

umweltbundesamt[®]

MONATSBERICHT DER LUFTGÜTEMESSUNGEN DES UMWELTBUNDESAMTES

Juni 2006

REP-0048

Wien, 2006

Projektleitung Wolfgang Spangl Weitere Informationen zu Publikationen des Umweltbundesamtes unter: http://www.umweltbundesamt.at/ **Impressum** Medieninhaber und Herausgeber: Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien/Österreich Eigenvervielfältigung, gedruckt auf Recyclingpapier © Umweltbundesamt GmbH, Wien, 2006

Alle Rechte vorbehalten ISBN 3-85457-845-9

INHALT

1	EINLEITUNG	5
2	ABKÜRZUNGEN	6
3	DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS	8
4	GRENZWERTE	11
5	WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	13
6	VERFÜGBARKEIT – JUNI 2006	14
7	MONATSMITTELWERTE – JUNI 2006	15
8	ÜBERSCHREITUNGEN	16
9	TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	17
10	GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	24

1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/1997 idgF) und gemäß Ozongesetz (BGBI. 210/1992 idgF) in Österreich insgesamt 8 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 358/98, novelliert mit BGBI. II 263/2004) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM10 und PM2,5 Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von Blei, Benzol, der im Rahmen des EMEP-Messprogramms¹ zusätzlich erfassten Luftschadstoffe sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamtes (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamtes bilden das österreichische Hintergrundmessnetz (ausgenommen Sonnblick). Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Zöbelboden und Vorhegg sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamtes der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen SO_2 , NO_x und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM10 zu rechnen.

.

¹ EMEP - European Monitoring and Evaluation Programme

2 ABKÜRZUNGEN

Luftschadstoffe

SO₂ Schwefeldioxid

PM10 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 %

aufweist

PM2,5 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 %

aufweist

PM1 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 1 μm eine Abscheidewirksamkeit von 50 %

aufweist

NO Stickstoffmonoxid

NO₂ Stickstoffdioxid

NOy oxidierte Stickstoffverbindungen

CO Kohlenstoffmonoxid

O₃ Ozon

CO₂ Kohlenstoffdioxid

N₂O Distickstoffmonoxid

CH₄ Methan

Einheiten

mg/m³ Milligramm pro Kubikmeter

µg/m³ Mikrogramm pro Kubikmeter

ppb parts per billion ppm parts per million

1 mg/m 3 = 1000 µg/m 3 1 ppm = 1000 ppb

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in μg/m³ bzw. mg/m³ bei 1013 hPa und 20 °C (Normbedingungen).

SO ₂	1 μg/m ³ = 0,37528 ppb	1 ppb = 2,6647 μg/m ³
NO	$1 \mu g/m^3 = 0,80186 ppb$	1 ppb = 1,2471 μg/m ³
NO ₂	1 μg/m ³ = 0,52293 ppb	1 ppb = 1,9123 μg/m ³
СО	1 mg/m ³ = 0,85911 ppm	1 ppm = 1,1640 mg/m ³
O ₃	1 μg/m ³ = 0,50115 ppb	1 ppb =1,9954 μg/m ³

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75 %
JMW	Jahresmittelwert	75 % im Sommer und im Winter
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode

3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS

3.1 Ausstattung der Messstellen

Messstelle	O ₃	SO ₂	NO ₂ , NO	со	PM10	PM2,5	PM1
Enzenkirchen	APOA-360E	TEI 43CTL	APNA-360E		DHA80, Gravimetrie		
Illmitz	APOA-360E	TEI 43CTL	APNA-360E	APMA-360CE	DHA80, Gravimetrie	DHA80, Gravimetrie	DHA80, Gravimetrie
Pillersdorf	APOA-360E	TEI 43CTL	APNA-360E		DHA80, Gravimetrie		
St. Sigmund	APOA-350E	TEI 43CTL	APNA-360E				
Sonnblick	TEI 49C		TEI 42CTL	APMA-360CE ²			
Vorhegg	APOA-350E	TEI 43CTL	TEI 42CTL	APMA-360CE	DHA80, Gravimetrie		
Zöbelboden	APOA-360E	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		

Die CO_2 -Messung auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs URAS-14 (Hartmann&Braun).

Die Messung der Konzentration des Treibhausgases N_2O (Distickstoffmonoxid) erfolgt mit einem Gerät der Type TEI 46C, die Messung des Treibhausgases CH_4 (Methan) mit einem Gerät der Type TEI 55C.

In Illmitz, auf dem Zöbelboden und in Vorhegg werden zudem die Konzentration von **Blei im PM10** (PM10-Tagesproben werden mittels GFAAS analysiert) und **Benzol**, Toluol und Xylole (passive Probenahme, Analyse mittels GC) gemessen.

In Illmitz werden im Rahmen des **EMEP-Messprogramms** weiters partikuläres Sulfat, Nitrat und Ammonium sowie Salpetersäure und Ammoniak gemessen, in Illmitz, Zöbelboden und Vorhegg die nasse Deposition und deren Inhaltsstoffe. Die Ergebnisse dieser Messungen sowie den Messungen von Benzol und Blei im PM10 sind im Jahresbericht der Luftgütemessungen des Umweltbundesamtes zu finden (http://www.umweltbundesamt.at/jahresberichte/).

