

### umweltbundesamt<sup>®</sup>

## MONATSBERICHT DER LUFTGÜTEMESSUNGEN DES UMWELTBUNDESAMTES

Juli 2006

REP-0049

Wien, 2006



# Projektleitung Wolfgang Spangl Weitere Informationen zu Publikationen des Umweltbundesamtes unter: http://www.umweltbundesamt.at/ **Impressum** Medieninhaber und Herausgeber: Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien/Österreich Eigenvervielfältigung, gedruckt auf Recyclingpapier © Umweltbundesamt GmbH, Wien, 2006

Alle Rechte vorbehalten ISBN 3-85457-847-4

#### **INHALT**

| 1  | EINLEITUNG                                                                  | 5  |
|----|-----------------------------------------------------------------------------|----|
| 2  | ABKÜRZUNGEN                                                                 | 6  |
| 3  | DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS                                   | 8  |
| 4  | GRENZWERTE                                                                  | 11 |
| 5  | WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS                      | 13 |
| 6  | VERFÜGBARKEIT – JULI 2006                                                   | 15 |
| 7  | MONATSMITTELWERTE – JULI 2006                                               | 16 |
| 8  | ÜBERSCHREITUNGEN                                                            | 17 |
| 9  | TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN | 18 |
| 10 | GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN    | 26 |

#### 1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBl. I 115/1997 idgF) und gemäß Ozongesetz (BGBl. 210/1992 idgF) in Österreich insgesamt 8 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 358/98, novelliert mit BGBI. II 263/2004) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM10 und PM2,5 Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von Blei, Benzol, der im Rahmen des EMEP-Messprogramms<sup>1</sup> zusätzlich erfassten Luftschadstoffe sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamtes (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamtes bilden das österreichische Hintergrundmessnetz (ausgenommen Sonnblick). Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamtes der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen  $SO_2$ ,  $NO_x$  und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM10 zu rechnen.

<sup>&</sup>lt;sup>1</sup> EMEP - European Monitoring and Evaluation Programme

#### 2 ABKÜRZUNGEN

#### Luftschadstoffe

SO<sub>2</sub> Schwefeldioxid

PM10 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 10  $\mu m$  eine Abscheidewirksamkeit von 50 %

aufweist

PM2,5 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 %

aufweist

PM1 Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen

aerodynamischen Durchmesser von 1  $\mu m$  eine Abscheidewirksamkeit von 50 %

aufweist

NO Stickstoffmonoxid

NO<sub>2</sub> Stickstoffdioxid

NOy oxidierte Stickstoffverbindungen

CO Kohlenstoffmonoxid

O<sub>3</sub> Ozon

CO<sub>2</sub> Kohlenstoffdioxid

N<sub>2</sub>O Distickstoffmonoxid

CH<sub>4</sub> Methan

#### Einheiten

mg/m³ Milligramm pro Kubikmeter μg/m³ Mikrogramm pro Kubikmeter

ppb parts per billion ppm parts per million

1 mg/m $^3$  = 1000 µg/m $^3$ 1 ppm = 1000 ppb

**Umrechnungsfaktoren** zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in μg/m³ bzw. mg/m³ bei 1013 hPa und 20 °C (Normbedingungen).

| SO <sub>2</sub> | 1 μg/m <sup>3</sup> = 0,37528 ppb | 1 ppb = 2,6647 μg/m <sup>3</sup> |
|-----------------|-----------------------------------|----------------------------------|
| NO              | $1 \mu g/m^3 = 0,80186 ppb$       | 1 ppb = 1,2471 μg/m <sup>3</sup> |
| NO <sub>2</sub> | 1 μg/m <sup>3</sup> = 0,52293 ppb | 1 ppb = 1,9123 μg/m <sup>3</sup> |
| СО              | 1 mg/m <sup>3</sup> = 0,85911 ppm | 1 ppm = 1,1640 mg/m <sup>3</sup> |
| O <sub>3</sub>  | 1 μg/m <sup>3</sup> = 0,50115 ppb | 1 ppb =1,9954 μg/m <sup>3</sup>  |

#### Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

|      | Definition                                                                                     | Mindestzahl der HMW, um<br>einen gültigen Mittelwert zu<br>bilden (gemäß ÖNORM M5866,<br>April 2000) |
|------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| HMW  | Halbstundenmittelwert<br>(48 Werte pro Tag zu jeder halben Stunde)                             |                                                                                                      |
| MW1  | Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)  | 2                                                                                                    |
| MW3  | gleitender Dreistundenmittelwert<br>(48 Werte pro Tag zu jeder halben Stunde)                  | 4                                                                                                    |
| MW8g | halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)       | 12                                                                                                   |
| MW8  | Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde) | 12                                                                                                   |
| TMW  | Tagesmittelwert                                                                                | 40                                                                                                   |
| MMW  | Monatsmittelwert                                                                               | 75 %                                                                                                 |
| JMW  | Jahresmittelwert                                                                               | 75 % im Sommer und im Winter                                                                         |
| WMW  | Wintermittelwert                                                                               | 75 % in jeder Hälfte der<br>Beurteilungsperiode                                                      |

