td>
<td>89.6</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.042</td>
<td>0.015</td>
<td>0.0281</td>
<td>86.4</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.204</td>
<td>0.072</td>
<td>0.0268</td>
<td>92.8</td>
</tr>
<tr>
<td>Imidapropil</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.285</td>
<td>0.1</td>
<td>0.0358</td>
<td>92.7</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.367</td>
<td>0.129</td>
<td>0.0518</td>
<td>90.6</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.265</td>
<td>0.093</td>
<td>0.0303</td>
<td>87.9</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.232</td>
<td>0.081</td>
<td>0.0161</td>
<td>98</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.108</td>
<td>0.038</td>
<td>0.0152</td>
<td>91.8</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.203</td>
<td>0.071</td>
<td>0.0241</td>
<td>89.1</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.478</td>
<td>0.167</td>
<td>0.0524</td>
<td>89.7</td>
</tr>
<tr>
<td>Metamitroton</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.469</td>
<td>0.164</td>
<td>0.0673</td>
<td>91.9</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.25</td>
<td>0.087</td>
<td>0.0093</td>
<td>96.1</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.383</td>
<td>0.134</td>
<td>0.0489</td>
<td>95</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.088</td>
<td>0.031</td>
<td>0.0113</td>
<td>98.3</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ±</td>
<td>Cl(99%)</td>
<td>Result ±</td>
<td>U</td>
<td>Criteria</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0343</td>
<td>0.228</td>
<td>0.08</td>
<td>0.0362</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ±</td>
<td>0.222</td>
<td>0.785</td>
<td>0.328</td>
<td>0.276</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ±</td>
<td>0.0111</td>
<td>0.159</td>
<td>0.056</td>
<td>0.0111</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ±</td>
<td>0.0258</td>
<td>0.501</td>
<td>0.175</td>
<td>0.0344</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ±</td>
<td>0.0146</td>
<td>0.137</td>
<td>0.048</td>
<td>0.0194</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ±</td>
<td>0.00681</td>
<td>0.111</td>
<td>0.039</td>
<td>0.00963</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0165</td>
<td>0.205</td>
<td>0.072</td>
<td>0.0258</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ±</td>
<td>0.0181</td>
<td>0.275</td>
<td>0.096</td>
<td>0.0217</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ±</td>
<td>0.0774</td>
<td>0.737</td>
<td>0.262</td>
<td>0.0931</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ±</td>
<td>0.0906</td>
<td>0.187</td>
<td>0.066</td>
<td>0.0955</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ±</td>
<td>0.0503</td>
<td>0.452</td>
<td>0.158</td>
<td>0.0531</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ±</td>
<td>0.143</td>
<td>0.385</td>
<td>0.135</td>
<td>0.15</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.612</td>
<td>0.208</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ±</th>
<th>Cl(99%)</th>
<th>Result ±</th>
<th>U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxaceticacid)</td>
<td>µg/l</td>
<td>0.191 ±</td>
<td>0.0152</td>
<td>0.18</td>
<td>0.063</td>
<td>0.0227</td>
<td>94.2</td>
<td>-0.49</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ±</td>
<td>0.132</td>
<td>2.237</td>
<td>0.781</td>
<td>0.192</td>
<td>88.3</td>
<td>-1.55</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ±</td>
<td>0.0175</td>
<td>0.159</td>
<td>0.056</td>
<td>0.0143</td>
<td>87.5</td>
<td>-1.59</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ±</td>
<td>0.183</td>
<td>0.474</td>
<td>0.166</td>
<td>0.149</td>
<td>117</td>
<td>0.46</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>2.838 1.135</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.444 0.178</td>
<td>0.0533</td>
<td>93.6</td>
<td>-0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.694 0.278</td>
<td>0.175</td>
<td>97</td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.432 0.489</td>
<td>0.153</td>
<td>94.1</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.194 0.068</td>
<td>0.0228</td>
<td>91.4</td>
<td>-0.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>0.642 0.194</td>
<td>0.18</td>
<td>73.6</td>
<td>-1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.425 0.149</td>
<td>0.0493</td>
<td>92.4</td>
<td>-0.71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxytrobine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxytrobine-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.858 0.343</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>3.26 1.304</td>
<td>0.225</td>
<td>105</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.114 0.046</td>
<td>0.0104</td>
<td>98.9</td>
<td>-0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>2.867 1.147</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>1.934 0.774</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianadin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.191 0.067</td>
<td>0.023</td>
<td>86.1</td>
<td>-1.34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.4 0.16</td>
<td>0.0516</td>
<td>86.6</td>
<td>-1.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.169 0.067</td>
<td>0.0429</td>
<td>84.4</td>
<td>-0.73</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.09 0.036</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.405 0.162</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.801 0.32</td>
<td>0.197</td>
<td>87.9</td>
<td>-0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter / Units</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>----</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>mg/L</td>
<td>0.371 ± 0.0703</td>
<td>0.363 ± 0.145</td>
<td>0.0574</td>
<td>97.9</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>mg/L</td>
<td>0.8 ± 0.215</td>
<td>0.698 ± 0.279</td>
<td>0.176</td>
<td>87.3</td>
<td>-0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>mg/L</td>
<td>0.191 ± 0.0874</td>
<td>0.235 ± 0.094</td>
<td>0.0771</td>
<td>123</td>
<td>0.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>mg/L</td>
<td>0.185 ± 0.0222</td>
<td>0.189 ± 0.066</td>
<td>0.0196</td>
<td>102</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>mg/L</td>
<td>0.147 ± 0.0118</td>
<td>0.139 ± 0.049</td>
<td>0.0104</td>
<td>94.4</td>
<td>-0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>mg/L</td>
<td>2.77 ± 0.367</td>
<td>2.394 ± 0.958</td>
<td>0.441</td>
<td>86.5</td>
<td>-0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>mg/L</td>
<td>1.32 ± 0.202</td>
<td>1.123 ± 0.449</td>
<td>0.233</td>
<td>85</td>
<td>-0.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>mg/L</td>
<td>0.256 ± 0.0346</td>
<td>0.206 ± 0.072</td>
<td>0.0305</td>
<td>80.5</td>
<td>-1.64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>mg/L</td>
<td>1.07 ± 0.217</td>
<td>1.068 ± 0.427</td>
<td>0.205</td>
<td>100</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>mg/L</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>mg/L</td>
<td>0.205 ± 0.0224</td>
<td>0.187 ± 0.065</td>
<td>0.0183</td>
<td>91.2</td>
<td>-0.98</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>mg/L</td>
<td>0.363 ± 0.0362</td>
<td>0.317 ± 0.111</td>
<td>0.0482</td>
<td>87.3</td>
<td>-0.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.458</td>
<td>0.983</td>
<td>0.317</td>
<td>89.5</td>
<td>-0.91</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>0.975</td>
<td>0.39</td>
<td>0.171</td>
<td>89.3</td>
<td>-0.68</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.394</td>
<td>0.158</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.383</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.158</td>
<td>0.055</td>
<td>0.0244</td>
<td>77.6</td>
<td>-1.88</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>0.104</td>
<td>0.037</td>
<td>0.0209</td>
<td>85.1</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.456</td>
<td>0.159</td>
<td>0.0417</td>
<td>90.4</td>
<td>-1.16</td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.134</td>
<td>0.047</td>
<td>0.0141</td>
<td>105.4</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanide</td>
<td>µg/l</td>
<td>- ± <0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

Sample: PM02A

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.297 ± 0.045</td>
<td>0.0327</td>
<td>98.1</td>
<td>-0.17</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.88 ± 0.132</td>
<td>0.0884</td>
<td>99.7</td>
<td>-0.03</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.036 ± 0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.486 ± 0.073</td>
<td>0.0838</td>
<td>97.1</td>
<td>-0.17</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.037 ± 0.006</td>
<td>0.00855</td>
<td>97.5</td>
<td>-0.11</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.148 ± 0.022</td>
<td>0.0137</td>
<td>96</td>
<td>-0.45</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.123 ± 0.018</td>
<td>0.0226</td>
<td>87</td>
<td>-0.81</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.087 ± 0.013</td>
<td>0.0116</td>
<td>95.6</td>
<td>-0.35</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.158 ± 0.024</td>
<td>0.0152</td>
<td>96.5</td>
<td>-0.38</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.084 ± 0.013</td>
<td>0.00756</td>
<td>96.2</td>
<td>-0.43</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.356 ± 0.053</td>
<td>0.0718</td>
<td>102</td>
<td>0.07</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.154 ± 0.023</td>
<td>0.0162</td>
<td>95.1</td>
<td>-0.49</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.699 ± 0.105</td>
<td>0.0328</td>
<td>102</td>
<td>0.48</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.607 ± 0.091</td>
<td>0.0662</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.078 ± 0.012</td>
<td>0.0163</td>
<td>130</td>
<td>1.11</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.444 ± 0.067</td>
<td>0.0453</td>
<td>103</td>
<td>0.26</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± C1(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.549</td>
<td>0.082</td>
<td>0.0433</td>
<td>102</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diclofop</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.244</td>
<td>0.037</td>
<td>0.0287</td>
<td>82.8</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.117</td>
<td>0.018</td>
<td>0.0159</td>
<td>76.5</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.411</td>
<td>0.062</td>
<td>0.056</td>
<td>95.6</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.088</td>
<td>0.013</td>
<td>0.0434</td>
<td>59.3</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.326</td>
<td>0.049</td>
<td>0.0641</td>
<td>89.1</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.01</td>
<td>0.002</td>
<td>0.0281</td>
<td>20.6</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.234</td>
<td>0.035</td>
<td>0.0268</td>
<td>106</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.318</td>
<td>0.048</td>
<td>0.0358</td>
<td>103</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.37</td>
<td>0.056</td>
<td>0.0518</td>
<td>91.3</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.286</td>
<td>0.043</td>
<td>0.0303</td>
<td>94.9</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.234</td>
<td>0.035</td>
<td>0.0161</td>
<td>98.9</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.115</td>
<td>0.017</td>
<td>0.0152</td>
<td>97.8</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.236</td>
<td>0.035</td>
<td>0.0241</td>
<td>104</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.541</td>
<td>0.081</td>
<td>0.0524</td>
<td>102</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.434</td>
<td>0.065</td>
<td>0.0673</td>
<td>85.1</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.267</td>
<td>0.04</td>
<td>0.0093</td>
<td>103</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.419</td>
<td>0.063</td>
<td>0.0489</td>
<td>104</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.083</td>
<td>0.012</td>
<td>0.0113</td>
<td>92.7</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.224 0.034</td>
<td>0.0362</td>
<td>88.2</td>
<td>-0.83</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>1.048 0.157</td>
<td>0.276</td>
<td>114</td>
<td>0.47</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.176 0.026</td>
<td>0.0111</td>
<td>99.8</td>
<td>-0.03</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.487 0.073</td>
<td>0.0344</td>
<td>99.3</td>
<td>-0.09</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.125 0.019</td>
<td>0.0194</td>
<td>82.4</td>
<td>-1.38</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.121 0.018</td>
<td>0.00963</td>
<td>98.7</td>
<td>-0.17</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.253 0.038</td>
<td>0.0258</td>
<td>99.7</td>
<td>-0.03</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.281 0.042</td>
<td>0.0217</td>
<td>95.1</td>
<td>-0.67</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.679 0.102</td>
<td>0.0931</td>
<td>88.7</td>
<td>-0.93</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.125 0.019</td>
<td>0.0955</td>
<td>81.3</td>
<td>-0.30</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.47 0.071</td>
<td>0.0531</td>
<td>97.9</td>
<td>-0.19</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.354 0.053</td>
<td>0.15</td>
<td>87.1</td>
<td>-0.35</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.577 0.087</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.172 0.026</td>
<td>0.0227</td>
<td>90</td>
<td>-0.84</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.536 0.38</td>
<td>0.192</td>
<td>100</td>
<td>0.01</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>0.175 0.026</td>
<td>0.0143</td>
<td>96.3</td>
<td>-0.47</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>0.419 0.063</td>
<td>0.149</td>
<td>103</td>
<td>0.09</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

585/715
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>3.13</td>
<td>0.469</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.495</td>
<td>0.074</td>
<td>0.0533</td>
<td>104</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.435</td>
<td>0.215</td>
<td>0.153</td>
<td>94.3</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.203</td>
<td>0.03</td>
<td>0.0228</td>
<td>95.6</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>0.864</td>
<td>0.13</td>
<td>0.18</td>
<td>99.1</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.436</td>
<td>0.065</td>
<td>0.0493</td>
<td>94.8</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.846</td>
<td>0.127</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>3.196</td>
<td>0.479</td>
<td>0.225</td>
<td>103</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.114</td>
<td>0.017</td>
<td>0.0104</td>
<td>98.9</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorphenoxydine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.221</td>
<td>0.033</td>
<td>0.023</td>
<td>99.6</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.467</td>
<td>0.07</td>
<td>0.0516</td>
<td>101</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.287</td>
<td>0.043</td>
<td>0.0429</td>
<td>143</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.103</td>
<td>0.015</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.514</td>
<td>0.077</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.851</td>
<td>0.128</td>
<td>0.197</td>
<td>93.4</td>
</tr>
</tbody>
</table>

586/715
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery ± U</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.362 ± 0.054</td>
<td>0.0574</td>
<td>97.6 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>0.81 ± 0.121</td>
<td>0.176</td>
<td>101 ± 0.06</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>0.244 ± 0.037</td>
<td>0.0771</td>
<td>128 ± 0.69</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± <0.009</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.188 ± 0.028</td>
<td>0.0196</td>
<td>102 ± 0.17</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.131 ± 0.02</td>
<td>0.0104</td>
<td>88.9 ± 1.56</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.488 ± 0.073</td>
<td>0.0503</td>
<td>101 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.133 ± 0.02</td>
<td>0.0227</td>
<td>84.9 ± 1.05</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.819 ± 0.423</td>
<td>0.441</td>
<td>102 ± 0.12</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.219 ± 0.138</td>
<td>0.233</td>
<td>92.3 ± 0.44</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.266 ± 0.0346</td>
<td>0.267 ± 0.04</td>
<td>0.0305</td>
<td>104 ± 0.36</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>0.977 ± 0.147</td>
<td>0.205</td>
<td>91.6 ± 0.44</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± <0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>0.205 ± 0.031</td>
<td>0.0183</td>
<td>100 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.3 ± 0.045</td>
<td>0.0482</td>
<td>82.6 ± 1.31</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.816 ± 0.422</td>
<td>0.317</td>
<td>103</td>
<td>0.22</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.081 ± 0.162</td>
<td>0.171</td>
<td>99.1</td>
<td>-0.06</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.333 ± 0.05</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.377 ± 0.057</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.205 ± 0.031</td>
<td>0.0244</td>
<td>101</td>
<td>0.05</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>0.136 ± 0.02</td>
<td>0.0209</td>
<td>111</td>
<td>0.66</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.492 ± 0.074</td>
<td>0.0417</td>
<td>97.5</td>
<td>-0.30</td>
</tr>
<tr>
<td>Thiocloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.123 ± 0.018</td>
<td>0.0141</td>
<td>96.1</td>
<td>-0.35</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Sample

PM02 A
PM02 B

2,4-D (2,4-Dichlorophenoxyacetic acid)
2,6-Dichlorobenzamide
2-Amino-4-methoxy-6-methyl-1,3,5-triazine
3,5,6-Trichloro-2-pyridinol
Alachlor
Alachlor-t-acid (Alachlor-OA)
Aldrin
Atrazine
Atrazine-2-hydroxy
Atrazine-desethyl
Atrazine-desethyl-desisopropyl
Atrazine-desisopropyl
Atrazine-desisopropyl-desisopropyl
Atrazine-desisopropyl
Azoxystrobin
Bentazon
Bromacil
Chloridazon
Chloridazon-desphenyl-
Chloridazon-methyl-desphenyl
Clopyralid
Clothianidin
Dicaiba
Dichlorprop
Dieldrin
Dimethachlor
Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)
Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)
Dimethenamide
Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)
Dimethenamid-P-acid (Dimethenamid-OA)
Duron
Ethofumesate
Flufenacet
Flufenacet sulfonic acid (Flufenacet-ESA)
Flufenacet oxalamic acid (Flufenacet-OA)
Glufosinate
Glyphosate
Heptachlor
Heptachlor epoxide
Hexazinone
Iloprobid
Iodosulfuron-methyl
Isoproturon
Isoproturon-desmethyl
MCPA
MCPB
MCPP (Mecoprop)
Mesosulfuron-methyl
Metalaxyl
Metalaxyl
Metamitron
Metaxyl
Metaxyl
Metazachlor
Metazachlor ethane sulfonic acid (Metazachlor-ESA)
Metazachlor oxalamic acid (Metazachlor-OA)
Metolachlor
Metribuzin
Metribuzin-desamin
Metsulfuron-methyl
N,N-Dimethylsulfamide (DMS)
Nicosulfuron
Pethoxamid
Propazine
Propazine-2-hydroxy
Propiconazole
s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
s-Metolachlor oxalamic acid (Metolachlor-OA)
Simazine
Terbutylazine
Terbutylazine-2-hydroxy
Terbutylazine-desethyl-2-hydroxy
Thiacloprid
Thiamethoxam
Thifensulfuron-methyl
Tribenuron-methyl
Triclopyr
Triflusulfuron-Methyl