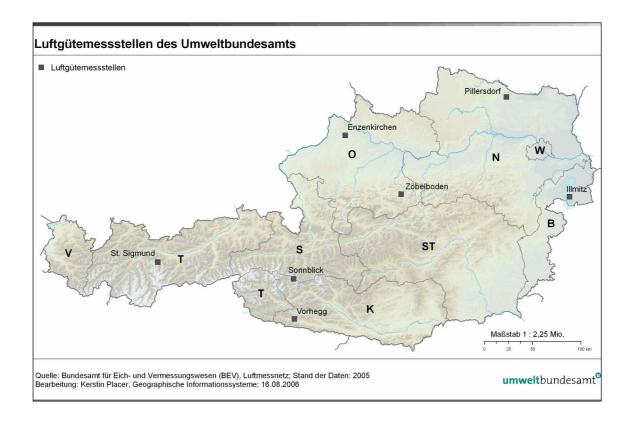
In Enzenkirchen, Illmitz und Pillersdorf, wird zusätzlich zur gravimetrischen PM10-Messung (gemäß EN 12341) die **PM10-Konzentration** mittels β -Absorption kontinuierlich gemessen, auf dem Zöbelboden mittels TEOM; diese Messung dient u. a. dem Methodenvergleich.

Meteorologische Messungen

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.

In Enzenkirchen, Illmitz, Pillersdorf und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

R


² erfolgt im Rahmen des GAW-Messprogramms der WMO

In St. Sigmund werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung und die Sonnenscheindauer gemessen.

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/

3.2 Angaben zu den Messgeräten

	Nachweisgrenze	Messprinzipien
SO ₂		
TEI 43CTL	0,13 μg/m³ (0,05 ppb)	UV-Fluoreszenz
PM10, PM2,5, PM1		
DHA80, Gravimetrie	< 0,1 μg/m³	Gravimetrie: Probenahme mittels Digitel High-Volume-Sampler DHA80 mit PM10- (bzw. PM2,5- und PM1-) Kopf (Tagesproben, Durchfluss 720 m³/d) und gravimetrische Massenbestimmung gemäß EN 12341
NO+NO ₂		
APNA-360E	NO: 0,4 μg/m ³ (0,3 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 1,7 μg/m ³ (0,9 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42CTL	NO: 0,06 μg/m ³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
со		
APMA-360CE	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
O ₃		
APOA-350E	4 μg/m³ (2 ppb)	Ultraviolett-Absorption
APOA-360E	0,8 μg/m ³ (0,4 ppb)	Ultraviolett-Absorption
TEI 49	4 μg/m³ (2 ppb)	Ultraviolett-Absorption
CO ₂		
URAS-14	3	Infrarot-Absorption
N ₂ O	•	
TEI 46C	0,02 ppm	Infrarot-Gasfilterkorrelation
CH₄		
TEI 55C	0,1 ppm	Flammenionisationsdetektor
·	·	

Die kleinste angegebene Konzentration ist für NO_2 (Horiba), O_3 , PM10, PM2,5 und PM1 1 μ g/m³, für SO_2 und NO_2 (TEI 42CTL) 0,1 μ g/m³, für CO 0,10 μ g/m³.

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in $\mu g/m^3$ mit <1 angegeben.

 $^{^{3}}$ Empfindlichkeit 0,1 ppm, Messbereich 340 bis 440 ppm.

4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamtes kontinuierlich erfassten Schadstoffe angegeben.

Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 34/2003

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

SO ₂	120 μg/m ³	Tagesmittelwert
SO ₂	200 μg/m ³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 µg/m³ gelten nicht als Überschreitung
PM10	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: bis 2004: 35, von 2005 bis 2009: 30, ab 2010: 25
PM10	40 μg/m ³	Jahresmittelwert
СО	10 mg/m ³	Gleitender Achtstundenmittelwert
NO_2	200 μg/m ³	Halbstundenmittelwert
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge beträgt 30 $\mu g/m^3$ bei Inkrafttreten des Gesetzes und wird am 1.1. jedes Jahres bis 1.1. 2005 um 5 $\mu g/m^3$ verringert. Die Toleranzmarge von 10 $\mu g/m^3$ gilt gleich bleibend vom 1.1. 2005 bis 31.12.2009. Die Toleranzmarge von 5 $\mu g/m^3$ gilt gleich bleibend vom 1.1. 2010 bis 31.12.2011
Blei im PM10	$0,5 \mu g/m^3$	Jahresmittelwert
Benzol	5 μg/m ³	Jahresmittelwert

Alarmwerte gemäß Anlage 4.

SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert	
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert	

Zielwerte gemäß Anlage 5.