#### 3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS

#### 3.1 Ausstattung der Messstellen

| Messstelle   | O <sub>3</sub> | SO <sub>2</sub> | NO <sub>2</sub> , NO | со                      | PM10                  | PM2,5                 | PM1                   |
|--------------|----------------|-----------------|----------------------|-------------------------|-----------------------|-----------------------|-----------------------|
| Enzenkirchen | APOA-360E      | TEI 43CTL       | APNA-360E            |                         | DHA80,<br>Gravimetrie |                       |                       |
| Illmitz      | APOA-360E      | TEI 43CTL       | APNA-360E            | APMA-360CE              | DHA80,<br>Gravimetrie | DHA80,<br>Gravimetrie | DHA80,<br>Gravimetrie |
| Klöch        |                |                 | APNA-360E            |                         | DHA80,<br>Gravimetrie |                       |                       |
| Pillersdorf  | APOA-360E      | TEI 43CTL       | APNA-360E            |                         | DHA80,<br>Gravimetrie |                       |                       |
| St. Sigmund  | APOA-350E      | TEI 43CTL       | APNA-360E            |                         |                       |                       |                       |
| Sonnblick    | TEI 49C        |                 | TEI 42CTL            | APMA-360CE <sup>2</sup> |                       |                       |                       |
| Vorhegg      | APOA-350E      | TEI 43CTL       | TEI 42CTL            | APMA-360CE              | DHA80,<br>Gravimetrie |                       |                       |
| Zöbelboden   | APOA-360E      | TEI 43CTL       | TEI 42CTL            |                         | DHA80,<br>Gravimetrie |                       |                       |

Die **CO<sub>2</sub>-Messung** auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs URAS-14 (Hartmann&Braun).

Die Messung der Konzentration des Treibhausgases  $N_2O$  (Distickstoffmonoxid) erfolgt mit einem Gerät der Type TEI 46C, die Messung des Treibhausgases  $CH_4$  (Methan) mit einem Gerät der Type TEI 55C.

In Illmitz, auf dem Zöbelboden und in Vorhegg werden zudem die Konzentration von **Blei im PM10** (PM10-Tagesproben werden mittels GFAAS analysiert) und **Benzol**, Toluol und Xylole (passive Probenahme, Analyse mittels GC) gemessen.

In Illmitz werden im Rahmen des **EMEP-Messprogramms** weiters partikuläres Sulfat, Nitrat und Ammonium sowie Salpetersäure und Ammoniak gemessen, in Illmitz, Vorhegg und Zöbelboden die nasse Deposition und deren Inhaltsstoffe. Die Ergebnisse dieser Messungen sowie den Messungen von Benzol und Blei im PM10 sind im Jahresbericht der Luftgütemessungen des Umweltbundesamtes zu finden (http://www.umweltbundesamt.at/jahresberichte/).

In Enzenkirchen, Illmitz, Klöch und Pillersdorf, wird zusätzlich zur gravimetrischen PM10-Messung (gemäß EN 12341) die **PM10-Konzentration** mittels  $\beta$ -Absorption kontinuierlich gemessen, auf dem Zöbelboden mittels TEOM; diese Messung dient u. a. dem Methodenvergleich.

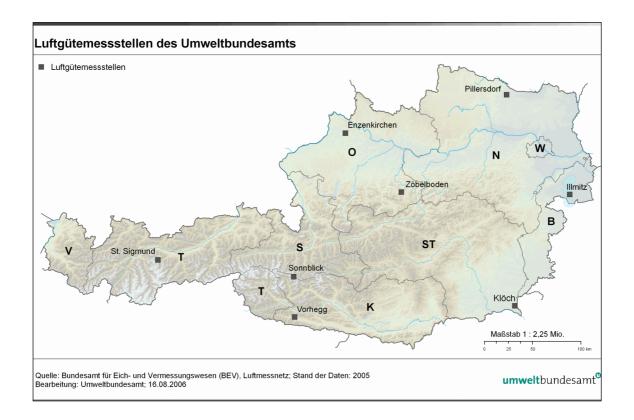
An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxod und Ozon sowie der meteorologischen Größen Windrichtung und –geschwindigkeit, Lufttemperatur und Globalstrahlung durch.

<sup>&</sup>lt;sup>2</sup> erfolgt im Rahmen des GAW-Messprogramms der WMO



#### Meteorologische Messungen

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.


In Enzenkirchen, Illmitz, Pillersdorf und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

In St. Sigmund werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung und die Sonnenscheindauer gemessen.