Z-score

-2
0
2
-2
0
2

589/715
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± C1(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.247 ± 0.049</td>
<td>0.0327</td>
<td>81.6</td>
<td>-1.70</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.926 ± 0.102</td>
<td>0.0884</td>
<td>105</td>
<td>0.49</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>- ± -</td>
<td>0.0838</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>- ± -</td>
<td>0.00855</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.137 ± 0.027</td>
<td>0.0137</td>
<td>88.9</td>
<td>-1.25</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.005</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.005</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.005</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>- ± -</td>
<td>0.0226</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.085 ± 0.022</td>
<td>0.0116</td>
<td>93.4</td>
<td>-0.52</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.14 ± 0.034</td>
<td>0.0152</td>
<td>85.5</td>
<td>-1.56</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.084 ± 0.019</td>
<td>0.00756</td>
<td>96.2</td>
<td>-0.43</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td><0.01 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>- ± -</td>
<td>0.0718</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>- ± -</td>
<td>0.0162</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.705 ± 0.155</td>
<td>0.0328</td>
<td>103</td>
<td>0.66</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.598 ± 0.09</td>
<td>0.0662</td>
<td>98.6</td>
<td>-0.13</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>- ± -</td>
<td>0.0163</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.435 ± 0.083</td>
<td>0.0453</td>
<td>101</td>
<td>0.06</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CGA 50266, Dimethachlor-OA)</td>
<td></td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimetenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.51</td>
<td>0.097</td>
<td>0.0433</td>
<td>94.9</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.296</td>
<td>0.062</td>
<td>0.0287</td>
<td>100</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.154</td>
<td>0.042</td>
<td>0.0159</td>
<td>101</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td></td>
<td></td>
<td>0.056</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.215</td>
<td>0.034</td>
<td>0.0434</td>
<td>145</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.424</td>
<td>0.072</td>
<td>0.0641</td>
<td>116</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td></td>
<td></td>
<td>0.0281</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.219</td>
<td>0.035</td>
<td>0.0268</td>
<td>99.7</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td></td>
<td></td>
<td>0.0358</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td></td>
<td></td>
<td>0.0518</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.293</td>
<td>0.067</td>
<td>0.0303</td>
<td>97.2</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td><0.01(LOQ)</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.222</td>
<td>0.049</td>
<td>0.0161</td>
<td>93.8</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td><0.01(LOQ)</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.108</td>
<td>0.018</td>
<td>0.0152</td>
<td>91.8</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td></td>
<td></td>
<td>0.0241</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.533</td>
<td>0.16</td>
<td>0.0524</td>
<td>100</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.522</td>
<td>0.125</td>
<td>0.0673</td>
<td>102</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.247</td>
<td>0.057</td>
<td>0.0093</td>
<td>95</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td><0.01(LOQ)</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>±</td>
<td></td>
<td></td>
<td><0.01(LOQ)</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.405</td>
<td>0.069</td>
<td>0.0489</td>
<td>101</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.064</td>
<td>0.015</td>
<td>0.0113</td>
<td>71.5</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- -</td>
<td>0.0362</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- -</td>
<td>0.0111</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethlysulfamid (DMS)</td>
<td>µg/l</td>
<td>0.0919 ± 0.222</td>
<td>- -</td>
<td>0.276</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.458 ± 0.082</td>
<td>0.0344</td>
<td>93.4</td>
<td>-0.94</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- -</td>
<td>0.0111</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.138 ± 0.026</td>
<td>0.0194</td>
<td>90.9</td>
<td>-0.71</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>- -</td>
<td>0.00963</td>
<td>92.2</td>
<td>-1.00</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.237 ± 0.04</td>
<td>0.0258</td>
<td>93.3</td>
<td>-0.65</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.237 ± 0.04</td>
<td>0.0258</td>
<td>93.3</td>
<td>-0.65</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.237 ± 0.04</td>
<td>0.0258</td>
<td>93.3</td>
<td>-0.65</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>- -</td>
<td>0.0217</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tbamethoxam</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>- -</td>
<td>0.0931</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- -</td>
<td>0.0955</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Telyfluanid</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>- -</td>
<td>0.0531</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- -</td>
<td>0.15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.176 ± 0.035</td>
<td>0.0227</td>
<td>92.1</td>
<td>-0.67</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.62 ± 0.29</td>
<td>0.192</td>
<td>103</td>
<td>0.45</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- -</td>
<td>0.0143</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>0.149</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.435</td>
<td>0.065</td>
<td>0.0533</td>
<td>91.7</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>1.04</td>
<td>0.38</td>
<td>0.175</td>
<td>145</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.61</td>
<td>0.4</td>
<td>0.153</td>
<td>106</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.195</td>
<td>0.023</td>
<td>0.0228</td>
<td>91.9</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.45</td>
<td>0.09</td>
<td>0.0493</td>
<td>97.9</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>2.94</td>
<td>0.79</td>
<td>0.225</td>
<td>94.5</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.109</td>
<td>0.031</td>
<td>0.0104</td>
<td>94.6</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (CIPCM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ciprylad</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.208</td>
<td>0.031</td>
<td>0.023</td>
<td>93.8</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266,</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.948</td>
<td>0.161</td>
<td>0.197</td>
<td>104</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.384 0.046</td>
<td>0.0574</td>
<td>104</td>
<td>0.23</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.143 0.026</td>
<td>0.0104</td>
<td>97.1</td>
<td>-0.41</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.525 0.1</td>
<td>0.0503</td>
<td>108</td>
<td>0.80</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.159 0.038</td>
<td>0.0227</td>
<td>101</td>
<td>0.10</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.99 0.45</td>
<td>0.441</td>
<td>108</td>
<td>0.51</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.35 0.23</td>
<td>0.233</td>
<td>102</td>
<td>0.12</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>0.749 0.24</td>
<td>0.205</td>
<td>70.2</td>
<td>-1.55</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- - - -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.35 0.066</td>
<td>0.0482</td>
<td>96.4</td>
<td>-0.27</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>3 ± 0.42</td>
<td>0.317</td>
<td>109</td>
<td>0.80</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.2 ± 0.31</td>
<td>0.171</td>
<td>110</td>
<td>0.64</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>- -</td>
<td>0.0417</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacioprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>- -</td>
<td>0.0141</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0009