PM10	50 μg/m ³	TMW, sieben Überschreitungen im Kalenderjahr erlaubt
PM10	20 μg/m ³	JMW
NO ₂	80 μg/m ³	TMW

Ozongesetz i.d.g.F. (BGBI. I 2003/34, Art. II)

Mit der Novelle zum Ozongesetz (BGBI. I 2003/34), welche am 1.7.2003 in Kraft trat, wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

Information	nsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle		240 μg/m³	Nicht gleitender Einstundenmittelwert
Zielwert für den Schutz der menschlichen Gesundheit gemäß A			sundheit gemäß Anlage 2 (einzuhalten ab 2010).
120 μg/m³	Llächeter /pick	t gleitender) Acht-	gemittelt über 3 Jahre sind Überschreitungen an

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

18.000 µg/m³.h	AOT40, berechnet aus den MW1 von Mai bis Juli	Mittelwert über 5 Jahre

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	20 μg/m ³	Jahresmittelwert und Wintermittelwert
$NO_x^{(4)}$	30 μg/m ³	Jahresmittelwert

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	50 μg/m ³	Tagesmittelwert	
NO ₂	80 μg/m ³	Tagesmittelwert	

12

⁴ NOx als Summe von NO und NO₂ in ppb gebildet und mit dem Faktor 1,9123 in μg/m³ umgerechnet

5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Juni zeichnete sich in ganz Österreich durch deutlich überdurchschnittliche Temperaturen aus, die Monatsmitteltemperatur lag um 1 bis über 2°C über dem Juni-Mittelwerte der Klimaperiode 1961–90.

Die Niederschlagsmengen erreichten in weiten Teilen Österreichs überdurchschnittliche Werte, wobei es im nordöstlichen Alpenraum am regenreichsten war. Im südöstlichen Niederösterreich wurde weit mehr als das Doppelte der üblichen Niederschlagsmenge registriert. Unterdurchschnittliche Regenmengen fielen dagegen in Vorarlberg, in Kärnten und der Südsteiermark sowie im westlichen Oberösterreich.

der Informationsschwellenwert gemäß Ozongesetz (180 µg/m³ als Einstundenmittelwert) wurde im Juni 2005 an der Station Vorhegg an zwei Tagen (15. und 27.6.) überschritten, an den anderen Messstellen eingehalten. Die erhöhten Ozonkonzentrationen in Vorhegg sind aller Wahrscheinlichkeit nach auf Transport belasteter Luftmassen aus Norditalien zurückzuführen.

Während die außeralpinen Messstellen sowie Zöbelboden im Juni 2005 eine durchschnittliche Ozonbelastung, verglichen mit den letzten Jahren, registrierten, lag sie in St. Sigmund, auf dem Sonnblick und in Vorhegg weit über dem Niveau der Vergleichsmonate der letzten Jahre; in St. Sigmund wurde der höchste Monatsmittelwert im Juni seit Beginn der Messung (1999) registriert, in Vorhegg seit 2001.

Die PM10-Belastung wies in Illmitz, in Pillersdorf und auf dem Zöbelboden ein durchschnittliches Niveau auf, demgegenüber registrierte Vorhegg den höchsten Monatsmittelwert im Juni seit Beginn der Messung (2000).

In Enzenkirchen trat am 16.6. ein PM10-Tagesmittelwert über 50 μg/m³ auf, der wahrscheinlich durch lokale (landwirtschaftliche) Emissionen bedingt war.

In Klöch wurde am 21.6. ein PM10-TMW über 50 μg/m² registriert, der in eine Episode mit österreichweit erhöhter PM10-Belastung fiel.

Bei SO₂ registrierten Enzenkirchen, Illmitz, Pillersdorf und Vorhegg eine für den Sommer ungewöhnlich hohe Belastung; in Illmitz wurde der höchste SO₂-Monatsmittelwert im Juni seit 1999, in Pillersdorf und Vorhegg seit 2000 erfasst.

Die NO₂-Belastung lag in Enzenkirchen dagegen weit unter dem Durchschnitt der letzten Jahre, hier wurde der niedrigste Monatsmittelwert im Juni seit 1999 beobachtet. Demgegenüber registrierten Illmitz, Pillersdorf und Vorhegg eine durchschnittliche, St. Sigmund und Zöbelboden eine relativ hohe NO₂-Belastung.

In Illmitz und Vorhegg wurde der höchste CO-Monatsmittelwert im Juni seit Beginn der Messung (2000 bzw. 1992) beobachtet, auf dem Sonnblick wies die CO-Belastung ein durchschnittliches Niveau auf.

6 VERFÜGBARKEIT – JUNI 2006

Verfügbarkeit der Halbstundenmittelwerte (bei PM10, PM2,5 und PM1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte:

	O ₃	SO ₂	NO ₂	NO	СО	PM10	PM2,5	PM1	CO ₂	N ₂ O	CH₄	NO _y
Enzenkirchen	97	97	97	97		100						
Illmitz	93	92	93	93	94	93	93	93				
Pillersdorf	98	97	97	97		90						
Sonnblick	97				97				86			96
St. Sigmund	97	98	98	98								
Vorhegg	97	98	97	97	98	100						
Zöbelboden	94	95	95	95		93				85	96	

Die Verfügbarkeit soll gemäß §4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO_2 , CO, NO_2 und O_3 mindestens 90% betragen.