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter

http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/



#### 3.2 Angaben zu den Messgeräten

|                       | Nachweisgrenze                                    | Messprinzipien                                                                                                                                                                                                 |
|-----------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SO <sub>2</sub>       |                                                   |                                                                                                                                                                                                                |
| TEI 43CTL             | 0,13 μg/m <sup>3</sup> (0,05 ppb)                 | UV-Fluoreszenz                                                                                                                                                                                                 |
| PM10, PM2,5, PM1      |                                                   |                                                                                                                                                                                                                |
| DHA80, Gravimetrie    | < 0,1 μg/m³                                       | Gravimetrie: Probenahme mittels Digitel High-<br>Volume-Sampler DHA80 mit PM10- (bzw.<br>PM2,5- und PM1-) Kopf (Tagesproben, Durch-<br>fluss 720 m³/d) und gravimetrische Massen-<br>bestimmung gemäß EN 12341 |
| NO+NO <sub>2</sub>    |                                                   |                                                                                                                                                                                                                |
| APNA-360E             | NO: 0,4 μg/m <sup>3</sup> (0,3 ppb)               | Chemilumineszenz. NO <sub>2</sub> wird als                                                                                                                                                                     |
|                       | NO <sub>2</sub> : 1,7 μg/m <sup>3</sup> (0,9 ppb) | Differenz von NO <sub>x</sub> und NO bestimmt.                                                                                                                                                                 |
| TEI 42CTL             | NO: 0,06 μg/m <sup>3</sup> (0,05 ppb)             | Chemilumineszenz. NO <sub>2</sub> wird als                                                                                                                                                                     |
|                       | NO <sub>2</sub> : 0,2 μg/m <sup>3</sup> (0,1 ppb) | Differenz von NO <sub>x</sub> und NO bestimmt.                                                                                                                                                                 |
| со                    |                                                   |                                                                                                                                                                                                                |
| APMA-360CE            | 0,05 mg/m <sup>3</sup> (0,05 ppm)                 | Nichtdispersive Infrarot-Absorption                                                                                                                                                                            |
| <b>O</b> <sub>3</sub> |                                                   |                                                                                                                                                                                                                |
| APOA-350E             | 4 μg/m³ (2 ppb)                                   | Ultraviolett-Absorption                                                                                                                                                                                        |
| APOA-360E             | 0,8 μg/m <sup>3</sup> (0,4 ppb)                   | Ultraviolett-Absorption                                                                                                                                                                                        |
| TEI 49                | 4 μg/m³ (2 ppb)                                   | Ultraviolett-Absorption                                                                                                                                                                                        |
| CO <sub>2</sub>       |                                                   |                                                                                                                                                                                                                |
| URAS-14               | 3                                                 | Infrarot-Absorption                                                                                                                                                                                            |
| N <sub>2</sub> O      | •                                                 |                                                                                                                                                                                                                |
| TEI 46C               | 0,02 ppm                                          | Infrarot-Gasfilterkorrelation                                                                                                                                                                                  |
| CH₄                   |                                                   |                                                                                                                                                                                                                |
| TEI 55C               | 0,1 ppm                                           | Flammenionisationsdetektor                                                                                                                                                                                     |

Die kleinste angegebene Konzentration ist für  $NO_2$  (Horiba),  $O_3$ , PM10, PM2,5 und PM1 1  $\mu$ g/m³, für  $SO_2$  und  $NO_2$  (TEI 42CTL) 0,1  $\mu$ g/m³, für CO 0,10  $\mu$ g/m³.

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in  $\mu g/m^3$  mit <1 angegeben.

2

<sup>&</sup>lt;sup>3</sup> Empfindlichkeit 0,1 ppm, Messbereich 340 bis 440 ppm.



#### 4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamtes kontinuierlich erfassten Schadstoffe angegeben.

#### Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 34/2003

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

| SO <sub>2</sub> | 120 μg/m <sup>3</sup> | Tagesmittelwert                                                                                                                                                                                                                                                                                                                                                    |  |
|-----------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| SO <sub>2</sub> | 200 μg/m <sup>3</sup> | Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 $\mu g/m^3$ gelten nicht als Überschreitung                                                                                                                                                                                 |  |
| PM10            | 50 μg/m <sup>3</sup>  | Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von<br>Überschreitungen zulässig: bis 2004: 35, von 2005 bis 2009: 30, ab<br>2010: 25                                                                                                                                                                                                                      |  |
| PM10            | 40 μg/m <sup>3</sup>  | Jahresmittelwert                                                                                                                                                                                                                                                                                                                                                   |  |
| СО              | 10 mg/m <sup>3</sup>  | Gleitender Achtstundenmittelwert                                                                                                                                                                                                                                                                                                                                   |  |
| NO <sub>2</sub> | 200 μg/m <sup>3</sup> | Halbstundenmittelwert                                                                                                                                                                                                                                                                                                                                              |  |
| NO <sub>2</sub> | 30 μg/m <sup>3</sup>  | Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge beträgt 30 μg/m³ bei Inkrafttreten des Gesetzes und wird am 1.1. jedes Jahres bis 1.1. 2005 um 5 μg/m³ verringert. Die Toleranzmarge von 10 μg/m³ gilt gleich bleibend vom 1.1. 2005 bis 31.12.2009. Die Toleranzmarge von 5 μg/m³ gilt gleich bleibend vom 1.1. 2010 bis 31.12.2011 |  |
| Blei im PM10    | 0,5 μg/m <sup>3</sup> | Jahresmittelwert                                                                                                                                                                                                                                                                                                                                                   |  |
| Benzol          | 5 μg/m³               | Jahresmittelwert                                                                                                                                                                                                                                                                                                                                                   |  |

#### Alarmwerte gemäß Anlage 4.

| SO <sub>2</sub> | 500 μg/m³             | Gleitender Dreistundenmittelwert |
|-----------------|-----------------------|----------------------------------|
| NO <sub>2</sub> | 400 μg/m <sup>3</sup> | Gleitender Dreistundenmittelwert |

#### Zielwerte gemäß Anlage 5.

| PM10            | 50 μg/m <sup>3</sup> | TMW, sieben Überschreitungen im Kalenderjahr erlaubt |
|-----------------|----------------------|------------------------------------------------------|
| PM10            | 20 μg/m <sup>3</sup> | JMW                                                  |
| NO <sub>2</sub> | 80 μg/m <sup>3</sup> | TMW                                                  |

#### Ozongesetz i.d.g.F. (BGBI. I 2003/34, Art. II)

Mit der Novelle zum Ozongesetz (BGBI. I 2003/34), welche am 1.7.2003 in Kraft trat, wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

| Informationsschwelle | 180 μg/m³ | Nicht gleitender Einstundenmittelwert |
|----------------------|-----------|---------------------------------------|
| Alarmschwelle        | 240 μg/m³ | Nicht gleitender Einstundenmittelwert |