Sample

PM2 A

PM2 B

2,4-D (2,4-Dichlorophenoxyaceticacid)
2,6-Dichlorobenzamide
Alachlor-t-acid (Alachlor-OA)
AMPA
Atrazine
Atrazine-2-hydroxy
Atrazine-desethyl
Atrazine-desisopropyl
Bentazon
Bromacil
Chloridazon
Chloridazon-desphenyl
Chloridazon-methyl-desphenyl
Dicamba
 Dichlorprop
Dimethachlor
Dimethenamide
Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)
Dimethenamid-P-acid (Dimethenamid-OA)
Diuron
Ethofumesate
Glufosinate
Glyphosate
Hexazinone
Isoproturon
Isoproturon-desmethyl
MCPA
MCPB
MCPP (Mecoprop)
Metalamyl
Metamitron
Metazachlor
Metazachlor ethane sulfonic acid (Metazachlor-ESA)
Metazachlor oxanilic acid (Metazachlor-OA)
Metolachlor
Metolachlor ethanesulfonic acid (Metolachlor-ESA)
N,N-Dimethylsulfamide (DMS)
Propazine
Propiconazole
Simazine
Terbuthylazine
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.317</td>
<td>0.0327</td>
<td>105</td>
<td>0.44</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.89</td>
<td>0.0884</td>
<td>101</td>
<td>0.08</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± <0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± 0.097</td>
<td>0.034</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.423</td>
<td>0.0838</td>
<td>84.5</td>
<td>-0.92</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.055</td>
<td>0.00855</td>
<td>145</td>
<td>1.99</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.128</td>
<td>0.0137</td>
<td>83</td>
<td>-1.91</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.132</td>
<td>0.0226</td>
<td>93.4</td>
<td>-0.41</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.079</td>
<td>0.0116</td>
<td>86.8</td>
<td>-1.03</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.188</td>
<td>0.0152</td>
<td>115</td>
<td>1.60</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.117</td>
<td>0.00756</td>
<td>134</td>
<td>3.93</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.382</td>
<td>0.0718</td>
<td>109</td>
<td>0.44</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.163</td>
<td>0.0162</td>
<td>101</td>
<td>0.06</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.72</td>
<td>0.0328</td>
<td>105</td>
<td>1.12</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.452</td>
<td>0.0662</td>
<td>74.5</td>
<td>-2.33</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.069</td>
<td>0.0163</td>
<td>115</td>
<td>0.56</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.387</td>
<td>0.0453</td>
<td>89.5</td>
<td>-1.00</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± Cl(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.488</td>
<td>0.146</td>
<td>0.0433</td>
<td>90.8</td>
<td>-1.14</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.27</td>
<td>0.081</td>
<td>0.0287</td>
<td>91.6</td>
<td>-0.86</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.161</td>
<td>0.056</td>
<td>0.0159</td>
<td>105</td>
<td>0.51</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.402</td>
<td>0.141</td>
<td>0.056</td>
<td>93.5</td>
<td>-0.50</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.189</td>
<td>0.057</td>
<td>0.0434</td>
<td>127</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.272</td>
<td>0.082</td>
<td>0.0641</td>
<td>74.3</td>
<td>-1.47</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.083</td>
<td>0.029</td>
<td>0.0281</td>
<td>171</td>
<td>1.23</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.189</td>
<td>0.057</td>
<td>0.0268</td>
<td>86</td>
<td>-1.15</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.276</td>
<td>0.083</td>
<td>0.0358</td>
<td>89.8</td>
<td>-0.87</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>-</td>
<td>-</td>
<td>0.0518</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.355</td>
<td>0.124</td>
<td>0.0303</td>
<td>118</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.205</td>
<td>0.062</td>
<td>0.0161</td>
<td>86.6</td>
<td>-1.96</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.102</td>
<td>0.031</td>
<td>0.0152</td>
<td>86.7</td>
<td>-1.03</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>-</td>
<td>0.0241</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.487</td>
<td>0.146</td>
<td>0.0524</td>
<td>91.4</td>
<td>-0.88</td>
<td></td>
</tr>
<tr>
<td>Mefalamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.518</td>
<td>0.181</td>
<td>0.0673</td>
<td>102</td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.212</td>
<td>0.064</td>
<td>0.0093</td>
<td>81.5</td>
<td>-5.17</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.364</td>
<td>0.109</td>
<td>0.0489</td>
<td>90.3</td>
<td>-0.80</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.084</td>
<td>0.025</td>
<td>0.0113</td>
<td>93.8</td>
<td>-0.49</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.249 0.087</td>
<td>0.0362</td>
<td>98</td>
<td>-0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>2.37 0.711</td>
<td>0.276</td>
<td>258</td>
<td>5.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.166 0.058</td>
<td>0.0111</td>
<td>94.1</td>
<td>-0.93</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.446 0.156</td>
<td>0.0344</td>
<td>91</td>
<td>-1.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.161 0.048</td>
<td>0.0194</td>
<td>106</td>
<td>0.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.105 0.032</td>
<td>0.00963</td>
<td>85.6</td>
<td>-1.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.221 0.066</td>
<td>0.0258</td>
<td>87</td>
<td>-1.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.279 0.084</td>
<td>0.0217</td>
<td>94.4</td>
<td>-0.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.738 0.258</td>
<td>0.0931</td>
<td>96.5</td>
<td>-0.29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>3.1 0.285</td>
<td>0.0955</td>
<td>2020</td>
<td>30.90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.436 0.153</td>
<td>0.0531</td>
<td>90.8</td>
<td>-0.83</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.515 0.18</td>
<td>0.15</td>
<td>127</td>
<td>0.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>1.03 0.361</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.167 0.058</td>
<td>0.0227</td>
<td>87.4</td>
<td>-1.06</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.34 0.819</td>
<td>0.192</td>
<td>92.3</td>
<td>-1.02</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>0.18 0.063</td>
<td>0.0143</td>
<td>99.1</td>
<td>-0.12</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>0.325 0.114</td>
<td>0.149</td>
<td>80.1</td>
<td>-0.54</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>3.03 ± 1.061</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.464 ± 0.162</td>
<td>± U</td>
<td>97.8</td>
<td>-0.20</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.742 ± 0.223</td>
<td>± U</td>
<td>104</td>
<td>0.15</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.27 ± 0.381</td>
<td>± U</td>
<td>83.5</td>
<td>-1.64</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.183 ± 0.055</td>
<td>± U</td>
<td>86.2</td>
<td>-1.28</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>0.918 ± 0.321</td>
<td>± U</td>
<td>105</td>
<td>0.26</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.37 ± 0.13</td>
<td>± U</td>
<td>80.5</td>
<td>-1.82</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>2.75 ± 0.825</td>
<td>± U</td>
<td>88.4</td>
<td>-1.61</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.111 ± 0.033</td>
<td>± U</td>
<td>96.3</td>
<td>-0.41</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.173 ± 0.052</td>
<td>± U</td>
<td>78</td>
<td>-2.13</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.47 ± 0.141</td>
<td>± U</td>
<td>102</td>
<td>0.15</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.186 ± 0.065</td>
<td>± U</td>
<td>92.9</td>
<td>-0.33</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.956 ± 0.335</td>
<td>± U</td>
<td>105</td>
<td>0.23</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.413</td>
<td>0.145</td>
<td>0.0574</td>
<td>111</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>0.898</td>
<td>0.314</td>
<td>0.176</td>
<td>112</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>0.196</td>
<td>0.069</td>
<td>0.0771</td>
<td>103</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.209</td>
<td>0.073</td>
<td>0.0196</td>
<td>113</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.157</td>
<td>0.055</td>
<td>0.0104</td>
<td>107</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.373</td>
<td>0.131</td>
<td>0.0503</td>
<td>77</td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.168</td>
<td>0.059</td>
<td>0.0227</td>
<td>107</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>3.1</td>
<td>0.93</td>
<td>0.441</td>
<td>112</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.42</td>
<td>0.497</td>
<td>0.233</td>
<td>107</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>0.229</td>
<td>0.08</td>
<td>0.0305</td>
<td>89.5</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.65</td>
<td>0.795</td>
<td>0.317</td>
<td>96.5</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>0.987</td>
<td>0.296</td>
<td>0.171</td>
<td>90.4</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.223</td>
<td>0.078</td>
<td>0.0244</td>
<td>109</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>0.157</td>
<td>0.055</td>
<td>0.0209</td>
<td>129</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.524</td>
<td>0.157</td>
<td>0.0417</td>
<td>104</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.116</td>
<td>0.035</td>
<td>0.0141</td>
<td>90.6</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.107 ± 0.0327</td>
<td>35.4</td>
<td>-5.98</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.9665 ± 0.0884</td>
<td>109</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.287 ± 0.172</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.5489 ± 0.0838</td>
<td>110</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.0345 ± 0.00855</td>
<td>90.9</td>
<td>-0.40</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.0086 ± 0.0017</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.1589 ± 0.0137</td>
<td>103</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.112 ± 0.0116</td>
<td>123</td>
<td>1.80</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.07 ± 0.0152</td>
<td>42.8</td>
<td>-6.17</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.0693 ± 0.00756</td>
<td>79.4</td>
<td>-2.38</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td><0.01 (LOQ)</td>
<td>0.0718</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.107 ± 0.0642</td>
<td>15.7</td>
<td>-17.60</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.189 ± 0.0662</td>
<td>31.2</td>
<td>-6.30</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.0668 ± 0.0163</td>
<td>111</td>
<td>0.42</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td><0.01 (LOQ)</td>
<td>0.0453</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>1.08</td>
<td>0.648</td>
<td>0.0433</td>
<td>201</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.331</td>
<td>0.0993</td>
<td>0.0287</td>
<td>112</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>-</td>
<td>-</td>
<td>0.0159</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.428</td>
<td>0.257</td>
<td>0.056</td>
<td>99.6</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>-</td>
<td>0.0434</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.438</td>
<td>0.0876</td>
<td>0.0641</td>
<td>120</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.057</td>
<td>0.0234</td>
<td>0.0281</td>
<td>117</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.822</td>
<td>0.493</td>
<td>0.0268</td>
<td>374</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>-</td>
<td>-</td>
<td>0.0358</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.072</td>
<td>0.043</td>
<td>0.0518</td>
<td>17.8</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.267</td>
<td>0.08</td>
<td>0.0303</td>
<td>88.6</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.209</td>
<td>0.0627</td>
<td>0.0161</td>
<td>88.3</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.105</td>
<td>0.032</td>
<td>0.0152</td>
<td>89.3</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.034</td>
<td>0.02</td>
<td>0.0241</td>
<td>14.9</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>-</td>
<td>-</td>
<td>0.0524</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>1.724</td>
<td>1.034</td>
<td>0.0673</td>
<td>338</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.256</td>
<td>0.077</td>
<td>0.0093</td>
<td>98.4</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.37</td>
<td>0.115</td>
<td>0.0489</td>
<td>91.8</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.364</td>
<td>0.218</td>
<td>0.0113</td>
<td>407</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ±</td>
<td>Cl(99%)</td>
<td>Result ±</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>-----------</td>
<td>---------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.081 0.049</td>
<td>0.0362</td>
<td>31.9</td>
<td>-4.78</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.398 0.239</td>
<td>0.276</td>
<td>43.3</td>
<td>-1.88</td>
</tr>
<tr>
<td>Pethoxam</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.398 0.239</td>
<td>0.0111</td>
<td>226</td>
<td>19.90</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>3.12 1.872</td>
<td>0.0344</td>
<td>636</td>
<td>76.40</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.146 0.088</td>
<td>0.0194</td>
<td>96.2</td>
<td>-0.30</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.1449 0.0681</td>
<td>0.00963</td>
<td>118</td>
<td>2.31</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.2795 0.0839</td>
<td>0.0258</td>
<td>110</td>
<td>0.99</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.616 0.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.401 0.241</td>
<td>0.0217</td>
<td>136</td>
<td>4.85</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.205 0.123</td>
<td>0.0931</td>
<td>26.8</td>
<td>-6.02</td>
</tr>
<tr>
<td>Tolyfuanil</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.05 0.03</td>
<td>0.0955</td>
<td>32.5</td>
<td>-1.09</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.015 0.009</td>
<td>0.0531</td>
<td>3.12</td>
<td>-8.76</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.119 0.071</td>
<td>0.15</td>
<td>29.3</td>
<td>-1.91</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ±</th>
<th>Cl(99%)</th>
<th>Result ±</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.065 0.039</td>
<td>0.0227</td>
<td>34</td>
<td>-5.56</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.548 0.7644</td>
<td>0.192</td>
<td>101</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>1.634 0.98</td>
<td>0.0143</td>
<td>899</td>
<td>102.00</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>0.149</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>4.19</td>
<td>2.51</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.076</td>
<td>0.046</td>
<td>0.0533</td>
<td>16</td>
<td>-7.47</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.614</td>
<td>0.1228</td>
<td>0.175</td>
<td>85.9</td>
<td>-0.58</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.237</td>
<td>0.0711</td>
<td>0.0228</td>
<td>112</td>
<td>1.08</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.1 ± 0.194</td>
<td>3.1</td>
<td>0.93</td>
<td>0.225</td>
<td>99.6</td>
<td>-0.05</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.1374</td>
<td>0.0412</td>
<td>0.0104</td>
<td>119</td>
<td>2.13</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>1.1</td>
<td>0.242</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.065</td>
<td>0.039</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.068</td>
<td>0.041</td>
<td>0.023</td>
<td>30.7</td>
<td>-6.70</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.533</td>
<td>0.32</td>
<td>0.0516</td>
<td>115</td>
<td>1.38</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.051</td>
<td>0.031</td>
<td>0.0429</td>
<td>25.5</td>
<td>-3.48</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>1.01</td>
<td>0.606</td>
<td>0.197</td>
<td>111</td>
<td>0.50</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.039 0.023</td>
<td>0.0574</td>
<td>10.5</td>
<td>-5.79</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>1.38 0.828</td>
<td>0.176</td>
<td>173</td>
<td>3.30</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>0.039 0.023</td>
<td>0.0771</td>
<td>20.5</td>
<td>-1.97</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.1482 0.0726</td>
<td>0.0196</td>
<td>80.3</td>
<td>-1.86</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>- -</td>
<td>0.0227</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.181 1.31</td>
<td>0.441</td>
<td>78.8</td>
<td>-1.33</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>0.124 0.0744</td>
<td>0.233</td>
<td>9.39</td>
<td>-5.13</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>1.353 0.812</td>
<td>0.0305</td>
<td>529</td>
<td>36.00</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethyloxamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.35 0.21</td>
<td>0.0482</td>
<td>96.4</td>
<td>-0.27</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target \pm CI(99%)</td>
<td>Result \pm U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>----------------------</td>
<td>---------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.75 ± 0.605</td>
<td>0.317</td>
<td>100</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.11 ± 0.167</td>
<td>0.171</td>
<td>102</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>1.559 ± 0.935</td>
<td>0.0417</td>
<td>309</td>
<td>25.30</td>
<td></td>
</tr>
<tr>
<td>Thiacioprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.058 ± 0.035</td>
<td>0.0141</td>
<td>45.3</td>
<td>-4.96</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Measurand</td>
<td>PM02 A</td>
<td>PM02 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>-6.0</td>
<td>101.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>-6.2</td>
<td>12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>-6.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>-7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>-4.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>-2.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>-6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>-17.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>-22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>-36.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>-8.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>-19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>-24.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>-76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>-6.4</td>
<td>-5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>22.5</td>
<td>18.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>-6.0</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide-P-acid (Dimethenamid-OA)</td>
<td>-5.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>-3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>-12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>-12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>-12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazine</td>
<td>-6.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>-4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>-22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>-19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>-7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>36.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>-6.4</td>
<td>-5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>22.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>-12.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>-4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>-19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxam</td>
<td>76.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>-4.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>23.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>-2.4</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>19.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>-5.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiachloriprid</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>-8.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>-6.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>1.29</td>
<td>0.097</td>
<td>0.0327</td>
<td>426</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.868</td>
<td>0.048</td>
<td>0.0884</td>
<td>98.3</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.157</td>
<td>0.01</td>
<td>0.0137</td>
<td>102</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.151</td>
<td>0.019</td>
<td>0.0226</td>
<td>107</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.087</td>
<td>0.004</td>
<td>0.0116</td>
<td>95.6</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.089</td>
<td>0.004</td>
<td>0.00756</td>
<td>102</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.16</td>
<td>0.008</td>
<td>0.0162</td>
<td>98.8</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>-</td>
<td>-</td>
<td>0.0662</td>
<td>-</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.447</td>
<td>0.014</td>
<td>0.0453</td>
<td>103</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.601 0.009</td>
<td>0.0433</td>
<td>112</td>
<td>1.47</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.278 0.004</td>
<td>0.0287</td>
<td>94.3</td>
<td>-0.59</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.446 0.009</td>
<td>0.056</td>
<td>104</td>
<td>0.29</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.225 0.004</td>
<td>0.0268</td>
<td>102</td>
<td>0.20</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.314 0.016</td>
<td>0.0358</td>
<td>102</td>
<td>0.19</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.437 0.032</td>
<td>0.0518</td>
<td>108</td>
<td>0.61</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.287 0.013</td>
<td>0.0303</td>
<td>95.2</td>
<td>-0.48</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.253 0.012</td>
<td>0.0161</td>
<td>107</td>
<td>1.01</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.118 0.009</td>
<td>0.0152</td>
<td>100</td>
<td>0.02</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.222 0.004</td>
<td>0.0241</td>
<td>97.5</td>
<td>-0.24</td>
</tr>
<tr>
<td>Metlaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.576 0.027</td>
<td>0.0524</td>
<td>108</td>
<td>0.82</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.434 0.024</td>
<td>0.0673</td>
<td>85.1</td>
<td>-1.13</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.263 0.004</td>
<td>0.0093</td>
<td>101</td>
<td>0.32</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.378 0.018</td>
<td>0.0489</td>
<td>93.8</td>
<td>-0.51</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.095 0.011</td>
<td>0.0113</td>
<td>106</td>
<td>0.48</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethysulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.975</td>
<td>0.021</td>
<td>0.276</td>
<td>106 0.20</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.221</td>
<td>0.016</td>
<td>0.0111</td>
<td>125 4.02</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.157</td>
<td>0.009</td>
<td>0.0194</td>
<td>103 0.27</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.123</td>
<td>0.007</td>
<td>0.00963</td>
<td>100 0.04</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.27</td>
<td>0.015</td>
<td>0.0258</td>
<td>106 0.62</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.282</td>
<td>0.015</td>
<td>0.0217</td>
<td>95.4 -0.62</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.685</td>
<td>0.014</td>
<td>0.0931</td>
<td>89.5 -0.86</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.105</td>
<td>0.003</td>
<td>0.0955</td>
<td>68.3 -0.51</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- -</td>
<td>0.15</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.8</td>
<td>0.023</td>
<td>0.0227</td>
<td>419 26.80</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.235</td>
<td>0.17</td>
<td>0.192</td>
<td>88.2 -1.56</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- - 0.0533</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>- - 0.175</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>2.815 0.137</td>
<td>0.153 185</td>
<td>8.44 -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.213 0.01</td>
<td>0.0228 100</td>
<td>0.03 -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- - 0.18</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.514 0.011</td>
<td>0.0493 112</td>
<td>1.10 -</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>- - 0.225</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- - 0.0104</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>- - 0.023</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- - 0.0516</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- - 0.0429</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- - 0.197</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid (ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfinic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>-</td>
<td>0.176</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>-</td>
<td>0.0771</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>-</td>
<td>0.0196</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>-</td>
<td>0.0503</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>MCPB (Mecoprop)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.13</td>
<td>0.005</td>
<td>0.0227</td>
<td>82.9</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.079</td>
<td>0.187</td>
<td>0.441</td>
<td>75.2</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.627</td>
<td>0.027</td>
<td>0.233</td>
<td>123</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>-</td>
<td>0.0305</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>1.203</td>
<td>0.045</td>
<td>0.205</td>
<td>113</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.39</td>
<td>0.025</td>
<td>0.0482</td>
<td>107</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.568 ± 0.113</td>
<td>0.317</td>
<td>93.5</td>
<td>-0.56</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.168 ± 0.003</td>
<td>0.171</td>
<td>107</td>
<td>0.45</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.577 ± 0.019</td>
<td>0.0417</td>
<td>114</td>
<td>1.74</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.116 ± 0.007</td>
<td>0.0141</td>
<td>90.6</td>
<td>-0.85</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolylfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triburon-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0012

<table>
<thead>
<tr>
<th>Measurand</th>
<th>Sample</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td></td>
<td>30.2</td>
<td>26.8</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfinamide (OMS)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td></td>
<td></td>
<td>4.0</td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiaprid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.342 ± 0.068</td>
<td>0.0327</td>
<td>113</td>
<td>1.20</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.798 ± 0.159</td>
<td>0.0884</td>
<td>90.4</td>
<td>-0.96</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.154 ± 0.031</td>
<td>0.0137</td>
<td>99.9</td>
<td>-0.01</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxylostrobe 1-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.101 ± 0.02</td>
<td>0.0116</td>
<td>111</td>
<td>0.85</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.084 ± 0.017</td>
<td>0.00756</td>
<td>96.2</td>
<td>-0.43</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.687 ± 0.137</td>
<td>0.0662</td>
<td>113</td>
<td>1.22</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.39 ± 0.078</td>
<td>0.0453</td>
<td>90.2</td>
<td>-0.93</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.516</td>
<td>0.103</td>
<td>0.0433</td>
<td>96.1</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dibenzoxazin</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.282</td>
<td>0.056</td>
<td>0.0287</td>
<td>95.6</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.149</td>
<td>0.03</td>
<td>0.0159</td>
<td>97.5</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>-</td>
<td>-</td>
<td>0.056</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxamic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>-</td>
<td>0.0434</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>-</td>
<td>-</td>
<td>0.0641</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>-</td>
<td>-</td>
<td>0.0281</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.213</td>
<td>0.0426</td>
<td>0.0268</td>
<td>96.9</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.295</td>
<td>0.059</td>
<td>0.0358</td>
<td>96</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.396</td>
<td>0.0792</td>
<td>0.0518</td>
<td>97.7</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.272</td>
<td>0.054</td>
<td>0.0303</td>
<td>90.2</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.299</td>
<td>0.06</td>
<td>0.0161</td>
<td>126</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.146</td>
<td>0.029</td>
<td>0.0152</td>
<td>124</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>-</td>
<td>0.0241</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.527</td>
<td>0.105</td>
<td>0.0524</td>
<td>98.9</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.467</td>
<td>0.093</td>
<td>0.0673</td>
<td>91.5</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.256</td>
<td>0.051</td>
<td>0.0093</td>
<td>98.4</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxamic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.389</td>
<td>0.078</td>
<td>0.0489</td>
<td>96.5</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.086</td>
<td>0.172</td>
<td>0.0113</td>
<td>96.1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- -</td>
<td>0.0362</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.965 0.193</td>
<td>0.276</td>
<td>105 0.17</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- -</td>
<td>0.0111</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.526 0.105</td>
<td>0.0344</td>
<td>107 1.04</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.137 0.027</td>
<td>0.0194</td>
<td>90.3 -0.76</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.114 0.023</td>
<td>0.00963</td>
<td>93 -0.89</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.256 0.051</td>
<td>0.0258</td>
<td>101 0.08</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.293 0.586</td>
<td>0.0217</td>
<td>99.2 -0.11</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.736 0.147</td>
<td>0.0931</td>
<td>96.2 -0.31</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- -</td>
<td>0.0955</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.483 0.145</td>
<td>0.0531</td>
<td>101 0.06</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- -</td>
<td>0.15</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.192 0.038</td>
<td>0.0227</td>
<td>100 0.04</td>
<td>- -</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.497 0.499</td>
<td>0.192</td>
<td>98.5 -0.20</td>
<td>- -</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- -</td>
<td>0.0143</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- -</td>
<td>0.149</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.203</td>
<td>0.041</td>
<td>0.0228</td>
<td>95.6</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.438</td>
<td>0.088</td>
<td>0.0493</td>
<td>95.3</td>
</tr>
<tr>
<td>Azoxytrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxytrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>2.823</td>
<td>0.565</td>
<td>0.225</td>
<td>90.7</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.125</td>
<td>0.025</td>
<td>0.0104</td>
<td>108</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlobenil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.308</td>
<td>0.062</td>
<td>0.023</td>
<td>139</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>1.176</td>
<td>0.235</td>
<td>0.197</td>
<td>129</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid-ESA</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.458</td>
<td>0.137</td>
<td>0.0503</td>
<td>94.5</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.458</td>
<td>0.137</td>
<td>0.0503</td>
<td>94.5</td>
<td>-0.53</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.147</td>
<td>0.029</td>
<td>0.0227</td>
<td>93.8</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.698</td>
<td>0.539</td>
<td>0.441</td>
<td>97.5</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.08</td>
<td>0.216</td>
<td>0.233</td>
<td>81.8</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribufuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribufuron-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.334</td>
<td>0.067</td>
<td>0.0482</td>
<td>92</td>
</tr>
</tbody>
</table>

Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0013
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75</td>
<td>± 0.245</td>
<td>2.829</td>
<td>0.565</td>
<td>0.317</td>
<td>103</td>
<td>0.26</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09</td>
<td>± 0.142</td>
<td>1.252</td>
<td>0.25</td>
<td>0.171</td>
<td>115</td>
<td>0.94</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.204</td>
<td>± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122</td>
<td>± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504</td>
<td>± 0.0313</td>
<td>0.461</td>
<td>0.092</td>
<td>0.0417</td>
<td>91.4</td>
<td>-1.04</td>
</tr>
<tr>
<td>Thiocloprid</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128</td>
<td>± 0.0118</td>
<td>0.124</td>
<td>0.025</td>
<td>0.0141</td>
<td>96.9</td>
<td>-0.28</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluclid</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>-</td>
<td>± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0013

Sample

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td></td>
<td>3.8</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td></td>
<td>3.9</td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± U</th>
<th>CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.0327</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.0884</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.0838</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.00855</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.227 0.07</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.0137</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.0226</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.0116</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.00756</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Ciloxanil</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.0718</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.0162</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.0328</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.0662</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.0163</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.0453</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>-</td>
<td>-</td>
<td>0.0433</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>-</td>
<td>-</td>
<td>0.0287</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>-</td>
<td>-</td>
<td>0.0159</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>-</td>
<td>-</td>
<td>0.056</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.468</td>
<td>0.21</td>
<td>0.0434</td>
<td>316</td>
<td>7.36</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>2.11</td>
<td>0.8</td>
<td>0.0641</td>
<td>576</td>
<td>27.20</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>-</td>
<td>-</td>
<td>0.0281</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>-</td>
<td>-</td>
<td>0.0268</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>-</td>
<td>-</td>
<td>0.0358</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>-</td>
<td>-</td>
<td>0.0518</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>-</td>
<td>-</td>
<td>0.0303</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>-</td>
<td>-</td>
<td>0.0161</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>-</td>
<td>0.0241</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>-</td>
<td>-</td>
<td>0.0524</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>-</td>
<td>-</td>
<td>0.0673</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>-</td>
<td>-</td>
<td>0.0093</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>-</td>
<td>-</td>
<td>0.0489</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>-</td>
<td>-</td>
<td>0.0113</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± Cl(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475</td>
<td>± 0.0605</td>
<td>-</td>
<td>-</td>
<td>0.0533</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715</td>
<td>± 0.159</td>
<td>2.15</td>
<td>0.67</td>
<td>0.175</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52</td>
<td>± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212</td>
<td>± 0.0153</td>
<td>-</td>
<td>-</td>
<td>0.0228</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872</td>
<td>± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46</td>
<td>± 0.0348</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11</td>
<td>± 0.194</td>
<td>-</td>
<td>-</td>
<td>0.225</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115</td>
<td>± 0.00942</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222</td>
<td>± 0.0162</td>
<td>-</td>
<td>-</td>
<td>0.023</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462</td>
<td>± 0.0516</td>
<td>-</td>
<td>-</td>
<td>0.0516</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2</td>
<td>± 0.0487</td>
<td>-</td>
<td>-</td>
<td>0.0429</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911</td>
<td>± 0.187</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethenamid-ESA</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.011</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>- -</td>
<td>0.0227</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Methylsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>-</td>
<td>-</td>
<td>0.317</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>-</td>
<td>0.171</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>-</td>
<td>-</td>
<td>0.0417</td>
<td>-</td>
</tr>
<tr>
<td>Thioclorprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thimetoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0014

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPA</td>
<td>7.4</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>2.4</td>
<td>8.2</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>27.2</td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.287 0.06</td>
<td>0.0327</td>
<td>94.8</td>
<td>-0.48</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.806 0.16</td>
<td>0.0884</td>
<td>91.3</td>
<td>-0.87</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>- -</td>
<td>0.0838</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>- -</td>
<td>0.00855</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.151 0.03</td>
<td>0.0137</td>
<td>97.9</td>
<td>-0.23</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.035</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.142 0.07</td>
<td>0.0226</td>
<td>100</td>
<td>0.03</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.086 0.02</td>
<td>0.0116</td>
<td>94.5</td>
<td>-0.43</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- -</td>
<td>0.0152</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.095 0.02</td>
<td>0.00756</td>
<td>109</td>
<td>1.02</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>- -</td>
<td>0.0718</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.136 0.03</td>
<td>0.0162</td>
<td>84</td>
<td>-1.61</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.543 0.1</td>
<td>0.0662</td>
<td>89.6</td>
<td>-0.96</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>- -</td>
<td>0.0163</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.369 0.07</td>
<td>0.0453</td>
<td>85.4</td>
<td>-1.40</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.598 0.12</td>
<td>0.0433</td>
<td>111</td>
<td>1.40</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dibromochloropropane</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.33 0.06</td>
<td>0.0287</td>
<td>112</td>
<td>1.22</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.159 0.03</td>
<td>0.0159</td>
<td>104</td>
<td>0.39</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.439 0.08</td>
<td>0.056</td>
<td>102</td>
<td>0.16</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.23 0.05</td>
<td>0.0268</td>
<td>105</td>
<td>0.38</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.248 0.05</td>
<td>0.0358</td>
<td>80.7</td>
<td>-1.65</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.356 0.06</td>
<td>0.0518</td>
<td>87.9</td>
<td>-0.95</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.287 0.06</td>
<td>0.0303</td>
<td>95.2</td>
<td>-0.48</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.235 0.05</td>
<td>0.0161</td>
<td>99.3</td>
<td>-0.10</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.107 0.02</td>
<td>0.0152</td>
<td>91</td>
<td>-0.70</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.569 0.1</td>
<td>0.0524</td>
<td>107</td>
<td>0.69</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.476 0.09</td>
<td>0.0673</td>
<td>93.3</td>
<td>-0.51</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.257 0.05</td>
<td>0.0093</td>
<td>98.8</td>
<td>-0.33</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.432 0.09</td>
<td>0.0489</td>
<td>107</td>
<td>0.59</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td><0.02 (LOQ)</td>
<td>0.0113</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0015

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.198</td>
<td>0.04</td>
<td>0.0111</td>
<td>112</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>0.858</td>
<td>0.1</td>
<td>0.276</td>
<td>93.4</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.476</td>
<td>0.08</td>
<td>0.0344</td>
<td>97.1</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.137</td>
<td>0.03</td>
<td>0.0194</td>
<td>90.3</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.137 ± 0.0343</td>
<td>0.126</td>
<td>0.02</td>
<td>0.0245</td>
<td>93.4</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.0931 ± 0.154</td>
<td>0.100</td>
<td>0.02</td>
<td>0.0205</td>
<td>93.8</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.0774 ± 0.254</td>
<td>0.0931</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.115</td>
<td>0.02</td>
<td>0.00963</td>
<td>93.8</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.272</td>
<td>0.05</td>
<td>0.0258</td>
<td>107</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.282</td>
<td>0.05</td>
<td>0.0217</td>
<td>95.4</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
<td>-</td>
</tr>
<tr>
<td>Tolfufluanid</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.184</td>
<td>0.03</td>
<td>0.0227</td>
<td>96.3</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery ± z-score</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- -</td>
<td>0.0533</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>- -</td>
<td>0.175</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- -</td>
<td>0.153</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.204 0.3</td>
<td>0.0228</td>
<td>96.1 -0.36</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- -</td>
<td>0.18</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.424 0.08</td>
<td>0.0493</td>
<td>92.2 -0.73</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>2.919 0.3</td>
<td>0.225</td>
<td>93.8 -0.86</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.205 0.05</td>
<td>0.023</td>
<td>92.4 -0.73</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.025 0.02</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- -</td>
<td>0.0516</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- -</td>
<td>0.0429</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- -</td>
<td>0.197</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid-ESA</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.035</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.035</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.035</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.356 0.08</td>
<td>0.0482 98.1</td>
<td>-14</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>-</td>
<td>0.317</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>0.171</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.499</td>
<td>0.0417</td>
<td>98.9</td>
<td>-0.13</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.025</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamefoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.127</td>
<td>0.0141</td>
<td>99.2</td>
<td>-0.07</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluunid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0015

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalithron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score

Sample

-2 0 2 -2 0 2
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.296 0.074</td>
<td>0.0327</td>
<td>97.8</td>
<td>-0.20</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.98 0.294</td>
<td>0.0884</td>
<td>111</td>
<td>1.10</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.517 0.103</td>
<td>0.0838</td>
<td>103</td>
<td>0.20</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.03 0.006</td>
<td>0.00855</td>
<td>79.1</td>
<td>-0.93</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.149 0.03</td>
<td>0.0137</td>
<td>96.6</td>
<td>-0.38</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.182 0.055</td>
<td>0.0226</td>
<td>129</td>
<td>1.80</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.107 0.021</td>
<td>0.0116</td>
<td>118</td>
<td>1.37</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.157 0.031</td>
<td>0.0152</td>
<td>95.9</td>
<td>-0.44</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>0.00756</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.419 0.105</td>
<td>0.0718</td>
<td>120</td>
<td>0.95</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.238 0.048</td>
<td>0.0162</td>
<td>147</td>
<td>4.70</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.625 0.125</td>
<td>0.0328</td>
<td>91.5</td>
<td>-1.78</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.531 0.106</td>
<td>0.0662</td>
<td>87.6</td>
<td>-1.14</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.042 0.0084</td>
<td>0.0163</td>
<td>70</td>
<td>-1.10</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.396 0.079</td>
<td>0.0453</td>
<td>91.6</td>
<td>-0.80</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.491</td>
<td>0.0982</td>
<td>0.0433</td>
<td>91.4</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.265</td>
<td>0.053</td>
<td>0.0287</td>
<td>89.9</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.105</td>
<td>0.021</td>
<td>0.0159</td>
<td>68.7</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.416</td>
<td>0.083</td>
<td>0.056</td>
<td>96.8</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>-</td>
<td>0.0434</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>-</td>
<td>-</td>
<td>0.0641</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>0.0281</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.174</td>
<td>0.035</td>
<td>0.0268</td>
<td>79.2</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.272</td>
<td>0.068</td>
<td>0.0358</td>
<td>88.5</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.436</td>
<td>0.131</td>
<td>0.0518</td>
<td>108</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.249</td>
<td>0.05</td>
<td>0.0303</td>
<td>82.6</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.249</td>
<td>0.05</td>
<td>0.0161</td>
<td>105</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.098</td>
<td>0.02</td>
<td>0.0152</td>
<td>83.3</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.221</td>
<td>0.044</td>
<td>0.0241</td>
<td>97</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.451</td>
<td>0.09</td>
<td>0.0524</td>
<td>84.6</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.462</td>
<td>0.092</td>
<td>0.0673</td>
<td>90.6</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.256</td>
<td>0.051</td>
<td>0.0093</td>
<td>98.4</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.282</td>
<td>0.056</td>
<td>0.0489</td>
<td>70</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.075</td>
<td>0.015</td>
<td>0.0113</td>
<td>83.8</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ±</td>
<td>Cl(99%)</td>
<td>Result ±</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>-------</td>
<td>-----------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0343</td>
<td>0.273</td>
<td>0.055</td>
<td>0.0362</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ±</td>
<td>0.222</td>
<td>0.91</td>
<td>0.182</td>
<td>0.276</td>
</tr>
<tr>
<td>Petboxamid</td>
<td>µg/l</td>
<td>0.176 ±</td>
<td>0.0111</td>
<td>0.177</td>
<td>0.053</td>
<td>0.0111</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ±</td>
<td>0.0258</td>
<td>0.511</td>
<td>0.102</td>
<td>0.0344</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ±</td>
<td>0.0146</td>
<td>0.158</td>
<td>0.032</td>
<td>0.0194</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ±</td>
<td>0.00681</td>
<td>0.118</td>
<td>0.024</td>
<td>0.00963</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ±</td>
<td>0.0165</td>
<td>0.278</td>
<td>0.056</td>
<td>0.0258</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ±</td>
<td>0.0181</td>
<td>0.289</td>
<td>0.058</td>
<td>0.0217</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ±</td>
<td>0.0774</td>
<td>0.842</td>
<td>0.253</td>
<td>0.0931</td>
</tr>
<tr>
<td>Tolyffluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ±</td>
<td>0.0906</td>
<td>0.116</td>
<td>0.023</td>
<td>0.0955</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ±</td>
<td>0.0503</td>
<td>0.412</td>
<td>0.082</td>
<td>0.0531</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ±</td>
<td>0.143</td>
<td>0.467</td>
<td>0.093</td>
<td>0.15</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.615</td>
<td>0.123</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ±</th>
<th>Cl(99%)</th>
<th>Result ±</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ±</td>
<td>0.0152</td>
<td>0.156</td>
<td>0.039</td>
<td>0.0227</td>
<td>81.6</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ±</td>
<td>0.132</td>
<td>2.386</td>
<td>0.716</td>
<td>0.192</td>
<td>94.1</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ±</td>
<td>0.0175</td>
<td>0.194</td>
<td>0.039</td>
<td>0.0143</td>
<td>107</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ±</td>
<td>0.183</td>
<td>0.41</td>
<td>0.082</td>
<td>0.149</td>
<td>101</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.201</td>
<td>0.04</td>
<td>0.0228</td>
<td>94.7</td>
<td>-0.49</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>1.091</td>
<td>0.218</td>
<td>0.18</td>
<td>125</td>
<td>1.22</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.505</td>
<td>0.101</td>
<td>0.0493</td>
<td>110</td>
<td>0.92</td>
</tr>
<tr>
<td>Atrazine-3-demethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.114</td>
<td>0.034</td>
<td>0.0104</td>
<td>98.9</td>
<td>-0.12</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R811965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.212</td>
<td>0.042</td>
<td>0.023</td>
<td>95.6</td>
<td>-0.43</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethchlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethchlor ethane sulfonic acid (CGA 354742, Dimethchlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.527</td>
<td>0.105</td>
<td>0.0516</td>
<td>114</td>
<td>1.26</td>
</tr>
<tr>
<td>Dimethchlor oxalamic acid (CGA 50266, Dimethchlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.212</td>
<td>0.042</td>
<td>0.0429</td>
<td>106</td>
<td>0.27</td>
</tr>
<tr>
<td>Dimethchlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethchlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethchlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-OA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dibucar</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.03 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxide</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.16 0.032 0.0104 109 1.22</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.326 0.098 0.0503 67.3 -3.15</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.123 0.025 0.0227 78.5 -1.49</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>3.249 0.975 0.441 117 1.09</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.291 0.387 0.233 97.7 -0.13</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>0.298 0.089 0.0305 116 1.38</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>0.952 0.286 0.205 89.2 -0.56</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pestezone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.1 (LOQ)</td>
<td>- - - -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>0.199 0.04 0.0183 97.1 -0.33</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.289 0.058 0.0482 79.6 -1.53</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CE(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.952</td>
<td>0.886</td>
<td>0.317</td>
<td>107</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1</td>
<td>0.3</td>
<td>0.171</td>
<td>91.6</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.22</td>
<td>0.066</td>
<td>0.0244</td>
<td>108</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>0.119</td>
<td>0.024</td>
<td>0.0209</td>
<td>97.4</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.519</td>
<td>0.156</td>
<td>0.0417</td>
<td>103</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.107</td>
<td>0.021</td>
<td>0.0141</td>
<td>83.6</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolylfluanid</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± <0.1 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0016

Measurand

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,6-Trichloro-2-pyridinol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>-3.0</td>
<td>4.7</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethoamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>-3.0</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>-2.5</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamidine (DMS)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score