7 MONATSMITTELWERTE – JUNI 2006

	O ₃ µg/m³	SO ₂ µg/m³	NO ₂ μg/m³	NO μg/m³	CO mg/m³		PM2,5 µg/m³		CO ₂	N₂O ppm	CH₄ ppm	NO _y ppb
Enzenkirchen	89	1.2	4.9	1.0		21						
Illmitz	87	1.6	5.4	0.5	0.20	18	13	10				
Pillersdorf	87	1.6	5.0	0.8		20						
Sonnblick	116				0.19				380			1.26
St. Sigmund	94	0.2	3.0	0.4								
Vorhegg	101	0.5	3.5	0.2	0.21	16						
Zöbelboden	99	0.5	3.9	0.2		14				0.30	1.8	

v: Verfügbarkeit nicht ausreichend

8 ÜBERSCHREITUNGEN

Anzahl der Tage mit Überschreitungen im Juni 2006

	O ₃ MW1 > 180 μg/m³	O ₃ MW8 > 120 μg/m³	PM10 TMW > 50 μg/m³
Enzenkirchen	0	10	1
Illmitz	0	11	0
Pillersdorf	0	7	0
Sonnblick	0	16	
St. Sigmund	0	8	
Vorhegg	2	14	0
Zöbelboden	0	7	0

Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2006

	O ₃ MW1 > 180 μg/m ³	O ₃ MW8 > 120 μg/m³	PM10 TMW > 50 μg/m³
Enzenkirchen	0	24	20
Illmitz	0	28	28
Pillersdorf	0	19	27
Sonnblick	0	58	
St. Sigmund	0	21	
Vorhegg	2	38	0
Zöbelboden	0	22	0

9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Enzenkirchen - Juni 2006

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW μg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW μg/m³	PM10 TMW µg/m³
1.06.	73	76	0.6	0.4	11.0	7.3	1.1	0.3	8
2.06.	76	72	4.8	1.1	13.4	7.5	1.8	0.4	14
3.06.	89	79	2.2	1.1	6.9	4.3	0.9	0.2	14
4.06.	86	84	1.0	0.5	6.7	3.3	0.5	0.1	10
5.06.	93	88	1.4	0.5	5.7	3.1	3.4	0.2	12
6.06.	91	84	1.8	0.8	8.6	4.5	2.2	0.2	14
7.06.	93	82	2.7	0.7	11.8	6.3	8.1	0.8	11
8.06.	101	97	2.2	0.8	12.0	2.6	7.0	0.3	9
9.06.	114	105	3.1	1.7	13.9	6.5	1.6	0.4	17
10.06.	100	99	3.2	1.4	22.8	10.6	11.6	1.5	22
11.06.	110	106	5.1	2.0	11.1	4.6	1.1	0.1	16
12.06.	124	106	8.7	2.3	14.4	5.5	1.6	0.2	19
13.06.	132	128	9.4	2.2	13.7	4.2	12.7	1.2	19
14.06.	148	142	3.9	2.0	12.0	5.6	4.0	1.2	23
15.06.	165	159	11.5	2.4	12.2	5.5	1.9	1.0	28
16.06.	178	165	11.6	2.7	16.3	6.8	15.9	4.7	75
17.06.	115	140	1.0	0.6	10.2	4.2	4.1	1.2	30
18.06.	126	122	1.0	0.7	9.6	4.4	1.6	0.8	26
19.06.	119	115	1.0	0.7	9.9	4.2	8.2	1.4	25
20.06.	128	123	0.8	0.6	6.4	2.9	6.6	1.2	22
21.06.	136	124	4.2	1.7	14.2	7.3	3.6	1.4	39
22.06.	120	114	1.3	0.5	6.9	2.9	6.4	1.6	17
23.06.	89	98	2.2	0.6	10.1	5.1	3.3	0.9	17
24.06.	128	121	4.9	1.9	10.3	4.5	11.5	1.2	24
25.06.	135	122	4.3	1.6	9.0	4.0	1.6	1.0	29
26.06.	126	116	1.1	0.6	8.5	3.9	4.4	1.2	20
27.06.	140	119	6.0	1.1	11.5	5.1	3.0	1.0	24
28.06.	120	115	1.4	0.7	8.8	4.5	4.0	1.2	16
29.06.	116	105	1.7	0.5	6.3	3.1	1.5	0.8	14
30.06.	98	89	0.7	0.4	7.1	3.9	2.6	0.9	9
Max.	178	165	11.6	2.7	22.8	10.6	15.9	4.7	75