Zielwert für den Schutz der menschlichen Gesundheit gemäß Anlage 2 (einzuhalten ab 2010).

| 120 μg/m³ | Höchster (nicht gleitender) Acht- | gemittelt über 3 Jahre sind Überschreitungen an |
|-----------|-----------------------------------|-------------------------------------------------|
|           | stundenmittelwert des Tages       | maximal 25 Tagen pro Jahr zugelassen            |

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

| 18.000 μg/m³.h | AOT40, berechnet aus den MW1 von Mai bis Juli | Mittelwert über 5 Jahre |
|----------------|-----------------------------------------------|-------------------------|
| · <del>·</del> |                                               |                         |

#### Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

| SO <sub>2</sub>                | 20 μg/m <sup>3</sup> | Jahresmittelwert und Wintermittelwert |
|--------------------------------|----------------------|---------------------------------------|
| NO <sub>x</sub> <sup>(4)</sup> | 30 μg/m <sup>3</sup> | Jahresmittelwert                      |

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

| SO <sub>2</sub> | 50 μg/m <sup>3</sup> | Tagesmittelwert |  |
|-----------------|----------------------|-----------------|--|
| NO <sub>2</sub> | 80 μg/m <sup>3</sup> | Tagesmittelwert |  |

4

<sup>&</sup>lt;sup>4</sup> NOx als Summe von NO und NO<sub>2</sub> in ppb gebildet und mit dem Faktor 1,9123 in μg/m<sup>3</sup> umgerechnet



#### 5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Juli 2006 war in ganz Österreich außerordentlich warm und trocken. Die Monatsmitteltemperatur lag fast überall um 3,5 bis 4,5 °C über dem Mittelwert der Klimaperiode 1961–90; am wärmsten mit Abweichungen bis 5°C war es im Unterinntal, im westlichen Oberösterreich und im nördlichen Salzburg, während im Südosten Österreichs die Temperatur "nur" 3 bis 3,5 °C über dem langjährigen Mittel lag. Im Juli 2006 wurde in fast ganz Österreich die höchste Monatsmitteltemperatur seit Beginn der meteorologischen Messungen registriert (d. h. in Wien seit 1775), die bisherigen Rekordwerte von 1994 und 2003 wurden noch übertroffen.

Das Witterungsgeschehen war fast durchgehend von Hochdruck- und gradientschwachen Wetterlagen geprägt.

Die Niederschlagsmengen lagen in fast ganz Österreich unter 75 % des langjährigen Mittels, wobei es in Nordostösterreich mit gebietsweise unter 25 % am regenärmsten war. Lediglich im westlichen Mühlviertel wurden überdurchschnittliche Regenmengen registriert, im westlichen Zentralalpenbereich annähernd durchschnittliche Werte.

Entsprechend den außerordentlich hohen Temperaturen und der lang anhaltenden Hochdruckwetterlage war der Juli 2006 in ganz Österreich von deutlich überdurchschnittlichen Ozonkonzentrationen geprägt.

Die Informationsschwelle – 180 µg/m³ als Einstundenmittelwert – wurde in Enzenkirchen an zwei Tagen (21. und 28.7.) überschritten, in Illmitz an sieben Tagen (11.7., 12.7., 21.7., 22.7., 25.7., 27.7. und 28.7.), in Pillersdorf an zwei Tagen (20. und 28.7.), in Vorhegg an einem Tag (20.7.) und am Zöbelboden an drei Tagen (20., 21. und 27.7.).

Die höchsten Einstundenmittelwerte wurden in Enzenkirchen mit 201  $\mu$ g/m³ am 21.7., in Illmitz mit 201  $\mu$ g/m³ am 25.7., in Pillersdorf mit 214  $\mu$ g/m³ am 20.7., auf dem Sonnblick mit 168  $\mu$ g/m³ am 21.7., in St. Sigmund mit 177  $\mu$ g/m³ am 20.7., in Vorhegg mit 192  $\mu$ g/m³ am 20.7. und am Zöbelboden mit 191  $\mu$ g/m³ am 21.7. registriert. Die Ozonmaxima fielen somit weitgehend mit den Tagen, an denen die höchsten Temperaturen (am 20. oder 21.7.) gemessen wurden, zusammen.

Von den Tagen mit Überschreitung der Informationsschwelle waren der 11., 12., 22., 25. und 28.7. von Ozonspitzen über Informationsschwelle in Nordostösterreich (Ozonüberwachungsgebiet 1) gekennzeichnet, der 20., 21. und 27.7. dagegen großflächig im gesamten Bereich Österreich nördlich der Alpen von Vorarlberg bis ins Nordburgenland. An diesen Tagen waren weite Teile Mitteleuropas von starker Ozonbildung betroffen, wobei die erhöhten Ozonspitzen im Westen Österreichs u. a. auf Transport belasteter Luftmassen aus Süddeutschland zurückzuführen waren. Im Nordosten und Norden Österreichs spielte regionale Ozonbildung – v. a. im Einflussbereich der Emissionen des Ballungsraumes Wien – eine entscheidende Rolle für die hohen Ozonspitzen. Am 27. und 28.7. wurde an einzelnen Messstellen in der Nähe Wiens die Alarmschwelle (240 µg/m³ als Einstundenmittelwert) überschritten.