-2.0 0 2.0 4.0

645/715
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.309</td>
<td>0.062</td>
<td>0.0327</td>
<td>102</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0503</td>
<td>0.737</td>
<td>0.147</td>
<td>0.0884</td>
<td>83.5</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.62</td>
<td>0.124</td>
<td>0.0838</td>
<td>124</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>- - 0.00855</td>
<td>- - 0.00855</td>
<td>- - 0.00855</td>
<td>- - 0.00855</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± <<0.02 (LOD)</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.174</td>
<td>0.023</td>
<td>0.0137</td>
<td>113</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± 0.005</td>
<td>0.005</td>
<td>0.001</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± <<0.005 (LOD)</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.172</td>
<td>0.031</td>
<td>0.0226</td>
<td>122</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.101</td>
<td>0.013</td>
<td>0.0116</td>
<td>111</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.051</td>
<td>0.008</td>
<td>0.00756</td>
<td>58.4</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid) µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA) µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.448</td>
<td>0.09</td>
<td>0.0718</td>
<td>128</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.244</td>
<td>0.037</td>
<td>0.0162</td>
<td>151</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.686</td>
<td>0.124</td>
<td>0.0662</td>
<td>113</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA) µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.332 0.05</td>
<td>0.0287</td>
<td>113 1.29</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.172 0.026</td>
<td>0.0159</td>
<td>113 1.21</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.498 0.075</td>
<td>0.056</td>
<td>116 1.22</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonylic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- - - - -</td>
<td>0.0434</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.441 0.057</td>
<td>0.0641</td>
<td>120 1.17</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- - - - -</td>
<td>0.0281</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.28 0.042</td>
<td>0.0268</td>
<td>127 2.25</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.365 0.066</td>
<td>0.0358</td>
<td>119 1.61</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.485 0.097</td>
<td>0.0518</td>
<td>120 1.54</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.358 0.046</td>
<td>0.0303</td>
<td>119 1.87</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.248 0.037</td>
<td>0.0161</td>
<td>105 0.70</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>MCPB (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.137 0.027</td>
<td>0.0152</td>
<td>116 1.27</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.192 0.057</td>
<td>0.0241</td>
<td>84.3 -1.48</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.634 0.082</td>
<td>0.0524</td>
<td>119 1.93</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.229 0.041</td>
<td>0.0673</td>
<td>44.9 -4.18</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.304 0.046</td>
<td>0.0093</td>
<td>117 4.73</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonylic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.5 0.075</td>
<td>0.0489</td>
<td>124 1.98</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.134 0.02</td>
<td>0.0113</td>
<td>150 3.94</td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.291</td>
<td>0.044</td>
<td>0.0362</td>
<td>115</td>
<td>1.02</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>-</td>
<td>0.276</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Petoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.191</td>
<td>0.038</td>
<td>0.0194</td>
<td>126</td>
<td>2.02</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.161</td>
<td>0.024</td>
<td>0.00963</td>
<td>131</td>
<td>3.99</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.283</td>
<td>0.037</td>
<td>0.0258</td>
<td>111</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.001 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.334</td>
<td>0.05</td>
<td>0.0217</td>
<td>113</td>
<td>1.77</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.002 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.949</td>
<td>0.218</td>
<td>0.0931</td>
<td>124</td>
<td>1.98</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.068</td>
<td>0.017</td>
<td>0.0955</td>
<td>44.2</td>
<td>-0.90</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.691</td>
<td>0.138</td>
<td>0.15</td>
<td>170</td>
<td>1.89</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.211</td>
<td>0.042</td>
<td>0.0227</td>
<td>110</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.8</td>
<td>0.56</td>
<td>0.192</td>
<td>110</td>
<td>1.38</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

"648/715"
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.947</td>
<td>0.123</td>
<td>0.175</td>
<td>132</td>
<td>1.32</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>0.003</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.272</td>
<td>0.041</td>
<td>0.0228</td>
<td>128</td>
<td>2.61</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.419</td>
<td>0.063</td>
<td>0.0493</td>
<td>91.1</td>
<td>-0.83</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.002</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.002 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.01 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td><0.005 (LOD)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.266</td>
<td>0.048</td>
<td>0.023</td>
<td>120</td>
<td>1.92</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.003 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- - -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- - -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td></td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- - -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- - -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- - -</td>
<td>0.0503</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.145</td>
<td>0.026</td>
<td>0.0227</td>
<td>92.5 -0.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- - -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- - -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- - -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- - -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- - -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.446</td>
<td>0.089</td>
<td>0.0482</td>
<td>123 1.72</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>- -</td>
<td>0.317</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.0118</td>
<td>0.014</td>
<td>0.00417</td>
<td>151</td>
<td>6.17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.06</td>
<td>0.0141</td>
<td>46.9</td>
<td>-4.81</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.002 (LOD)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 (LOD)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tributosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0017

Measureand

Sample

PM02 A

PM02 B

2,4-D (2,4-Dichlorophenoxyaceticacid) -2.0

2,6-Dichlorobenzamide -2.0

Alachlor -2.0

AMPA -2.0

Atrazine -2.0

Atrazine-desethyl -2.6

Atrazine-desisopropyl -2.6

Azoxystrobin -4.8

Bentazone -4.8

Chloridazon -5.1

Clopyralid -5.1

Clothianidin -5.1

Dichlorprop -5.1

Diuron -5.1

Ethofumesate -5.1

Flufenacet -5.1

Glyphosate -5.1

Hexazinone -5.1

Imidacloprid -5.1

Iodosulfuron-methyl -5.1

Isoproturon -5.1

MCPA -5.1

MCPP (Mecoprop) -5.1

Mesosulfuron-methyl -5.1

Metalaxyl -5.1

Metamitron -5.1

Metazachlor -4.7

Metolachlor -4.7

Metribuzin -4.7

Metsulfuron-methyl -4.7

Propiconazole -4.7

Simazine -4.7

Terbutylazine -4.7

Terbutylazine-desethyl -4.7

Thiacloprid -4.7

Thiamethoxam -4.7

Thifensulfuron-methyl -4.7

Tribenuron-methyl -4.7

Triflusulfuron-Methyl -4.7

z-score

-2 0 2 -2 0 2

5.1

2.2

2.6

6.2

4.8

4.2

3.9

2.0

4.0

-4.2

-4.8

652/715
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.284</td>
<td>0.085</td>
<td>0.0327</td>
<td>93.8</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.856</td>
<td>0.171</td>
<td>0.0884</td>
<td>97</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.159</td>
<td>0.032</td>
<td>0.0137</td>
<td>103</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.0044</td>
<td>0.086</td>
<td>0.017</td>
<td>0.0116</td>
<td>94.5</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.089</td>
<td>0.018</td>
<td>0.00756</td>
<td>102</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.608</td>
<td>0.122</td>
<td>0.0662</td>
<td>100</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>-</td>
<td>-</td>
<td>0.0433</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.309</td>
<td>0.062</td>
<td>0.0287</td>
<td>105</td>
<td>0.49</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>-</td>
<td>-</td>
<td>0.0159</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>-</td>
<td>-</td>
<td>0.056</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>-</td>
<td>0.0434</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>-</td>
<td>-</td>
<td>0.0641</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>-</td>
<td>-</td>
<td>0.0281</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>-</td>
<td>-</td>
<td>0.0268</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>-</td>
<td>-</td>
<td>0.0358</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>-</td>
<td>-</td>
<td>0.0518</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.31</td>
<td>0.062</td>
<td>0.0303</td>
<td>103</td>
<td>0.28</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.237</td>
<td>0.047</td>
<td>0.0161</td>
<td>100</td>
<td>0.02</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.111</td>
<td>0.033</td>
<td>0.0152</td>
<td>944</td>
<td>-0.44</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>-</td>
<td>0.0241</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>-</td>
<td>-</td>
<td>0.0524</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.534</td>
<td>0.107</td>
<td>0.0673</td>
<td>105</td>
<td>0.35</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.274</td>
<td>0.055</td>
<td>0.0093</td>
<td>105</td>
<td>1.50</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.398</td>
<td>0.08</td>
<td>0.0489</td>
<td>98.8</td>
<td>-0.10</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.093</td>
<td>0.019</td>
<td>0.0113</td>
<td>104</td>
<td>0.31</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- ± -</td>
<td>0.0362</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.222 ± 0.0362</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.0111</td>
<td>- ± -</td>
<td>0.0111</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- ± -</td>
<td>0.0111</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.516 ± 0.0134</td>
<td>- ± -</td>
<td>0.0344</td>
<td>105 ± 0.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>- ± -</td>
<td>0.0194</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.123 ± 0.00681</td>
<td>0.00963</td>
<td>100 ± 0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.259 ± 0.052</td>
<td>0.0258</td>
<td>102 ± 0.20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.285 ± 0.0181</td>
<td>- ± -</td>
<td>0.0217</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>- ± -</td>
<td>0.0931</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- ± -</td>
<td>0.0955</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>- ± -</td>
<td>0.0531</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- ± -</td>
<td>0.15</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.177 ± 0.053</td>
<td>0.0227</td>
<td>92.6 ± -0.62</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.502 ± 0.5</td>
<td>0.192</td>
<td>98.7 ± -0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- ± -</td>
<td>0.0143</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- ± -</td>
<td>0.149</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- -</td>
<td>0.0533</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>- -</td>
<td>0.175</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- -</td>
<td>0.153</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.224 0.045</td>
<td>0.0228</td>
<td>106 0.51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- -</td>
<td>0.18</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.479 0.096</td>
<td>0.0493</td>
<td>104 0.39</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>3.432 1.716</td>
<td>0.225</td>
<td>110 1.42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.115 0.023</td>
<td>0.0104</td>
<td>99.8 -0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.218 0.044</td>
<td>0.023</td>
<td>98.3 -0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.497 0.249</td>
<td>0.0516</td>
<td>108 0.68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.341 0.068</td>
<td>0.0429</td>
<td>170 3.28</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>1.086 0.543</td>
<td>0.197</td>
<td>119 0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-0.0703 ± 0.371</td>
<td>0.0574 - -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.168 ± 0.034</td>
<td>0.0227</td>
<td>107 0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.765 ± 0.553</td>
<td>0.441</td>
<td>100 0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.438 ± 0.288</td>
<td>0.233</td>
<td>109 0.50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>1.156 ± 0.578</td>
<td>0.205</td>
<td>108 0.43</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>------------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>3.136 ± 0.627</td>
<td>0.317</td>
<td>114</td>
<td>1.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.479 ± 0.296</td>
<td>0.171</td>
<td>136</td>
<td>2.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.494 ± 0.099</td>
<td>0.0417</td>
<td>97.9</td>
<td>-0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0018

Sample

PM02 A

PM02 B

Measurand

2,4-D (2,4-Dichlorphenoxyaceticacid)
2,6-Dichlorobenzamide
Atrazine
Atrazine-desethyl
Atrazine-desisopropyl
Bentazone
Chloridazon
Chloridazon-desphenyl
Chloridazon-methyl-desphenyl
Dichlorprop
Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)
Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)
Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)
Diuron
Isoproturon
MCPA
MCPP (Mecoprop)
Metamitron
Metazachlor
Metazachlor ethane sulfonic acid (Metazachlor-ESA)
Metazachlor oxanilic acid (Metazachlor-OA)
Metolachlor
Metribuzin
N,N-Dimethylsulfamide (DMS)
Propazine
s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
s-Metolachlor oxanilic acid (Metolachlor-OA)
Simazine
Terbuthylazine
Terbuthylazine-desethyl

z-score

-2 0 2

659/715
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.34 0.085</td>
<td>0.0327</td>
<td>112</td>
<td>1.14</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>-</td>
<td>0.0884</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.54 0.135</td>
<td>0.0838</td>
<td>108</td>
<td>0.47</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.01 0.0025</td>
<td>0.00855</td>
<td>26.4</td>
<td>-3.27</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.2 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.13 0.0325</td>
<td>0.0137</td>
<td>84.3</td>
<td>-1.76</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.16 0.04</td>
<td>0.0226</td>
<td>113</td>
<td>0.82</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.07 0.0175</td>
<td>0.0116</td>
<td>76.9</td>
<td>-1.81</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.16 0.04</td>
<td>0.0152</td>
<td>97.7</td>
<td>-0.24</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.09 0.0225</td>
<td>0.00756</td>
<td>103</td>
<td>0.36</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.29 0.0725</td>
<td>0.0162</td>
<td>179</td>
<td>7.91</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.59 0.1475</td>
<td>0.0662</td>
<td>97.3</td>
<td>-0.25</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.03 0.0075</td>
<td>0.0163</td>
<td>50</td>
<td>-1.84</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.44 0.11</td>
<td>0.0453</td>
<td>102</td>
<td>0.17</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.52 0.13</td>
<td>0.0433</td>
<td>96.8</td>
<td>-0.40</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dinuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.29 0.0725</td>
<td>0.0287</td>
<td>98.4</td>
<td>-0.17</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flu fenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.55 0.1375</td>
<td>0.056</td>
<td>128</td>
<td>2.15</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.4 0.1</td>
<td>0.0641</td>
<td>109</td>
<td>0.53</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.018 0.0045</td>
<td>0.0281</td>
<td>37</td>
<td>-1.09</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001 -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.25 0.0625</td>
<td>0.0268</td>
<td>114</td>
<td>1.13</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.35 0.0875</td>
<td>0.0518</td>
<td>86.4</td>
<td>-1.06</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.35 0.0875</td>
<td>0.0303</td>
<td>116</td>
<td>1.60</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.44 0.11</td>
<td>0.0161</td>
<td>186</td>
<td>12.60</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>- -</td>
<td>0.0152</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.51 0.1275</td>
<td>0.0524</td>
<td>95.7</td>
<td>-0.44</td>
</tr>
<tr>
<td>Metamintron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.43 0.1075</td>
<td>0.0673</td>
<td>84.3</td>
<td>-1.19</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.27 0.0675</td>
<td>0.0093</td>
<td>104</td>
<td>1.07</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.44 0.11</td>
<td>0.0489</td>
<td>109</td>
<td>0.76</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.11 0.0275</td>
<td>0.0113</td>
<td>123</td>
<td>1.81</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.32</td>
<td>0.08</td>
<td>0.0362</td>
<td>126</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>1.46</td>
<td>0.365</td>
<td>0.276</td>
<td>159</td>
</tr>
<tr>
<td>Petoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.48</td>
<td>0.12</td>
<td>0.0344</td>
<td>97.9</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.15</td>
<td>0.0375</td>
<td>0.0194</td>
<td>98.8</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.22</td>
<td>0.055</td>
<td>0.00963</td>
<td>179</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.26</td>
<td>0.065</td>
<td>0.0258</td>
<td>102</td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.29</td>
<td>0.0725</td>
<td>0.0217</td>
<td>98.2</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.44</td>
<td>0.11</td>
<td>0.0931</td>
<td>57.5</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.15</td>
<td>0.0375</td>
<td>0.0955</td>
<td>97.6</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.36</td>
<td>0.09</td>
<td>0.15</td>
<td>88.6</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.2</td>
<td>0.05</td>
<td>0.0227</td>
<td>105</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>-</td>
<td>-</td>
<td>0.192</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± C/(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>--</td>
<td>---------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------------</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.715</td>
<td>± 0.159</td>
<td>0.4</td>
<td>0.1</td>
<td>0.175</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.46</td>
<td>± 0.0348</td>
<td>-</td>
<td>-</td>
<td>0.0493</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52</td>
<td>± 0.174</td>
<td>-</td>
<td>-</td>
<td>0.153</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.21</td>
<td>± 0.0153</td>
<td>-</td>
<td>-</td>
<td>0.0228</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.87</td>
<td>± 0.204</td>
<td>-</td>
<td>-</td>
<td>0.18</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11</td>
<td>± 0.194</td>
<td>-</td>
<td>-</td>
<td>0.225</td>
</tr>
<tr>
<td>Chlorothalonil-sulfonic acid</td>
<td>µg/l</td>
<td>0.11</td>
<td>± 0.00942</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.22</td>
<td>± 0.0162</td>
<td>0.47</td>
<td>0.1175</td>
<td>0.023</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.001</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2</td>
<td>± 0.0487</td>
<td>-</td>
<td>-</td>
<td>0.0429</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373246</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.01 (LOQ)</td>
</tr>
<tr>
<td>Dimethenamide-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.91</td>
<td>± 0.187</td>
<td>-</td>
<td>-</td>
<td>0.197</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>-</td>
<td>0.176</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>-</td>
<td>0.0771</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.2 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.068</td>
<td>0.017</td>
<td>0.0196</td>
<td>36.8</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.49</td>
<td>0.1225</td>
<td>0.0503</td>
<td>101</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.14</td>
<td>0.035</td>
<td>0.0227</td>
<td>89.3</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>-</td>
<td>0.441</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>-</td>
<td>0.233</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>-</td>
<td>0.0305</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.41</td>
<td>0.1025</td>
<td>0.0482</td>
<td>113</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>- -</td>
<td>0.317</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0029</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>- -</td>
<td>0.0417</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiocloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.14</td>
<td>0.035</td>
<td>0.0141</td>
<td>109</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0019