v: Verfügbarkeit nicht ausreichend

Illmitz – Juni 2006

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³		NO₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW μg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³	PM2,5 TMW µg/m³	PM1 TMW µg/m³
1.06.	86	89	0.5	0.1	9.1	4.4	2.2	0.6	0.23	5	5	3
2.06.	92	87	13.7	4.3	13.8	6.1	1.8	0.5	0.25	18	15	11
3.06.	96	90	4.9	1.3	9.6	3.7	0.6	0.3	0.23	12	10	8
4.06.	87	83	5.0	8.0	10.6	3.2	1.0	0.4	0.21	10	8	6
5.06.	96	93	1.4	0.5	5.5	2.4	0.5	0.3	0.20	11	7	5
6.06.	100	93	2.6	0.6	19.5	6.2	1.4	0.6	0.21	13	8	6
7.06.	94	89	8.8	1.4	13.7	5.3	4.5	0.7	0.22	9	8	6
8.06.	105	101	5.3	1.2	15.9	6.3	3.7	0.7	0.20	12	9	8
9.06.	121	115	4.1	1.3	12.5	6.7	2.5	0.7	0.21	15	11	8
10.06.	109	105	4.1	1.6	10.8	4.4	1.0	0.4	0.21	14	11	9
11.06.	113	106	6.0	2.5	11.7	4.9	1.2	0.4	0.21	14	12	10
12.06.	128	123	7.3	2.6	11.2	6.0	2.2	0.6	0.21	19	15	12
13.06.	126	115	6.1	2.2	13.7	7.8	1.9	0.7	0.21	17	15	12
14.06.	136	125	5.1	2.1	10.9	6.4	1.8	0.6	0.20	19	14	11
15.06.	149	142	10.5	3.5	12.4	6.5	1.6	0.6	0.21	23	17	14
16.06.	140	115	2.2	1.2	8.2	5.1	1.1	0.6	0.22	29	22	19
17.06.	141	125	2.7	8.0	9.3	4.1	0.9	0.5	0.23	25	17	12
18.06.	115	102	8.4	1.2	13.2	4.9	1.9	0.6	0.23	24	17	13
19.06.	147	128	12.8	v	18.3	8.5	1.7	0.9	0.22	25	19	15
20.06.	96	92	3.9	V	12.6	v	1.2	V	0.21	V	٧	v
21.06.	131	122	2.2	v	4.9	v	0.9	V	0.23	V	٧	v
22.06.	152	130	3.7	0.7	11.5	4.5	2.1	0.5	0.22	17	9	6
23.06.	113	106	3.8	1.1	12.1	5.2	2.1	0.6	0.19	16	11	9
24.06.	134	127	8.1	2.9	12.7	6.1	1.7	0.5	0.23	24	18	15
25.06.	120	118	0.9	0.5	4.4	2.6	0.6	0.3	0.20	24	18	14
26.06.	138	126	1.0	0.5	13.6	4.7	0.6	0.4	0.23	29	21	15
27.06.	160	142	30.0	2.1	14.8	5.6	2.6	0.5	0.23	22	15	11
28.06.	145	134	3.6	1.1	9.4	4.9	1.2	0.5	0.19	17	12	9
29.06.	106	93	4.8	٧	26.8	10.1	5.8	1.0	0.26	27	21	14
30.06.	93	89	0.8	0.4	6.3	3.9	0.9	0.4	0.25	10	8	6
Max.	160	142	30.0	4.3	26.8	10.1	5.8	1.0	0.26	29	22	19

v: Verfügbarkeit nicht ausreichend

Pillersdorf - Juni 2006

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW μg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW μg/m³	NO Max. HMW μg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.06.	83	76	1.0	0.5	7.2	3.8	1.3	0.8	5
2.06.	98	94	7.4	2.2	6.3	3.8	1.3	0.7	14
3.06.	89	92	6.0	2.6	6.2	3.8	0.9	0.7	13
4.06.	92	87	3.6	1.2	5.5	2.8	1.0	0.7	9
5.06.	102	97	3.4	1.5	8.6	3.3	1.0	0.7	14
6.06.	99	96	3.0	1.5	5.7	3.8	2.5	0.7	14
7.06.	84	80	2.6	1.1	6.1	4.2	1.5	0.8	10
8.06.	100	94	1.6	1.1	8.3	4.0	1.3	0.7	12
9.06.	116	108	5.6	2.3	10.0	4.7	2.1	8.0	17
10.06.	96	91	2.0	0.8	6.8	4.1	1.2	0.7	14
11.06.	104	100	4.4	2.2	7.0	3.7	1.5	8.0	15
12.06.	135	121	4.0	2.1	12.8	5.2	2.1	0.9	20
13.06.	107	108	4.8	1.4	9.8	5.0	2.1	0.8	18
14.06.	131	125	9.4	3.3	11.2	6.6	2.2	0.9	25
15.06.	139	136	9.1	4.2	12.8	5.7	1.4	0.7	27
16.06.	156	140	4.7	2.6	16.2	8.3	2.0	0.9	31
17.06.	107	106	1.8	0.6	13.5	5.6	15.1	1.3	31
18.06.	113	108	2.0	1.0	7.7	4.7	0.9	0.7	21
19.06.	140	122	2.7	1.4	14.2	7.5	1.7	0.9	32
20.06.	123	120	0.7	0.4	7.8	4.6	1.3	0.8	19
21.06.	164	122	4.6	1.7	22.0	9.4	2.9	1.1	37
22.06.	104	98	1.9	0.3	8.5	4.2	1.3	0.7	18
23.06.	95	91	5.1	1.3	8.2	4.6	1.5	0.7	17
24.06.	120	115	6.7	2.7	10.0	5.1	1.4	8.0	21
25.06.	125	118	3.9	2.0	8.1	5.1	1.1	0.7	26
26.06.	123	110	2.1	1.2	20.3	6.3	2.5	0.9	29
27.06.	136	125	1.1	0.6	19.4	4.7	7.9	1.0	21
28.06.	125	116	4.2	0.9	7.1	4.2	1.3	0.7	V
29.06.	117	107	4.9	2.2	9.0	6.3	1.9	0.8	V
30.06.	82	87	1.1	0.4	7.2	5.2	1.3	0.7	V
Max.	164	140	9.4	4.2	22.0	9.4	15.1	1.3	37