An den meisten Messstellen des Umweltbundesamtes wurde im Juli 2006 der höchste Juli-Monatsmittelwert seit Beginn der Messung registriert – d. h. in Vorhegg seit 1991, auf dem Zöbelboden seit 1995, in Enzenkirchen seit 1998 und in St. Sigmund seit 1999. Auf dem Sonnblick wurde mit 131  $\mu$ g/m³ überhaupt der höchste Monatsmittelwert seit Beginn der Messung 1989 erfasst; in Pillersdorf trat zuletzt im Juli 1994 ein höherer Juli-Monatsmittelwert auf. In Illmitz lag der Monatsmittelwert im Juli 2006 knapp unter dem Vergleichswert von 2003.

Die Konzentrationen der Schadstoffe SO<sub>2</sub>, NO<sub>2</sub> und CO lagen an allen Messstellen unter den IG-L-Grenzwerten. Es traten keine PM10-Tagesmittelwerte über 50 μg/m³ auf.

Allerdings wies der Juli 2006 an allen Messstellen deutlich überdurchschnittliche SO<sub>2</sub>-Konzentrationen auf; in Illmitz und Vorhegg wurde der höchste SO<sub>2</sub>-Monatsmittelwert im Juli seit 1999, in Pillersdorf seit 2000 registriert.

Bei NO<sub>2</sub> erfassten Illmitz, Pillersdorf und St. Sigmund im Juli 2006 durchschnittliche Konzentrationen, während in Enzenkirchen der niedrigste NO<sub>2</sub>-Monatsmittelwert seit Beginn der Messung 1998 beobachtet wurde. Auf der anderen Seite erfassten Vorhegg und Zöbelboden eine überdurchschnittliche NO<sub>2</sub>-Konzentration, auf dem Zöbelboden wurde der höchste Monatsmittelwert seit 1999 gemessen.

Die CO-Konzentration lag an allen Messstellen über dem Niveau der letzten Jahre; in Vorhegg wurde der höchste Monatsmittelwert im Juli seit 1993, in Illmitz seit 2000 gemessen.

Deutlich überdurchschnittlich war auch die PM10-Konzentration an allen Messstellen außer Vorhegg. Illmitz registrierte den höchsten PM10-Monatsmittelwert im Juli seit 1999, Pillersdorf und Zöbelboden seit Beginn der Messung 2003.

#### 6 VERFÜGBARKEIT – JULI 2006

Verfügbarkeit der Halbstundenmittelwerte (bei PM10, PM2,5 und PM1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte:

|              | O <sub>3</sub> | SO <sub>2</sub> | NO <sub>2</sub> | NO | СО | PM10 | PM2,5 | PM1 | CO <sub>2</sub> | N <sub>2</sub> O | CH₄ | NO <sub>y</sub> |
|--------------|----------------|-----------------|-----------------|----|----|------|-------|-----|-----------------|------------------|-----|-----------------|
| Enzenkirchen | 98             | 98              | 98              | 98 |    | 100  |       |     |                 |                  |     |                 |
| Illmitz      | 96             | 97              | 96              | 96 | 97 | 100  | 100   | 100 |                 |                  |     |                 |
| Klöch        |                |                 | 80              | 80 |    | 100  |       |     |                 |                  |     |                 |
| Pillersdorf  | 98             | 98              | 97              | 97 |    | 74   |       |     |                 |                  |     |                 |
| Sonnblick    | 98             |                 |                 |    | 98 |      |       |     | 91              |                  |     | 97              |
| St. Sigmund  | 98             | 98              | 97              | 97 |    |      |       |     |                 |                  |     |                 |
| Vorhegg      | 86             | 86              | 86              | 86 | 97 | 97   |       |     |                 |                  |     |                 |
| Zöbelboden   | 96             | 97              | 97              | 97 |    | 97   |       |     |                 | 86               | 100 |                 |

Die Verfügbarkeit soll gemäß §4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten  $SO_2$ , CO,  $NO_2$  und  $O_3$  mindestens 90% betragen.

Die NO<sub>x</sub>-Messung wurde in Klöch am 6.7. begonnen.

In Pillersdorf war der Filterwechsler des PM10-Progenahmegerätes von 28.6. bis 3.7. kaputt.

In Vorhegg fielen die Messgeräte für Ozon,  $SO_2$  und  $NO_x$  infolge eines Blitzschlags von 28.7 bis 1.8. aus.

#### 7 MONATSMITTELWERTE – JULI 2006

|              | O <sub>3</sub><br>µg/m³ | SO <sub>2</sub><br>µg/m³ | NO <sub>2</sub><br>μg/m³ | NO<br>μg/m³ | CO<br>mg/m³ |    | PM2,5<br>µg/m³ |    | CO <sub>2</sub> | N₂O<br>ppm | CH₄<br>ppm | NO <sub>y</sub><br>ppb |
|--------------|-------------------------|--------------------------|--------------------------|-------------|-------------|----|----------------|----|-----------------|------------|------------|------------------------|
| Enzenkirchen | 104                     | 1.2                      | 3.4                      | 0.9         |             | 20 |                |    |                 |            |            |                        |
| Illmitz      | 95                      | 2.1                      | 5.4                      | 0.5         | 0.20        | 23 | 17             | 14 |                 |            |            |                        |
| Klöch        |                         |                          | 5.3                      | 0.6         |             | 22 |                |    |                 |            |            |                        |
| Pillersdorf  | 102                     | 2.0                      | 4.8                      | 8.0         |             | 27 |                |    |                 |            |            |                        |
| Sonnblick    | 131                     |                          |                          |             | 0.19        |    |                |    | 376             |            |            | 1.33                   |
| St. Sigmund  | 98                      | 0.2                      | 2.7                      | 0.3         |             |    |                |    |                 |            |            |                        |
| Vorhegg      | 103                     | 0.5                      | 3.3                      | 0.2         | 0.20        | 12 |                |    |                 |            |            |                        |
| Zöbelboden   | 113                     | 0.4                      | 3.6                      | 0.3         |             | 15 |                |    |                 | 0.30       | 1.8        |                        |