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorphenoxyacetic acid)</td>
<td>-3.3</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td>10.8</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td>2.1</td>
</tr>
<tr>
<td>Glyphosate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td></td>
<td>-6.0</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td>12.6</td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td>10.1</td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td>-3.5</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.36</td>
<td>0.054</td>
<td>0.0327</td>
<td>119</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.84</td>
<td>0.126</td>
<td>0.0884</td>
<td>95.2</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.466</td>
<td>0.0699</td>
<td>0.0838</td>
<td>93.1</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.155</td>
<td>0.02325</td>
<td>0.0137</td>
<td>101</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxyctrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
</tr>
<tr>
<td>Azoxyctrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.068</td>
<td>0.0102</td>
<td>0.0116</td>
<td>74.7</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.173</td>
<td>0.02595</td>
<td>0.0152</td>
<td>106</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>-</td>
<td>-</td>
<td>0.00756</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid) µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA) µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.63</td>
<td>0.0945</td>
<td>0.0328</td>
<td>92.2</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.733</td>
<td>0.10995</td>
<td>0.0662</td>
<td>121</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA) µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethochlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethochlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethochlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>- -</td>
<td>0.0433</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.234 0.0351 0.0287</td>
<td>79.4 -2.12</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- -</td>
<td>0.0159</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.404 0.0606 0.056</td>
<td>94 -0.46</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.188 0.0282 0.0268</td>
<td>85.6 -1.19</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.293 0.04395 0.0303</td>
<td>97.2 -0.28</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.224 0.0336 0.0161</td>
<td>94.7 -0.78</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.15 0.0225 0.0152</td>
<td>128 2.13</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.51 0.0765 0.0524</td>
<td>95.7 -0.44</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.481 0.07215 0.0673</td>
<td>94.3 -0.43</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.252 0.0378 0.0093</td>
<td>96.9 -0.87</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.386 0.0579 0.0489</td>
<td>95.8 -0.35</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- -</td>
<td>0.0113</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.233</td>
<td>0.03495</td>
<td>0.0362</td>
<td>91.7</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>2.94</td>
<td>0.441</td>
<td>0.276</td>
<td>320</td>
</tr>
<tr>
<td>Pethoxam</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td></td>
<td>0.0111</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.419</td>
<td>0.06285</td>
<td>0.0344</td>
<td>85.5</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td></td>
<td>0.0194</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.135</td>
<td>0.02025</td>
<td>0.00963</td>
<td>110</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.292</td>
<td>0.0438</td>
<td>0.0258</td>
<td>115</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td></td>
<td>0.0217</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.703</td>
<td>0.10545</td>
<td>0.0931</td>
<td>91.9</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td></td>
<td>0.0955</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td></td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.497</td>
<td>0.07455</td>
<td>0.15</td>
<td>122</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.253</td>
<td>0.03795</td>
<td>0.0227</td>
<td>132</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.585</td>
<td>0.38775</td>
<td>0.192</td>
<td>102</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td></td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td></td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- -</td>
<td>0.0533</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>- -</td>
<td>0.175</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- -</td>
<td>0.153</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.217 ± 0.03255</td>
<td>0.0228</td>
<td>102 0.21</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- -</td>
<td>0.18</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.442 ± 0.0663</td>
<td>0.0493</td>
<td>96.1 -0.36</td>
<td>- -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>- -</td>
<td>0.225</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.245 ± 0.03675</td>
<td>0.023</td>
<td>110 1.01</td>
<td>- -</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- -</td>
<td>0.0516</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- -</td>
<td>0.0429</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- -</td>
<td>0.197</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPPA</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.419 0.06285 0.0503 86.5</td>
<td>-1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.161 0.02415 0.0227 103 0.19</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N.N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>-</td>
<td>0.317</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>0.171</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.446</td>
<td>0.0669</td>
<td>0.0417</td>
<td>88.4</td>
</tr>
<tr>
<td>Thiapioprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluicid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0020

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuronone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score: -2.1, 7.3, 2.1, -2.1
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.339</td>
<td>0.1017</td>
<td>0.0327</td>
<td>112</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0503</td>
<td>0.866</td>
<td>0.2598</td>
<td>0.0884</td>
<td>98.1</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.462</td>
<td>0.1386</td>
<td>0.0838</td>
<td>92.3</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.152</td>
<td>0.0456</td>
<td>0.0137</td>
<td>98.6</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxyhydrostobal</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.151</td>
<td>0.0453</td>
<td>0.0226</td>
<td>107</td>
</tr>
<tr>
<td>Azoxystrobil-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.094</td>
<td>0.0282</td>
<td>0.0116</td>
<td>103</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.173</td>
<td>0.0519</td>
<td>0.0152</td>
<td>106</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.113</td>
<td>0.0339</td>
<td>0.00756</td>
<td>129</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.04 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.03 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.849</td>
<td>0.2547</td>
<td>0.0328</td>
<td>124</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.662</td>
<td>0.1986</td>
<td>0.0662</td>
<td>109</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.579</td>
<td>0.1737</td>
<td>0.0433</td>
<td>108</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.269</td>
<td>0.0807</td>
<td>0.0287</td>
<td>91.2</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.389</td>
<td>0.1167</td>
<td>0.056</td>
<td>90.5</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.239</td>
<td>0.0717</td>
<td>0.0268</td>
<td>109</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.348</td>
<td>0.1044</td>
<td>0.0358</td>
<td>113</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.298</td>
<td>0.0894</td>
<td>0.0303</td>
<td>98.9</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.249</td>
<td>0.0747</td>
<td>0.0161</td>
<td>105</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.128</td>
<td>0.0384</td>
<td>0.0152</td>
<td>109</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>-</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.554</td>
<td>0.1662</td>
<td>0.0673</td>
<td>109</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.272</td>
<td>0.0816</td>
<td>0.0093</td>
<td>105</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>- ±</td>
<td>- ±</td>
<td>- ±</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.381</td>
<td>0.1143</td>
<td>0.0489</td>
<td>94.6</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.086</td>
<td>0.0258</td>
<td>0.0113</td>
<td>96.1</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulffamide (DMS)</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>-</td>
<td>0.276</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.497 ± 0.1491</td>
<td>0.0344</td>
<td>101</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>0.0194</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0528</td>
<td>0.497</td>
<td>0.1491</td>
<td>0.0344</td>
<td>101</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0194</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.133</td>
<td>0.0399</td>
<td>0.00963</td>
<td>108</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.254</td>
<td>0.0762</td>
<td>0.0258</td>
<td>100</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td>0.0217</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0960</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.219</td>
<td>0.0657</td>
<td>0.0227</td>
<td>115</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± Cl(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td></td>
<td></td>
<td>-</td>
<td>± -</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475</td>
<td>± 0.0605</td>
<td>-</td>
<td>± -</td>
<td>0.0533</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715</td>
<td>± 0.159</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52</td>
<td>± 0.174</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212</td>
<td>± 0.0153</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872</td>
<td>± 0.204</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46</td>
<td>± 0.0348</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Azoxytrobin</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Azoxytrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11</td>
<td>± 0.194</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115</td>
<td>± 0.00942</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222</td>
<td>± 0.0162</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462</td>
<td>± 0.0516</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2</td>
<td>± 0.0487</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911</td>
<td>± 0.187</td>
<td>± ±</td>
<td>± ±</td>
<td>± ±</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>--------</td>
<td>----------</td>
<td>--------</td>
<td>-----</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethenamid-P-acid</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-OA</td>
<td>µg/l</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td><0.015</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>0.983</td>
<td>0.2949</td>
<td>0.176</td>
<td>123</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td><0.04 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.524</td>
<td>0.1572</td>
<td>0.0503</td>
<td>108</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>3.175</td>
<td>0.9525</td>
<td>0.441</td>
<td>115</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.22</td>
<td>0.366</td>
<td>0.233</td>
<td>92.4</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.84 ± 0.852</td>
<td>0.317</td>
<td>103</td>
<td>0.29</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>1.17 ± 0.351</td>
<td>0.171</td>
<td>107</td>
<td>0.46</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.46 ± 0.138</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- ± -</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- ± -</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.536 ± 0.1608</td>
<td>0.0417</td>
<td>106</td>
<td>0.76</td>
</tr>
<tr>
<td>Thiocloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>- ± -</td>
<td>0.0141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluclid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0021

Measurand

2,4-D (2,4-Dichlorophenoxyacetic acid)
2,6-Dichlorobenzamide
Alachlor
Atrazine
Atrazine-desethyl
Atrazine-desisopropyl
Azoxystrobin
Bentazone
Bromacil
Chloridazon
Chloridazon-desphenyl
Chloridazon-methyl-desphenyl
Dicamba
Dichlorprop
Dimethenamide
Diuron
Flufenacet
Flufenacet sulfonic acid (Flufenacet-ESA)
Flufenacet oxanilic acid (Flufenacet-OA)
Hexazinone
Imidacloprid
Isoproturon
MCPA
MCPB
MCP (Mecoprop)
Metamitron
Metazachlor
Metazachlor ethane sulfonic acid (Metazachlor-ESA)
Metazachlor oxanilic acid (Metazachlor-OA)
Metolachlor
Metribuzin
Propazine
s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
s-Metolachlor oxanilic acid (Metolachlor-OA)
Simazine
Terbuthylazine
Terbuthylazine-desethyl

Sample

PM02 A
PM02 B

z-score

3.4
5.1

680/715
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.233 0.0699</td>
<td>0.0327</td>
<td>77</td>
<td>-2.13</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.707 0.2121</td>
<td>0.0884</td>
<td>80.1</td>
<td>-1.99</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.087 0.0261</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.374 0.1122</td>
<td>0.0838</td>
<td>74.7</td>
<td>-1.51</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.031 0.0093</td>
<td>0.00855</td>
<td>81.7</td>
<td>-0.81</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± - <0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.164 0.0492</td>
<td>0.0137</td>
<td>106</td>
<td>0.72</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.095 0.0285</td>
<td>0.0226</td>
<td>67.2</td>
<td>-2.05</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.072 0.0216</td>
<td>0.0116</td>
<td>79.1</td>
<td>-1.64</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>0.146 0.0438</td>
<td>0.0152</td>
<td>89.2</td>
<td>-1.16</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.089 0.0267</td>
<td>0.00756</td>
<td>102</td>
<td>0.23</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± - 0.22</td>
<td>0.22 0.066</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.237 0.0711</td>
<td>0.0718</td>
<td>67.6</td>
<td>-1.58</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.162 0.0486</td>
<td>0.0162</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>Dichloracetyl</td>
<td>µg/l</td>
<td>0.685 ± 0.0311</td>
<td>0.701 0.2103</td>
<td>0.0328</td>
<td>103</td>
<td>0.54</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.502 0.1506</td>
<td>0.0662</td>
<td>82.8</td>
<td>-1.58</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.067 0.0201</td>
<td>0.0163</td>
<td>112</td>
<td>0.43</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.372 0.1116</td>
<td>0.0453</td>
<td>86.1</td>
<td>-1.33</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>---------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369373</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.486</td>
<td>0.1458</td>
<td>0.0433</td>
<td>90.5</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.312</td>
<td>0.0936</td>
<td>0.0287</td>
<td>106</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.131</td>
<td>0.0393</td>
<td>0.0159</td>
<td>85.7</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.332</td>
<td>0.0996</td>
<td>0.056</td>
<td>77.2</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>0.0434</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.27</td>
<td>0.081</td>
<td>0.0641</td>
<td>73.8</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.021</td>
<td>0.0063</td>
<td>0.0281</td>
<td>43.2</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.219</td>
<td>0.0657</td>
<td>0.0268</td>
<td>99.7</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.281</td>
<td>0.0843</td>
<td>0.0358</td>
<td>91.4</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.428</td>
<td>0.1284</td>
<td>0.0518</td>
<td>106</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.311</td>
<td>0.0933</td>
<td>0.0303</td>
<td>103</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.167</td>
<td>0.0501</td>
<td>0.0161</td>
<td>70.6</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.091</td>
<td>0.0273</td>
<td>0.0152</td>
<td>77.4</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.258</td>
<td>0.0774</td>
<td>0.0241</td>
<td>113</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.455</td>
<td>0.1365</td>
<td>0.0524</td>
<td>85.4</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.466</td>
<td>0.1398</td>
<td>0.0673</td>
<td>91.4</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.263</td>
<td>0.0789</td>
<td>0.0093</td>
<td>101</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.359</td>
<td>0.1077</td>
<td>0.0489</td>
<td>89.1</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.087</td>
<td>0.0261</td>
<td>0.0113</td>
<td>97.2</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery (z-score)</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>0.197 0.0591</td>
<td>0.0362</td>
<td>77.5 -1.58</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>2.95 0.885</td>
<td>0.276</td>
<td>321 7.35</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>0.174 0.0522</td>
<td>0.0111</td>
<td>98.7 -0.21</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.444 0.1332</td>
<td>0.0344</td>
<td>90.6 -1.34</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.131 0.0393</td>
<td>0.0194</td>
<td>86.3 -1.07</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.123 0.0369</td>
<td>0.00963</td>
<td>100 0.04</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.22 0.066</td>
<td>0.0258</td>
<td>86.7 -1.31</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.273 0.0819</td>
<td>0.0217</td>
<td>92.4 -1.03</td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.614 0.1842</td>
<td>0.0931</td>
<td>80.2 -1.62</td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>0.857 0.2571</td>
<td>0.0955</td>
<td>558 7.37</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.524 0.1572</td>
<td>0.0531</td>
<td>109 0.83</td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>0.308 0.0924</td>
<td>0.15</td>
<td>75.8 -0.66</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.489 0.1467</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery (z-score)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.166 0.0498</td>
<td>0.0227</td>
<td>86.9 -1.11</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>1.5 0.45</td>
<td>0.192</td>
<td>59.2 -5.40</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>0.199 0.0597</td>
<td>0.0143</td>
<td>110 1.22</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>0.179 0.0537</td>
<td>0.149</td>
<td>44.1 -1.52</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>-----------</td>
<td>-------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>2.26 ± 0.678</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.405 ± 0.1215</td>
<td>0.0533</td>
<td>85.3</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.79 ± 0.237</td>
<td>0.175</td>
<td>110</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.61 ± 0.483</td>
<td>0.153</td>
<td>106</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.23 ± 0.069</td>
<td>0.0228</td>
<td>108</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>0.645 ± 0.1935</td>
<td>0.18</td>
<td>74</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.527 ± 0.1581</td>
<td>0.0493</td>
<td>115</td>
</tr>
<tr>
<td>Azoxybstriobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxybstriobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.334 ± 0.1002</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>2.98 ± 0.894</td>
<td>0.225</td>
<td>95.8</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.11 ± 0.033</td>
<td>0.0104</td>
<td>95.4</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>2.48 ± 0.744</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.221 ± 0.0663</td>
<td>0.023</td>
<td>99.6</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.388 ± 0.1164</td>
<td>0.0516</td>
<td>84</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.154 ± 0.0462</td>
<td>0.0429</td>
<td>76.9</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.167 ± 0.0501</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.451 ± 0.1353</td>
<td>0.197</td>
<td>49.5</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>0.269 0.0807</td>
<td>0.0574</td>
<td>72.5</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>0.501 0.1503</td>
<td>0.176</td>
<td>62.7</td>
</tr>
<tr>
<td>Flufenacet oxamic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>0.176 0.0528</td>
<td>0.0771</td>
<td>92.4</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>0.174 0.0522</td>
<td>0.0196</td>
<td>94.3</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethoxy</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>0.154 0.0462</td>
<td>0.0104</td>
<td>105</td>
</tr>
<tr>
<td>MCPPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.439 0.1317</td>
<td>0.0503</td>
<td>90.6</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.137 0.0411</td>
<td>0.0227</td>
<td>87.4</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonyl acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>2.11 0.633</td>
<td>0.441</td>
<td>76.3</td>
</tr>
<tr>
<td>Metazachlor oxamic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>0.875 0.2625</td>
<td>0.233</td>
<td>66.2</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Methylzin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>0.253 0.0759</td>
<td>0.0305</td>
<td>98.8</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylnitramide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>1.44 0.432</td>
<td>0.205</td>
<td>135</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>0.186 0.0567</td>
<td>0.0183</td>
<td>90.7</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.333 0.0999</td>
<td>0.0482</td>
<td>91.7</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.15 ± 0.645</td>
<td>0.317</td>
<td>78.3</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>0.814 ± 0.2442</td>
<td>0.171</td>
<td>74.6</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.235 ± 0.0705</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.229 ± 0.0687</td>
<td>0.0244</td>
<td>112</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>0.103 ± 0.0309</td>
<td>0.0209</td>
<td>84.3</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.457 ± 0.1371</td>
<td>0.0417</td>
<td>90.6</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.115 ± 0.0345</td>
<td>0.0141</td>
<td>89.8</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Tricyclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- ± -</td>
<td>- ± -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0022