v: Verfügbarkeit nicht ausreichend

Sonnblick - Juni 2006

Datum	O ₃ Max. MW1	O ₃ Max. MW8	CO Max. MW8g	CO ₂ TMW	NO _y Max. HMW	NO _y TMW
	μg/m³	μg/m³	mg/m³	ppm	ppb	ppb
1.06.	104	110	0.23	384	2.40	1.54
2.06.	107	104	0.23	385	1.94	1.57
3.06.	114	107	0.23	380	3.39	1.76
4.06.	115	112	0.23	382	2.59	V
5.06.	120	117	0.22	382	1.05	0.72
6.06.	111	109	0.21	381	1.72	1.15
7.06.	115	112	0.21	V	1.83	1.34
8.06.	118	116	0.20	V	1.90	1.67
9.06.	118	116	0.20	378	1.77	1.60
10.06.	119	115	0.20	379	1.94	1.48
11.06.	122	114	0.20	378	1.25	1.06
12.06.	150	147	0.20	379	2.05	1.03
13.06.	140	136	0.21	380	2.23	1.60
14.06.	146	140	0.19	381	2.69	1.75
15.06.	145	140	0.19	382	2.32	1.29
16.06.	154	143	0.20	379	2.59	1.61
17.06.	125	133	0.19	380	1.15	0.73
18.06.	120	117	0.19	380	1.32	0.95
19.06.	139	120	0.19	380	1.63	0.87
20.06.	134	132	0.18	380	0.92	0.75
21.06.	122	116	0.19	v	1.59	1.04
22.06.	126	123	0.20	v	1.95	٧
23.06.	138	131	0.21	380	1.58	1.41
24.06.	142	133	0.21	378	1.86	1.41
25.06.	148	141	0.21	378	1.75	1.26
26.06.	134	130	0.20	379	1.48	0.94
27.06.	145	138	0.20	V	1.83	1.34
28.06.	149	143	0.19	380	1.73	1.09
29.06.	151	140	0.20	381	2.69	0.95
30.06.	136	134	0.19	378	1.30	0.96
Max.	154	147	0.23	385	3.39	1.76