v: Verfügbarkeit nicht ausreichend

#### **8 ÜBERSCHREITUNGEN**

#### Anzahl der Tage mit Überschreitungen im Juli 2006

|              | O <sub>3</sub> MW1 > 180 μg/m <sup>3</sup> | O <sub>3</sub> MW8 > 120 μg/m³ | PM10 TMW > 50 μg/m³ |
|--------------|--------------------------------------------|--------------------------------|---------------------|
| Enzenkirchen | 2                                          | 19                             | 0                   |
| Illmitz      | 7                                          | 20                             | 0                   |
| Klöch        |                                            |                                | 0                   |
| Pillersdorf  | 2                                          | 19                             | 0                   |
| Sonnblick    | 0                                          | 29                             |                     |
| St. Sigmund  | 0                                          | 19                             |                     |
| Vorhegg      | 1                                          | 17                             | 0                   |
| Zöbelboden   | 3                                          | 19                             | 0                   |

#### Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2006

|              | O <sub>3</sub> MW1 > 180 μg/m³ | O <sub>3</sub> MW8 > 120 μg/m³ | PM10 TMW > 50 μg/m³ |
|--------------|--------------------------------|--------------------------------|---------------------|
| Enzenkirchen | 2                              | 43                             | 20                  |
| Illmitz      | 7                              | 48                             | 28                  |
| Klöch        |                                |                                | 1                   |
| Pillersdorf  | 2                              | 38                             | 27                  |
| Sonnblick    | 0                              | 87                             |                     |
| St. Sigmund  | 0                              | 40                             |                     |
| Vorhegg      | 3                              | 55                             | 0                   |
| Zöbelboden   | 3                              | 41                             | 0                   |

#### 9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

#### Enzenkirchen - Juli 2006

| Datum  | O <sub>3</sub> Max.<br>MW1<br>μg/m³ | O <sub>3</sub> Max.<br>MW8<br>μg/m³ | SO <sub>2</sub> Max.<br>HMW<br>µg/m³ | SO <sub>2</sub><br>TMW<br>µg/m³ | NO <sub>2</sub> Max.<br>HMW<br>µg/m³ | NO <sub>2</sub><br>TMW<br>μg/m³ | NO Max.<br>HMW<br>µg/m³ | NO<br>TMW<br>µg/m³ | PM10<br>TMW<br>µg/m³ |
|--------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------------|----------------------|
| 1.07.  | 82                                  | 74                                  | 1.9                                  | 0.6                             | 9.6                                  | 3.3                             | 3.6                     | 1.0                | 14                   |
| 2.07.  | 85                                  | 72                                  | 4.2                                  | 1.6                             | 5.2                                  | 1.4                             | 0.8                     | 0.5                | 16                   |
| 3.07.  | 100                                 | 93                                  | 3.0                                  | 1.4                             | 4.5                                  | 1.8                             | 2.0                     | 0.7                | 14                   |
| 4.07.  | 111                                 | 102                                 | 4.7                                  | 1.3                             | 6.7                                  | 2.3                             | 3.0                     | 0.9                | 13                   |
| 5.07.  | 135                                 | 123                                 | 4.9                                  | 1.8                             | 11.3                                 | 3.8                             | 2.5                     | 0.9                | 23                   |
| 6.07.  | 165                                 | 140                                 | 4.8                                  | 1.2                             | 8.5                                  | 3.3                             | 2.6                     | 0.9                | 19                   |
| 7.07.  | 127                                 | 123                                 | 1.1                                  | 0.4                             | 8.6                                  | 4.0                             | 4.9                     | 1.0                | 16                   |
| 8.07.  | 117                                 | 111                                 | 0.8                                  | 0.5                             | 6.7                                  | 4.4                             | 4.9                     | 1.0                | 20                   |
| 9.07.  | 118                                 | 111                                 | 1.2                                  | 0.4                             | 6.6                                  | 2.8                             | 1.8                     | 0.7                | 18                   |
| 10.07. | 118                                 | 111                                 | 1.3                                  | 0.6                             | 7.6                                  | 2.0                             | 2.4                     | 0.9                | 13                   |
| 11.07. | 144                                 | 137                                 | 7.8                                  | 2.3                             | 11.2                                 | 3.9                             | 3.1                     | 1.2                | 20                   |
| 12.07. | 136                                 | 122                                 | 1.8                                  | 0.8                             | 9.2                                  | 3.6                             | 3.1                     | 1.1                | 27                   |
| 13.07. | 136                                 | 129                                 | 2.7                                  | 1.2                             | 3.8                                  | 2.0                             | 1.8                     | 0.8                | 24                   |
| 14.07. | 121                                 | 115                                 | 1.7                                  | 0.9                             | 11.8                                 | 5.1                             | 5.1                     | 1.2                | 27                   |
| 15.07. | 102                                 | 98                                  | 1.9                                  | 0.9                             | 4.3                                  | 1.7                             | 2.6                     | 0.6                | 14                   |
| 16.07. | 89                                  | 87                                  | 2.4                                  | 1.1                             | 2.3                                  | 0.8                             | 1.9                     | 0.7                | 10                   |
| 17.07. | 104                                 | 97                                  | 1.9                                  | 1.1                             | 3.3                                  | 1.2                             | 2.6                     | 0.7                | 11                   |
| 18.07. | 145                                 | 137                                 | 3.5                                  | 2.0                             | 6.5                                  | 2.2                             | 3.0                     | 8.0                | 17                   |
| 19.07. | 144                                 | 139                                 | 8.6                                  | 3.6                             | 10.6                                 | 4.5                             | 4.5                     | 1.0                | 24                   |
| 20.07. | 169                                 | 161                                 | 4.3                                  | 1.5                             | 11.5                                 | 3.6                             | 6.9                     | 1.3                | 23                   |
| 21.07. | 201                                 | 191                                 | 3.7                                  | 1.6                             | 15.4                                 | 6.5                             | 4.8                     | 1.3                | 30                   |
| 22.07. | 169                                 | 162                                 | 1.9                                  | 0.9                             | 7.1                                  | 2.4                             | 2.2                     | 1.0                | 20                   |
| 23.07. | 152                                 | 140                                 | 2.9                                  | 1.2                             | 9.1                                  | 4.2                             | 1.7                     | 1.0                | 23                   |
| 24.07. | 154                                 | 139                                 | 2.5                                  | 0.9                             | 8.8                                  | 4.0                             | 3.1                     | 1.0                | 21                   |
| 25.07. | 160                                 | 152                                 | 4.0                                  | 1.3                             | 6.6                                  | 2.4                             | 1.4                     | 0.7                | 24                   |
| 26.07. | 169                                 | 160                                 | 4.7                                  | 1.8                             | 5.8                                  | 2.4                             | 1.3                     | 8.0                | 26                   |
| 27.07. | 167                                 | 147                                 | 2.2                                  | 1.0                             | 7.1                                  | 3.0                             | 2.3                     | 1.1                | 29                   |
| 28.07. | 182                                 | 163                                 | 4.9                                  | 1.4                             | 17.2                                 | 7.9                             | 5.4                     | 1.4                | 32                   |
| 29.07. | 127                                 | 114                                 | 1.0                                  | 0.5                             | 10.6                                 | 6.3                             | 2.6                     | 1.0                | 19                   |
| 30.07. | 134                                 | 127                                 | 1.5                                  | 0.6                             | 8.8                                  | 4.2                             | 2.2                     | 0.9                | 18                   |
| 31.07. | 145                                 | 133                                 | 1.0                                  | 0.6                             | 8.9                                  | 4.7                             | 2.9                     | 1.0                | 18                   |
| Max.   | 201                                 | 191                                 | 8.6                                  | 3.6                             | 17.2                                 | 7.9                             | 6.9                     | 1.4                | 32                   |