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>-2.1</td>
<td>-2.4</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>-2.0</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clopyralan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>-2.3</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methylic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>-4.3</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>7.3</td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nethoxamid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiachlorprd</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamefoxan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-2 0 2 -2 0 2 -2 0 2 0 2 z-score
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.222</td>
<td>0.273</td>
<td>0.055</td>
<td>0.0327</td>
<td>90.2</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>-</td>
<td>-</td>
<td>0.0884</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>0.03</td>
<td>0.007</td>
<td>0.00855</td>
<td>79.1</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>-</td>
<td>-</td>
<td>0.0137</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazon</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>-</td>
<td>-</td>
<td>0.0116</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>-</td>
<td>-</td>
<td>0.00756</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
</tr>
<tr>
<td>Dichloroprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.576</td>
<td>0.115</td>
<td>0.0662</td>
<td>95</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>0.041</td>
<td>0.01</td>
<td>0.0163</td>
<td>68.4</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>- ± -</td>
<td>0.0433</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µl/l</td>
<td>0.295 ± 0.0188</td>
<td>- ± -</td>
<td>0.0287</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>- ± -</td>
<td>0.0159</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- ± -</td>
<td>0.056</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- ± -</td>
<td>0.0434</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- ± -</td>
<td>0.0641</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>0.031 ± 0.008</td>
<td>0.0281</td>
<td>63.8</td>
<td>-0.63</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.037 ± 0.009</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- ± -</td>
<td>0.0268</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- ± -</td>
<td>0.0358</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- ± -</td>
<td>0.0518</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>- ± -</td>
<td>0.0303</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.236 ± 0.047</td>
<td>0.0161</td>
<td>99.7</td>
<td>-0.04</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.0217 ± 0.004</td>
<td>- ± -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.135 ± 0.027</td>
<td>0.0152</td>
<td>115</td>
<td>1.14</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- ± -</td>
<td>0.0241</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- ± -</td>
<td>0.0524</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>- ± -</td>
<td>0.0673</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>- ± -</td>
<td>0.0093</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- ± -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>- ± -</td>
<td>0.0489</td>
<td>- ± -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- ± -</td>
<td>0.0113</td>
<td>- ± -</td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Niclosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>-</td>
<td>0.276</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>-</td>
<td>-</td>
<td>0.0344</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0194</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>-</td>
<td>-</td>
<td>0.00963</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>-</td>
<td>-</td>
<td>0.0258</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td>-</td>
<td>0.0217</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.202</td>
<td>0.04</td>
<td>0.0227</td>
<td>106</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>-</td>
<td>-</td>
<td>0.192</td>
<td>-</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± U</td>
<td>Cl(99%) ± U</td>
<td>Result ± U</td>
<td>Criteria ± U</td>
<td>Recovery ± U</td>
</tr>
<tr>
<td>---</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- - 0.0533</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 - 0.0533</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>- - 0.175</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- - 0.153</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>- - 0.0228</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- - 0.18</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>- - 0.0493</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>- - 0.225</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- - 0.0104</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chlorothalnil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Chlorothalnil sulfonic acid (Chlorothalnil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.223 0.045</td>
<td>0.232 0.05</td>
<td>101 0.05</td>
<td>- - -</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005 - 0.05</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- - 0.0516</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- - 0.0429</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- - 0.197</td>
<td>- - -</td>
<td>- - -</td>
<td>- - -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>-</td>
<td>-</td>
<td>0.0574</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfinic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>-</td>
<td>-</td>
<td>0.176</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>-</td>
<td>-</td>
<td>0.0771</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>0.0196</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td><0.005</td>
<td>-</td>
<td>0.0196</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>-</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.022</td>
<td>0.0044</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.581</td>
<td>0.116</td>
<td>0.0503</td>
<td>120</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>-</td>
<td>-</td>
<td>0.0227</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>-</td>
<td>-</td>
<td>0.441</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>-</td>
<td>-</td>
<td>0.233</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>-</td>
<td>-</td>
<td>0.0305</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylysulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>-</td>
<td>-</td>
<td>0.205</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>-</td>
<td>-</td>
<td>0.0183</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>-</td>
<td>-</td>
<td>0.0482</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------------</td>
<td>---------------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>- -</td>
<td>0.317</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>- -</td>
<td>0.0417</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>- -</td>
<td>0.0141</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0023

<table>
<thead>
<tr>
<th>Measurand</th>
<th>PM02 A</th>
<th>PM02 B</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.34 0.068</td>
<td>0.0327</td>
<td>112</td>
<td>1.14</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.962 0.2</td>
<td>0.0884</td>
<td>109</td>
<td>0.90</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>- -</td>
<td>0.0838</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>- -</td>
<td>0.00855</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.174 0.034</td>
<td>0.0137</td>
<td>113</td>
<td>1.45</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>0.014 0.003</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± <0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.132 0.026</td>
<td>0.0226</td>
<td>93.4</td>
<td>-0.41</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.101 0.02</td>
<td>0.0116</td>
<td>111</td>
<td>0.85</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- -</td>
<td>0.0152</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.087 0.018</td>
<td>0.00756</td>
<td>99.7</td>
<td>-0.04</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>0.372 0.074</td>
<td>0.0718</td>
<td>106</td>
<td>0.30</td>
</tr>
<tr>
<td>Clotianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.199 0.04</td>
<td>0.0162</td>
<td>123</td>
<td>2.29</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>- -</td>
<td>0.0328</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>- -</td>
<td>0.0662</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>- -</td>
<td>0.0163</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.494 0.098</td>
<td>0.0453</td>
<td>114</td>
<td>1.36</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target</td>
<td>± CI(99%)</td>
<td>Result</td>
<td>± U</td>
<td>Criteria</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>--------</td>
<td>-------</td>
<td>----------</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.514 0.102</td>
<td>0.0433</td>
<td>95.7</td>
<td>-0.54</td>
</tr>
<tr>
<td>Dimethanamid-P-sulfonic acid (Dimethanamid-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethanamid-P-acid (Dimethanamid-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.285 ± 0.0188</td>
<td>0.323 0.064</td>
<td>0.0287</td>
<td>110</td>
<td>0.98</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.159 0.032</td>
<td>0.0159</td>
<td>104</td>
<td>0.39</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.648 0.13</td>
<td>0.056</td>
<td>151</td>
<td>3.90</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>-</td>
<td>-</td>
<td>0.0434</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>-</td>
<td>-</td>
<td>0.0641</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>-</td>
<td>-</td>
<td>0.0281</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>-</td>
<td>-</td>
<td>0.0268</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.366 0.074</td>
<td>0.0358</td>
<td>119</td>
<td>1.64</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>0.485 0.098</td>
<td>0.0518</td>
<td>120</td>
<td>1.54</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.286 0.058</td>
<td>0.0303</td>
<td>94.9</td>
<td>-0.51</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.244 0.048</td>
<td>0.0161</td>
<td>103</td>
<td>0.46</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.108 0.022</td>
<td>0.0152</td>
<td>91.8</td>
<td>-0.63</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>-</td>
<td>-</td>
<td>0.0241</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.525 0.106</td>
<td>0.0524</td>
<td>98.5</td>
<td>-0.15</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.619 0.124</td>
<td>0.0673</td>
<td>121</td>
<td>1.62</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>-</td>
<td>-</td>
<td>0.0093</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.394 0.078</td>
<td>0.0489</td>
<td>97.8</td>
<td>-0.18</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.101 0.02</td>
<td>0.0113</td>
<td>113</td>
<td>1.02</td>
</tr>
</tbody>
</table>

Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02
Laboratory: LC0024
Parameter: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ±</th>
<th>Cl(99%)</th>
<th>Result ±</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td></td>
<td>0.206 ± 0.042</td>
<td></td>
<td>0.0227</td>
<td>108 0.66</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td></td>
<td>2.53 ± 0.5</td>
<td></td>
<td>0.192</td>
<td>99.8 -0.02</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td></td>
<td></td>
<td></td>
<td>0.0143</td>
<td>- -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td></td>
<td></td>
<td></td>
<td>0.149</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td></td>
<td></td>
<td></td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>-</td>
<td>0.0533</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>-</td>
<td>0.175</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>-</td>
<td>0.153</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.232</td>
<td>0.046</td>
<td>0.0228</td>
<td>109</td>
<td>0.86</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>1.07</td>
<td>0.21</td>
<td>0.18</td>
<td>123</td>
<td>1.10</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.436</td>
<td>0.088</td>
<td>0.0493</td>
<td>94.8</td>
<td>-0.48</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.02 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>-</td>
<td>0.225</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>-</td>
<td>0.0104</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.05 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>-</td>
<td>0.023</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>-</td>
<td>0.0516</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>-</td>
<td>0.0429</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>-</td>
<td>0.197</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>(Dimethenamid-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Imidaclorpid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>MCPP</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.529 0.106</td>
<td>0.0503</td>
<td>109</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>0.529 0.106</td>
<td>0.0503</td>
<td>109</td>
<td>0.88</td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.199 0.04</td>
<td>0.0227</td>
<td>127</td>
<td>1.86</td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.368 0.072</td>
<td>0.0482</td>
<td>101</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>3.41 0.68</td>
<td>0.317</td>
<td>124</td>
<td>2.09</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>- -</td>
<td>0.171</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>- -</td>
<td>0.0244</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>- -</td>
<td>0.0209</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.528 0.106</td>
<td>0.0417</td>
<td>105</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>Thioclorid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Thiamefloxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.14 0.028</td>
<td>0.0141</td>
<td>109</td>
<td>0.85</td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Tolfufluhand</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.05 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Trifluosulfuron-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
</tr>
</tbody>
</table>
Laboratory oriented report Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0024

Sample

PM02 A PM02 B

2,4-D (2,4-Dichlorophenoxyacetic acid)
2,6-Dichlorobenzamide
Atrazine
Atrazine-desethyl
Atrazine-desethyl-desisopropyl
Atrazine-desisopropyl
Azoxystrobin
Bentazone
Chloridazon
Clopyralid
Clothianidin
Dimethachlor
Dimethenamide
Diuron
Ethofumesate
Flufenacet
Imidacloprid
Iodosulfuron-methyl
Isoproturon
MCPA
MCPB
MCPP (Mecoprop)
Metalaxyl
Metaluron
Metolachlor
Metribuzin
Metsulfuron-methyl
Nicosulfuron
Pethoxamid
Propiconazole
s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
Simazine
Terbuthylazine
Terbuthylazine-desethyl
Thiacloprid
Thiamethoxam
Thifensulfuron-methyl
Triamuron-methyl
Triclopyr

z-score

-2 0 2

701/715
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>0.322 ± 0.064</td>
<td>0.0327</td>
<td>106</td>
<td>0.59</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>1 ± 0.2</td>
<td>0.0884</td>
<td>113</td>
<td>1.33</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>0.536 ± 0.107</td>
<td>0.0838</td>
<td>107</td>
<td>0.42</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>0.322 ± 0.064</td>
<td>0.0327</td>
<td>106</td>
<td>0.59</td>
<td></td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>1 ± 0.2</td>
<td>0.0884</td>
<td>113</td>
<td>1.33</td>
<td></td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>- -</td>
<td>0.00855</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.167 ± 0.033</td>
<td>0.0137</td>
<td>108</td>
<td>0.94</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.167 ± 0.033</td>
<td>0.0137</td>
<td>108</td>
<td>0.94</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>0.15 ± 0.03</td>
<td>0.0226</td>
<td>106</td>
<td>0.38</td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>0.094 ± 0.019</td>
<td>0.0116</td>
<td>103</td>
<td>0.25</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>- -</td>
<td>0.0152</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.102 ± 0.02</td>
<td>0.00756</td>
<td>117</td>
<td>1.95</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolit R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- - -</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>- -</td>
<td>0.0718</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>0.156 ± 0.0312</td>
<td>0.0162</td>
<td>96.3</td>
<td>-0.37</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>0.813 ± 0.163</td>
<td>0.0328</td>
<td>119</td>
<td>3.96</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>0.649 ± 0.13</td>
<td>0.0662</td>
<td>107</td>
<td>0.64</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>- -</td>
<td>0.0163</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>0.495 ± 0.099</td>
<td>0.0453</td>
<td>115</td>
<td>1.38</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

This report was created with PROLab, a software by QuoData: http://www.quodata.de/
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>0.535 0.107</td>
<td>0.0433</td>
<td>99.6</td>
<td>-0.05</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dicuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.329 0.066</td>
<td>0.0287</td>
<td>112</td>
<td>1.19</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.179 0.036</td>
<td>0.0159</td>
<td>117</td>
<td>1.65</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>0.441 0.0882</td>
<td>0.056</td>
<td>103</td>
<td>0.20</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>0.163 0.033</td>
<td>0.0434</td>
<td>110</td>
<td>0.34</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>0.421 0.084</td>
<td>0.0641</td>
<td>115</td>
<td>0.86</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>- -</td>
<td>0.0268</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Imdacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>0.334 0.067</td>
<td>0.0358</td>
<td>109</td>
<td>0.75</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.336 0.067</td>
<td>0.0303</td>
<td>111</td>
<td>1.14</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>0.272 0.054</td>
<td>0.0161</td>
<td>115</td>
<td>2.19</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>0.132 0.026</td>
<td>0.0152</td>
<td>112</td>
<td>0.94</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>0.229 0.0458</td>
<td>0.0241</td>
<td>101</td>
<td>0.05</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>0.533 0.107</td>
<td>0.0524</td>
<td>100</td>
<td>0.00</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.666 0.133</td>
<td>0.0673</td>
<td>131</td>
<td>2.32</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.307 0.061</td>
<td>0.0093</td>
<td>118</td>
<td>5.05</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.446 0.089</td>
<td>0.0489</td>
<td>111</td>
<td>0.88</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>0.095 0.019</td>
<td>0.0113</td>
<td>106</td>
<td>0.48</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>- - 0.0362</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>1.143 0.229</td>
<td>0.276 124 0.81</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>- - 0.0111</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.533 0.107</td>
<td>0.0344 109 1.24</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>0.18 0.036</td>
<td>0.0194 119 1.45</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.128 0.026</td>
<td>0.00963 104 0.56</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.277 0.055</td>
<td>0.0258 109 0.90</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ± - <0.01 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>0.367 0.073</td>
<td>0.0217 124 3.29</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>0.762 0.1524</td>
<td>0.0931 99.6 -0.03</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>- - 0.0955</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>0.507 0.101</td>
<td>0.0531 106 0.51</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>- - 0.15</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>0.209 0.042</td>
<td>0.0227 109 0.79</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.843 0.569</td>
<td>0.192 112 1.61</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>- - 0.0143</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>- - 0.149</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ± - <0.02 (LOQ)</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
<td>- - - -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>0.559</td>
<td>0.112</td>
<td>0.0533</td>
<td>118</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.763</td>
<td>0.153</td>
<td>0.175</td>
<td>107</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>1.734</td>
<td>0.347</td>
<td>0.153</td>
<td>114</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.228</td>
<td>0.046</td>
<td>0.0228</td>
<td>107</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>-</td>
<td>0.18</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.564</td>
<td>0.113</td>
<td>0.0493</td>
<td>123</td>
</tr>
<tr>
<td>Azoxylostrobine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxylostrobine-O-demethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>3.316</td>
<td>0.663</td>
<td>0.225</td>
<td>107</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>0.134</td>
<td>0.027</td>
<td>0.0104</td>
<td>116</td>
</tr>
<tr>
<td>Chlorothalonil Metabol. R611965</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td>1.893</td>
<td>0.3786</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>0.233</td>
<td>0.047</td>
<td>0.023</td>
<td>105</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>0.427</td>
<td>0.085</td>
<td>0.0516</td>
<td>92.4</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>0.202</td>
<td>0.04</td>
<td>0.0429</td>
<td>101</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>0.851</td>
<td>0.17</td>
<td>0.197</td>
<td>93.4</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>-----------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid-ESA</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-acid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.02 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.211</td>
<td>0.042</td>
<td>0.0227</td>
<td>135</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>3.261</td>
<td>0.652</td>
<td>0.441</td>
<td>118</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>1.639</td>
<td>0.328</td>
<td>0.233</td>
<td>124</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>0.276</td>
<td>0.055</td>
<td>0.0305</td>
<td>108</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>0.223</td>
<td>0.045</td>
<td>0.0183</td>
<td>109</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>0.445</td>
<td>0.089</td>
<td>0.0482</td>
<td>123</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.309</td>
<td>0.462</td>
<td>0.317</td>
<td>84.1</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>0.891</td>
<td>0.178</td>
<td>0.171</td>
<td>81.6</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>0.19</td>
<td>0.038</td>
<td>0.0244</td>
<td>93.3</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.586</td>
<td>0.117</td>
<td>0.0417</td>
<td>116</td>
</tr>
<tr>
<td>Thiacinoprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>0.153</td>
<td>0.031</td>
<td>0.0141</td>
<td>120</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusburon-Methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report: Pesticides in Accordance with the Drinking Water Ordinance - PM02