v: Verfügbarkeit nicht ausreichend

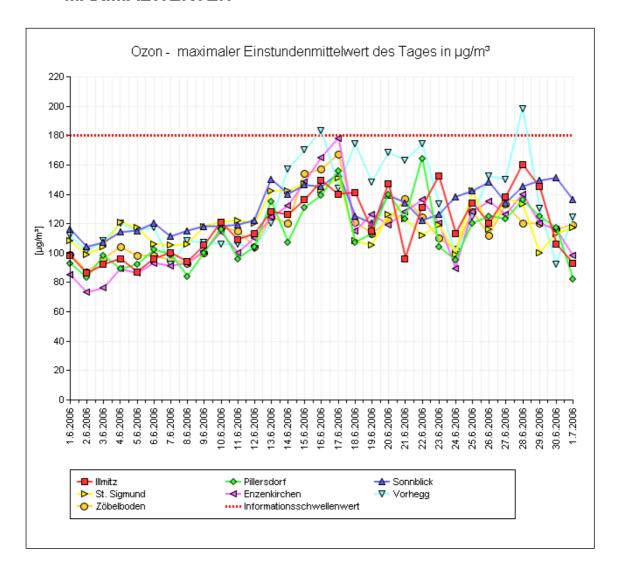
St. Sigmund – Juni 2006

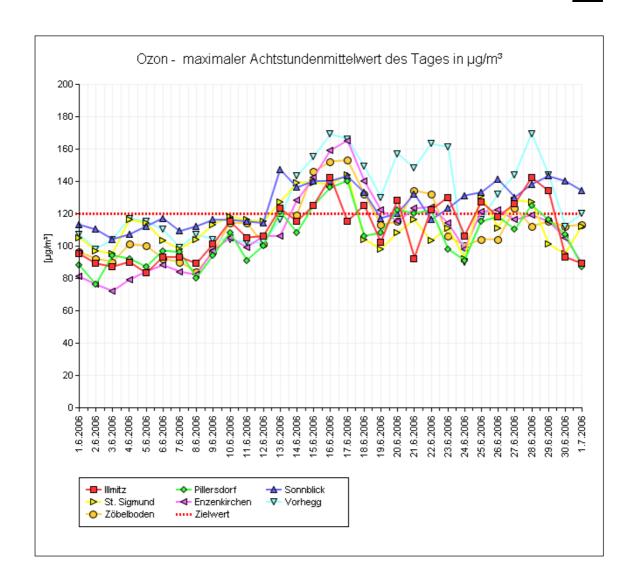
Datum		O₃ Max. MW8 μg/m³	SO ₂ Max. HMW μg/m³	SO ₂ TMW μg/m³	NO₂ Max. HMW μg/m³	NO ₂ TMW μg/m³	NO Max. HMW μg/m³	NO TMW μg/m³
1.06.	99	97	0.6	0.2	11.1	2.8	5.9	0.6
2.06.	104	95	0.6	0.3	13.9	5.0	7.0	1.4
3.06.	121	116	0.7	0.3	3.3	2.3	0.4	0.2
4.06.	117	114	0.2	0.2	3.3	2.3	0.6	0.3
5.06.	106	103	0.2	0.2	2.4	1.7	0.5	0.2
6.06.	105	98	0.4	0.2	11.0	3.3	1.7	0.4
7.06.	106	104	2.1	0.3	13.1	4.7	9.5	1.1
8.06.	118	113	0.4	0.2	8.0	3.9	1.4	0.3
9.06.	121	118	0.5	0.3	9.9	4.3	4.5	0.5
10.06.	122	116	0.7	0.4	9.3	3.7	0.8	0.3
11.06.	120	115	0.6	0.3	5.3	2.9	1.1	0.3
12.06.	142	127	0.6	0.3	15.4	3.4	5.6	0.4
13.06.	142	139	0.5	0.3	8.8	4.0	5.6	0.5
14.06.	147	139	0.5	0.3	9.1	3.5	2.8	0.4
15.06.	143	138	0.8	0.3	5.2	3.2	1.2	0.3
16.06.	151	144	0.6	0.3	5.2	3.1	0.6	0.2
17.06.	108	104	0.3	0.2	6.3	2.0	0.6	0.3
18.06.	105	98	0.2	0.1	2.9	1.2	0.8	0.2
19.06.	126	108	0.5	0.2	8.9	2.2	6.5	0.5
20.06.	123	116	0.4	0.2	5.0	2.2	0.4	0.3
21.06.	112	103	0.6	0.3	8.2	3.3	0.9	0.3
22.06.	119	111	0.4	0.2	7.0	3.5	0.7	0.3
23.06.	99	92	0.3	0.2	7.4	3.3	0.7	0.3
24.06.	142	131	0.3	0.2	4.9	2.6	1.4	0.3
25.06.	116	111	0.2	0.1	3.5	1.9	0.5	0.2
26.06.	137	128	0.5	0.3	7.5	3.7	0.8	0.3
27.06.	133	127	0.3	0.2	6.6	3.5	0.8	0.3
28.06.	100	101	0.3	0.1	11.6	3.1	0.8	0.3
29.06.	113	95	0.2	0.1	4.5	1.9	0.9	0.2
30.06.	117	112	0.2	0.1	6.5	2.5	0.6	0.3
Max.	151	144	2.1	0.4	15.4	5.0	9.5	1.4