v: Verfügbarkeit nicht ausreichend

#### Illmitz – Juli 2006

| Datum  | O₃ Max.<br>MW1<br>µg/m³ | O₃ Max.<br>MW8<br>µg/m³ | SO <sub>2</sub> Max.<br>HMW<br>µg/m³ | SO <sub>2</sub><br>TMW<br>µg/m³ | NO <sub>2</sub> Max.<br>HMW<br>μg/m³ | NO <sub>2</sub><br>TMW<br>µg/m³ | NO Max.<br>HMW<br>µg/m³ | NO<br>TMW<br>µg/m³ | CO Max.<br>MW8g<br>mg/m³ | PM10<br>TMW<br>µg/m³ | •  | TMW |
|--------|-------------------------|-------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------------|--------------------------|----------------------|----|-----|
| 1.07.  | 77                      | 72                      | 5.3                                  | 2.0                             | 14.4                                 | 5.5                             | 0.9                     | 0.4                | 0.21                     | 14                   | 14 | 11  |
| 2.07.  | 81                      | 67                      | 8.7                                  | 2.8                             | 15.1                                 | 4.8                             | 1.5                     | 0.6                | 0.23                     | 17                   | 13 | 11  |
| 3.07.  | 80                      | 78                      | 1.7                                  | 0.6                             | 7.6                                  | 3.1                             | 1.8                     | 0.6                | 0.19                     | 15                   | 11 | 9   |
| 4.07.  | 92                      | 90                      | 1.2                                  | 0.6                             | 9.6                                  | 3.3                             | 1.7                     | 0.6                | 0.19                     | 20                   | 14 | 10  |
| 5.07.  | 111                     | 106                     | 4.7                                  | 1.8                             | 7.6                                  | 3.0                             | 1.2                     | 0.5                | 0.19                     | 22                   | 16 | 14  |
| 6.07.  | 114                     | 104                     | 4.4                                  | V                               | 5.5                                  | v                               | 0.8                     | V                  | 0.21                     | 24                   | 18 | 15  |
| 7.07.  | 125                     | 118                     | 4.7                                  | 1.7                             | 14.7                                 | 5.1                             | 1.6                     | 0.5                | 0.21                     | 26                   | 19 | 16  |
| 8.07.  | 148                     | 132                     | 3.3                                  | 0.8                             | 8.5                                  | 3.6                             | 0.7                     | 0.4                | 0.21                     | 15                   | 13 | 10  |
| 9.07.  | 125                     | 119                     | 2.5                                  | 1.0                             | 13.1                                 | 5.3                             | 1.7                     | 0.5                | 0.22                     | 18                   | 14 | 13  |
| 10.07. | 135                     | 128                     | 5.7                                  | 0.8                             | 9.0                                  | 5.0                             | 1.2                     | 0.5                | 0.20                     | 15                   | 12 | 11  |
| 11.07. | 186                     | 165                     | 10.7                                 | 3.2                             | 22.9                                 | 6.0                             | 1.1                     | 0.5                | 0.25                     | 27                   | 22 | 18  |
| 12.07. | 185                     | 172                     | 5.2                                  | 1.8                             | 31.0                                 | 8.1                             | 1.3                     | 0.5                | 0.25                     | 30                   | 22 | 17  |
| 13.07. | 164                     | 153                     | 12.1                                 | 2.9                             | 15.8                                 | 6.3                             | 1.8                     | 0.5                | 0.23                     | 27                   | 22 | 20  |
| 14.07. | 168                     | 145                     | 6.1                                  | 1.9                             | 16.6                                 | 7.4                             | 1.9                     | 0.6                | 0.26                     | 28                   | 22 | 19  |
| 15.07. | 92                      | 96                      | 6.6                                  | 1.5                             | 5.5                                  | 2.6                             | 1.1                     | 0.3                | 0.22                     | 15                   | 9  | 7   |
| 16.07. | 87                      | 85                      | 13.1                                 | 2.5                             | 9.4                                  | 2.9                             | 1.2                     | 0.4                | 0.17                     | 11                   | 7  | 5   |
| 17.07. | 106                     | 103                     | 12.5                                 | 3.2                             | 11.6                                 | 4.8                             | 1.8                     | 0.5                | 0.16                     | 15                   | 9  | 8   |