Laboratory: LC0025

Sample

PM02 A
PM02 B

2,4-D (2,4-Dichlorophenoxyacetic acid)
2,6-Dichlorobenzamide
Alachlor
Alachlor-t-acid (Alachlor-OA)
AMPA
Atrazine
Atrazine-2-hydroxy
Atrazine-desethyl
Atrazine-desisopropyl
Azoxystrobin
Bentazon
Chloridazon
Chloridazon-desphenyl
Chloridazon-methyl-desphenyl
Clothianidin
Dicamba
Dichlorprop
Dimethachlor
Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)
Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)
Dimethenamide
Dimethenamid-P-sulfonic acid (Dimethenamid-ESA)
Diquat
Ethofumesate
Flufenacet
Glufosinate
Glyphosate
Imidacloprid
Isoproturon
MCPA
MCPP (Mecoprop)
Mesosulfuron-methyl
Metalaxyl
Metamitron
Metazachlor
Metazachlor ethane sulfonic acid (Metazachlor-ESA)
Metazachlor oxanilic acid (Metazachlor-OA)
Metolachlor
Metribuzin
Metribuzin-desamino
Nicosulfuron
Propazine
Propazine-2-hydroxy
Propiconazole
s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)
s-Metolachlor oxanilic acid (Metolachlor-OA)
Simazine
Terbutylazine
Terbutylazine-2-hydroxy
Thiacloprid
Thiamethoxam
Thifensulfuron-methyl
Triclopyr

4.0
2.2
2.3
5.0
3.3
708/715
The following results were achieved:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target</th>
<th>± CI(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyacetic acid)</td>
<td>µg/l</td>
<td>0.303 ± 0.022</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.0327</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>0.883 ± 0.0593</td>
<td>0.998</td>
<td>0.135</td>
<td>0.0884</td>
<td>113</td>
<td>1.30</td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.5 ± 0.0649</td>
<td>-</td>
<td>-</td>
<td>0.0838</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>0.0379 ± 0.00855</td>
<td>-</td>
<td>-</td>
<td>0.00855</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>0.154 ± 0.00877</td>
<td>0.164</td>
<td>0.017</td>
<td>0.0137</td>
<td>116</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>0.006</td>
<td>0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Azoxystrobin</td>
<td>µg/l</td>
<td>0.141 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0226</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Azoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>0.091 ± 0.00744</td>
<td>-</td>
<td>-</td>
<td>0.0116</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>0.164 ± 0.0144</td>
<td>-</td>
<td>-</td>
<td>0.0152</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>0.0873 ± 0.00567</td>
<td>0.08</td>
<td>0.017</td>
<td>0.00756</td>
<td>116</td>
<td>-0.96</td>
<td></td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>0.351 ± 0.0762</td>
<td>-</td>
<td>-</td>
<td>0.0718</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>0.162 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0162</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>0.683 ± 0.0311</td>
<td>-</td>
<td>-</td>
<td>0.0328</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.606 ± 0.0444</td>
<td>-</td>
<td>-</td>
<td>0.0662</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>0.06 ± 0.0154</td>
<td>-</td>
<td>-</td>
<td>0.0163</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>0.432 ± 0.0351</td>
<td>-</td>
<td>-</td>
<td>0.0453</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethanamide</td>
<td>µg/l</td>
<td>0.537 ± 0.0315</td>
<td>- -</td>
<td>0.0433</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethanamid-P-sulfonic acid (Dimethanamid-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimethanamid-P-acid (Dimethanamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td>µg/l</td>
<td>0.295 ± 0.0188</td>
<td>0.283 0.035</td>
<td>0.0287</td>
<td>96</td>
<td>-0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>0.153 ± 0.0132</td>
<td>0.129 0.02</td>
<td>0.0159</td>
<td>84.4</td>
<td>-1.50</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacat</td>
<td>µg/l</td>
<td>0.43 ± 0.0434</td>
<td>- -</td>
<td>0.056</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacat sulfonic acid (Flufenacat-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flufenacat oxanilic acid (Flufenacat-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>0.148 ± 0.0493</td>
<td>- -</td>
<td>0.0434</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>0.366 ± 0.0555</td>
<td>- -</td>
<td>0.0641</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>0.0486 ± 0.0266</td>
<td>- -</td>
<td>0.0281</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>0.22 ± 0.0201</td>
<td>0.205 0.018</td>
<td>0.0268</td>
<td>93.3</td>
<td>-0.55</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>0.307 ± 0.0287</td>
<td>- -</td>
<td>0.0358</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>0.405 ± 0.0469</td>
<td>- -</td>
<td>0.0518</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>0.301 ± 0.0199</td>
<td>0.289 0.021</td>
<td>0.0303</td>
<td>95.9</td>
<td>-0.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>0.237 ± 0.0108</td>
<td>- -</td>
<td>0.0161</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCPP (Mecoprop)</td>
<td>µg/l</td>
<td>0.118 ± 0.00973</td>
<td>- -</td>
<td>0.0152</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>0.228 ± 0.0255</td>
<td>- -</td>
<td>0.0241</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>0.533 ± 0.0393</td>
<td>- -</td>
<td>0.0524</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.51 ± 0.0476</td>
<td>0.581 0.083</td>
<td>0.0673</td>
<td>114</td>
<td>1.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>0.26 ± 0.00676</td>
<td>0.241 0.025</td>
<td>0.0093</td>
<td>92.7</td>
<td>-2.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>0.403 ± 0.0313</td>
<td>0.356 0.06</td>
<td>0.0489</td>
<td>88.3</td>
<td>-0.96</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>0.0895 ± 0.00875</td>
<td>- -</td>
<td>0.0113</td>
<td>- -</td>
<td>- -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± Cl(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>0.254 ± 0.0343</td>
<td>-</td>
<td>-</td>
<td>0.0362</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nicosulfurone</td>
<td>µg/l</td>
<td>0.919 ± 0.222</td>
<td>-</td>
<td>-</td>
<td>0.276</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pethoxam</td>
<td>µg/l</td>
<td>0.176 ± 0.0111</td>
<td>-</td>
<td>-</td>
<td>0.0111</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>0.49 ± 0.0258</td>
<td>0.518 0.068</td>
<td>0.0344</td>
<td>106 0.81</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.152 ± 0.0146</td>
<td>-</td>
<td>-</td>
<td>0.0194</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.001 0.0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>0.123 ± 0.00681</td>
<td>0.122 0.02</td>
<td>0.00963</td>
<td>99.5 -0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>0.254 ± 0.0165</td>
<td>0.249 0.062</td>
<td>0.0258</td>
<td>98.1 -0.19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>0.001 0.0001</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>0.295 ± 0.0181</td>
<td>-</td>
<td>-</td>
<td>0.0217</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>0.765 ± 0.0774</td>
<td>-</td>
<td>-</td>
<td>0.0931</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolyfluanid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>0.154 ± 0.0906</td>
<td>-</td>
<td>-</td>
<td>0.0955</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>0.48 ± 0.0503</td>
<td>-</td>
<td>-</td>
<td>0.0531</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>0.407 ± 0.143</td>
<td>-</td>
<td>-</td>
<td>0.15</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample: PM02B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± Cl(99%)</th>
<th>Result</th>
<th>± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,4-D (2,4-Dichlorophenoxyaceticacid)</td>
<td>µg/l</td>
<td>0.191 ± 0.0152</td>
<td>-</td>
<td>-</td>
<td>0.0227</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td>µg/l</td>
<td>2.53 ± 0.132</td>
<td>2.355 0.318</td>
<td>0.192</td>
<td>92.9 -0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Amino-4-methoxy-6-methyl-1,3,5-triazine</td>
<td>µg/l</td>
<td>0.182 ± 0.0175</td>
<td>-</td>
<td>-</td>
<td>0.0143</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3,5,6-Trichloro-2-pyridinol</td>
<td>µg/l</td>
<td>0.406 ± 0.183</td>
<td>-</td>
<td>-</td>
<td>0.149</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Alachlor</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Laboratory oriented report
Pesticides in Accordance with the Drinking Water Ordinance - PM02

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Target ± CI(99%)</th>
<th>Result ± U</th>
<th>Criteria</th>
<th>Recovery</th>
<th>z-score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor-t-sulfonic acid (Alachlor-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Alachlor-t-acid (Alachlor-OA)</td>
<td>µg/l</td>
<td>0.475 ± 0.0605</td>
<td>- -</td>
<td>0.0533</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Aldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>AMPA</td>
<td>µg/l</td>
<td>0.715 ± 0.159</td>
<td>0.006 0.0006</td>
<td>0.175</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-2-hydroxy</td>
<td>µg/l</td>
<td>1.52 ± 0.174</td>
<td>- -</td>
<td>0.153</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td>µg/l</td>
<td>0.212 ± 0.0153</td>
<td>0.164 0.015</td>
<td>0.0228</td>
<td>77.2 -2.12</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desethyl-desisopropyl</td>
<td>µg/l</td>
<td>0.872 ± 0.204</td>
<td>- -</td>
<td>0.18</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td>µg/l</td>
<td>0.46 ± 0.0348</td>
<td>0.506 0.111</td>
<td>0.0493</td>
<td>110 0.94</td>
<td>- -</td>
</tr>
<tr>
<td>Atoxystrobin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Atoxystrobin-O-demethyl (CyPM)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Bentazone</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Bromacil</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-desphenyl</td>
<td>µg/l</td>
<td>3.11 ± 0.194</td>
<td>- -</td>
<td>0.225</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chloridazon-methyl-desphenyl</td>
<td>µg/l</td>
<td>0.115 ± 0.00942</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil Metabolite R611965 (3-carbamyl-2,4,5-trichlorobenzoic acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Chlorothalonil sulfonic acid (Chlorothalonil-ESA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Clopyralid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Clothianidin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dicamba</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dichlorprop</td>
<td>µg/l</td>
<td>0.222 ± 0.0162</td>
<td>- -</td>
<td>0.023</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor ethane sulfonic acid (CGA 354742, Dimethachlor-ESA)</td>
<td>µg/l</td>
<td>0.462 ± 0.0516</td>
<td>- -</td>
<td>0.0516</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor oxalamic acid (CGA 50266, Dimethachlor-OA)</td>
<td>µg/l</td>
<td>0.2 ± 0.0487</td>
<td>- -</td>
<td>0.0429</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 369873</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (acetic acid methyl ester)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethachlor Metabolite - CGA 373464 (free acid)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamide</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Dimethenamid-P-sulfonic acid</td>
<td>µg/l</td>
<td>0.911 ± 0.187</td>
<td>- -</td>
<td>0.197</td>
<td>- -</td>
<td>- -</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>Dimethenamid-ESA</td>
<td>µg/l</td>
<td>0.371 ± 0.0703</td>
<td>- -</td>
<td>0.0574</td>
<td>- -</td>
<td></td>
</tr>
<tr>
<td>Dimethenamid-P-acid (Dimethenamid-OA)</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.01 (LOQ)</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Ethofumesate</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet sulfonic acid (Flufenacet-ESA)</td>
<td>µg/l</td>
<td>0.8 ± 0.215</td>
<td>- -</td>
<td>0.176</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Flufenacet oxanilic acid (Flufenacet-OA)</td>
<td>µg/l</td>
<td>0.191 ± 0.0874</td>
<td>- -</td>
<td>0.0771</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Glufosinate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Heptachlor epoxid</td>
<td>µg/l</td>
<td>0.185 ± 0.0222</td>
<td>- -</td>
<td>0.0196</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Hexazinone</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Imidacloprid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Iodosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Isoproturon-desmethyl</td>
<td>µg/l</td>
<td>0.147 ± 0.0118</td>
<td>- -</td>
<td>0.0104</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>MCPA</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>MCPB</td>
<td>µg/l</td>
<td>0.485 ± 0.039</td>
<td>- -</td>
<td>0.0503</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>MCP (Mecoprop)</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Mesosulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metalaxyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metamitron</td>
<td>µg/l</td>
<td>0.157 ± 0.0156</td>
<td>0.168 0.024 0.0227 107 0.50</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor ethane sulfonic acid (Metazachlor-ESA)</td>
<td>µg/l</td>
<td>2.77 ± 0.367</td>
<td>- -</td>
<td>0.441</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metazachlor oxanilic acid (Metazachlor-OA)</td>
<td>µg/l</td>
<td>1.32 ± 0.202</td>
<td>- -</td>
<td>0.233</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.025</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metribuzin-desamino</td>
<td>µg/l</td>
<td>0.256 ± 0.0346</td>
<td>- -</td>
<td>0.0305</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Metsulfuron-methyl</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>N,N-Dimethylsulfamide (DMS)</td>
<td>µg/l</td>
<td>1.07 ± 0.217</td>
<td>- -</td>
<td>0.205</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Pethoxamid</td>
<td>µg/l</td>
<td>- ± -</td>
<td>- -</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Propazine</td>
<td>µg/l</td>
<td>- ± -</td>
<td><0.005</td>
<td>- -</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Propazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.205 ± 0.0224</td>
<td>- -</td>
<td>0.0183</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>µg/l</td>
<td>0.363 ± 0.0362</td>
<td>- -</td>
<td>0.0482</td>
<td>- -</td>
<td>-</td>
</tr>
<tr>
<td>Parameter</td>
<td>Unit</td>
<td>Target ± CI(99%)</td>
<td>Result ± U</td>
<td>Criteria</td>
<td>Recovery</td>
<td>z-score</td>
</tr>
<tr>
<td>--</td>
<td>----------</td>
<td>------------------</td>
<td>------------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td>µg/l</td>
<td>2.75 ± 0.245</td>
<td>2.645 ± 0.444</td>
<td>0.317</td>
<td>96.3</td>
<td>-0.32</td>
</tr>
<tr>
<td>s-Metolachlor oxanilic acid (Metolachlor-OA)</td>
<td>µg/l</td>
<td>1.09 ± 0.142</td>
<td>-</td>
<td>0.171</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite CGA 368208</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>s-Metolachlor Metabolite NOA 413173</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Simazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine</td>
<td>µg/l</td>
<td>- ±</td>
<td><0.005</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-2-hydroxy</td>
<td>µg/l</td>
<td>0.204 ± 0.0276</td>
<td>-</td>
<td>0.0244</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl-2-hydroxy</td>
<td>µg/l</td>
<td>0.122 ± 0.0256</td>
<td>-</td>
<td>0.0209</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Terbuthylazine-desethyl</td>
<td>µg/l</td>
<td>0.504 ± 0.0313</td>
<td>0.513 ± 0.065</td>
<td>0.0417</td>
<td>102</td>
<td>0.20</td>
</tr>
<tr>
<td>Thiacloprid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thiamefoxam</td>
<td>µg/l</td>
<td>0.128 ± 0.0118</td>
<td>-</td>
<td>0.0141</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Thifensulfuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tolyfluuronid</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tribenuron-methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triclopyr</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Triflusulfuron-Methyl</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tritosulfuron</td>
<td>µg/l</td>
<td>- ±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Measurand</td>
<td>PM02 A</td>
<td>PM02 B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>---------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Dichlorobenzamide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desethyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine-desisopropyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chloridazon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diuron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ethofumesate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexazinone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isoproturon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metamitron</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metazachlor</td>
<td>-2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>s-Metolachlor ethanesulfonic acid (Metolachlor-ESA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbutylazine-desethyl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

z-score

715/715