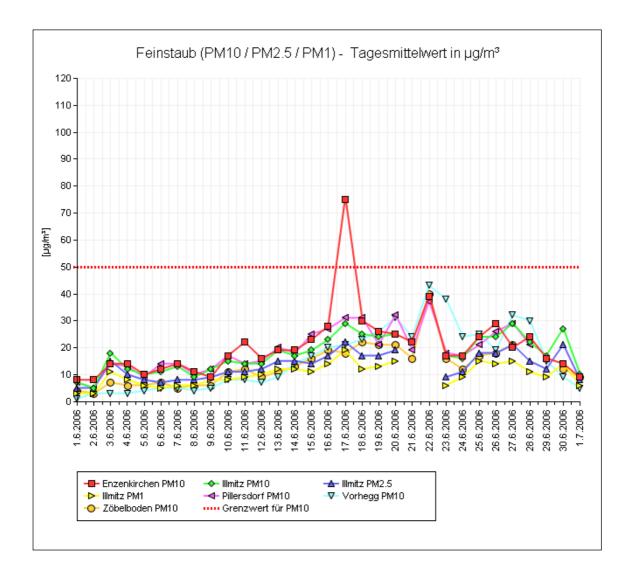
v: Verfügbarkeit nicht ausreichend

Vorhegg – Juni 2006

Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW μg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³
1.06.	101	98	0.5	0.3	4.3	2.7	0.8	0.2	0.22	3
2.06.	108	104	0.9	0.3	4.7	2.7	1.3	0.2	0.22	3
3.06.	120	117	1.0	0.4	3.1	2.5	0.2	0.1	0.21	3
4.06.	115	115	0.3	0.3	2.8	2.2	0.2	0.1	0.21	4
5.06.	117	110	1.1	0.4	4.6	2.7	0.5	0.1	0.21	5
6.06.	92	99	1.7	0.4	5.4	3.1	1.0	0.2	0.21	5
7.06.	108	107	0.5	0.3	5.2	2.4	1.2	0.2	0.21	4
8.06.	107	104	0.8	0.5	5.7	3.2	0.5	0.2	0.21	5
9.06.	106	104	1.3	0.6	18.2	4.2	3.9	0.4	0.22	8
10.06.	106	102	0.7	0.4	8.7	2.8	0.5	0.1	0.21	8
11.06.	103	102	0.8	0.5	4.0	2.9	0.3	0.1	0.21	7
12.06.	120	116	0.9	0.6	5.6	3.2	1.1	0.2	0.21	9
13.06.	157	143	1.0	0.6	6.7	3.7	0.7	0.1	0.23	14
14.06.	170	155	1.3	0.7	7.2	4.5	0.5	0.1	0.24	17
15.06.	183	169	1.4	0.7	6.6	4.3	0.2	0.1	0.24	20
16.06.	144	166	0.6	0.3	6.1	4.3	0.4	0.1	0.25	21
17.06.	174	149	2.3	0.5	10.1	4.3	0.4	0.1	0.26	23
18.06.	148	130	1.1	0.4	5.1	3.7	0.3	0.1	0.25	26
19.06.	168	157	3.2	8.0	8.5	4.3	1.8	0.2	0.24	31
20.06.	163	148	1.9	0.6	10.5	4.3	3.6	0.4	0.23	24
21.06.	174	163	1.7	8.0	7.7	4.9	1.5	0.2	0.26	43
22.06.	133	161	1.0	0.4	5.1	3.7	0.3	0.1	0.26	38
23.06.	99	90	0.5	0.3	6.3	3.7	8.0	0.2	0.22	24
24.06.	124	116	0.9	0.4	7.0	4.6	0.6	0.2	0.25	25
25.06.	152	132	0.6	0.3	4.3	3.1	0.4	0.1	0.22	19
26.06.	150	144	1.9	1.0	4.7	3.3	2.2	0.2	0.22	32
27.06.	198	169	1.4	0.8	9.2	4.4	2.8	0.3	0.23	30
28.06.	130	144	1.1	0.4	6.4	3.7	0.7	0.2	0.21	15
29.06.	92	112	0.6	0.3	5.8	3.3	0.5	0.1	0.21	9
30.06.	124	120	0.4	0.2	4.5	2.8	1.1	0.2	0.19	5
Max.	198	169	3.2	1.0	18.2	4.9	3.9	0.4	0.26	43


v: Verfügbarkeit nicht ausreichend


Zöbelboden - Juni 2006


Datum	O ₃ Max. MW1 μg/m³	O ₃ Max. MW8 μg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW μg/m³	PM10 TMW µg/m³	N₂O TMW ppm	CH₄ TMW ppm
1.06.	87	92	<0.1	<0.1	5.7	4.2	1.0	0.2	3	0.31	1.8
2.06.	96	90	1.6	0.4	8.2	6.4	0.4	0.1	7	0.31	1.8
3.06.	104	101	2.3	0.6	6.1	4.0	0.2	0.1	6	0.31	1.8
4.06.	98	100	0.3	<0.1	5.6	3.9	0.3	0.1	6	0.31	1.8
5.06.	98	92	1.8	0.2	5.2	3.6	0.2	0.1	7	0.31	1.8
6.06.	95	90	0.2	<0.1	4.9	2.9	0.3	0.1	5	0.31	1.8
7.06.	93	84	1.1	0.3	7.2	4.4	0.9	0.2	6	0.31	1.8
8.06.	100	96	0.7	0.2	3.4	2.6	0.3	0.1	6	0.31	1.8
9.06.	117	114	3.1	1.7	8.0	5.0	0.4	0.1	11	0.31	1.8
10.06.	115	114	2.7	8.0	7.9	5.3	0.4	0.1	12	0.31	1.8
11.06.	104	101	3.6	8.0	4.3	3.2	0.3	0.1	9	0.31	1.8
12.06.	124	120	2.6	1.0	5.1	3.3	0.2	0.1	11	0.31	1.8
13.06.	120	119	3.4	1.1	5.8	3.7	1.3	0.2	13	V	1.8
14.06.	154	146	2.3	1.3	6.7	4.2	0.4	0.3	16	V	1.8
15.06.	157	152	2.0	1.3	6.7	4.6	0.3	0.3	19	0.31	1.8
16.06.	167	153	1.2	0.7	4.9	4.0	0.4	0.3	18	0.30	1.7
17.06.	121	132	1.2	0.5	7.0	4.2	0.4	0.3	22	0.30	1.7
18.06.	113	113	1.0	0.5	4.4	3.5	0.4	0.3	21	0.30	1.7
19.06.	122	115	0.9	0.4	4.8	3.5	0.4	0.3	21	0.30	1.7
20.06.	137	134	0.4	0.2	5.0	3.5	0.3	0.3	16	0.30	1.7
21.06.	124	132	0.7	0.3	5.9	3.5	0.3	0.3	40	0.30	1.7
22.06.	110	106	0.4	0.1	4.6	3.3	0.4	0.3	16	0.29	1.7
23.06.	102	100	0.2	<0.1	4.5	3.8	0.3	0.3	12	0.29	1.7
24.06.	128	104	1.3	0.3	4.6	3.1	0.4	0.3	17	0.29	1.8
25.06.	112	104	0.3	0.1	4.2	2.9	0.5	0.3	18	V	1.8
26.06.	133	123	1.4	0.6	6.9	4.6	8.0	0.4	21	0.29	1.8
27.06.	120	112	0.8	٧	6.2	v	0.4	٧	V	v	v
28.06.	120	115	0.9	٧	5.8	v	0.5	V	V	V	٧
29.06.	116	112	<0.1	<0.1	6.2	3.3	0.9	0.3	12	0.30	1.7
30.06.	119	113	0.3	<0.1	5.2	3.8	0.4	0.3	9	0.30	1.7
Max.	167	153	3.6	1.7	8.2	6.4	1.3	0.4	40	0.31	1.8

v: Verfügbarkeit nicht ausreichend

10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