| 18.07. | 148                     | 133                     | 12.4                                 | 3.7                             | 11.2                                 | v                               | 1.2                     | V                  | 0.19                     | 21                   | 15 | 13  |
| 19.07. | 177                     | 157                     | 9.3                                  | 3.1                             | 11.4                                 | 5.0                             | 1.9                     | 0.6                | 0.22                     | 22                   | 17 | 15  |
| 20.07. | 142                     | 135                     | 4.3                                  | 1.4                             | 24.7                                 | 7.0                             | 4.8                     | 0.9                | 0.22                     | 26                   | 17 | 14  |
| 21.07. | 190                     | 165                     | 3.7                                  | 1.4                             | 15.1                                 | 6.8                             | 2.4                     | 0.7                | 0.24                     | 30                   | 22 | 19  |
| 22.07. | 197                     | 181                     | 3.6                                  | 1.6                             | 11.7                                 | 6.4                             | 1.1                     | 0.5                | 0.23                     | 25                   | 19 | 17  |
| 23.07. | 163                     | 145                     | 7.3                                  | 1.6                             | 13.6                                 | 5.7                             | 1.1                     | 0.5                | 0.23                     | 23                   | 17 | 14  |
| 24.07. | 180                     | 156                     | 2.1                                  | 0.9                             | 11.1                                 | 5.2                             | 1.2                     | 0.5                | 0.20                     | 20                   | 15 | 12  |
| 25.07. | 201                     | 182                     | 4.7                                  | 2.2                             | 15.7                                 | 8.2                             | 1.4                     | 0.6                | 0.24                     | 29                   | 21 | 17  |
| 26.07. | 180                     | 166                     | 50.1                                 | 5.5                             | 13.7                                 | 6.9                             | 1.7                     | 0.6                | 0.23                     | 31                   | 21 | 18  |
| 27.07. | 197                     | 169                     | 12.6                                 | 3.8                             | 15.8                                 | 6.9                             | 2.7                     | 0.8                | 0.25                     | 36                   | 24 | 21  |
| 28.07. | 197                     | 175                     | 48.2                                 | 5.5                             | 15.8                                 | 6.2                             | 2.3                     | 0.7                | 0.25                     | 37                   | 25 | 22  |
| 29.07. | 166                     | 142                     | 6.6                                  | 1.5                             | 21.9                                 | 7.2                             | 3.1                     | 0.7                | 0.25                     | 27                   | 20 | 17  |
| 30.07. | 141                     | 135                     | 2.8                                  | 1.0                             | 7.9                                  | 3.4                             | 0.5                     | 0.3                | 0.20                     | 16                   | 13 | 12  |
| 31.07. | 165                     | 143                     | 3.9                                  | 1.3                             | 8.4                                  | 5.4                             | 1.1                     | 0.5                | 0.20                     | 21                   | 15 | 14  |
| Max.   | 201                     | 182                     | 50.1                                 | 5.5                             | 31.0                                 | 8.2                             | 4.8                     | 0.9                | 0.26                     | 37                   | 25 | 22  |

v: Verfügbarkeit nicht ausreichend

#### Klöch - Juli 2006

| Datum  | NO₂ Max. HMW<br>μg/m³ | NO <sub>2</sub> TMW<br>μg/m³ | NO Max. HMW<br>μg/m³ | NO TMW<br>μg/m³ | PM10 TMW<br>μg/m³ |
|--------|-----------------------|------------------------------|----------------------|-----------------|-------------------|
| 1.07.  | v                     | ٧                            | v                    | V               | 8                 |
| 2.07.  | V                     | ٧                            | V                    | V               | 14                |
| 3.07.  | v                     | ٧                            | V                    | V               | 13                |
| 4.07.  | v                     | ٧                            | V                    | V               | 23                |
| 5.07.  | v                     | ٧                            | V                    | V               | 28                |
| 6.07.  | 9.4                   | ٧                            | 0.8                  | V               | 32                |
| 7.07.  | 24.0                  | 8.9                          | 5.6                  | 0.8             | 33                |
| 8.07.  | 10.4                  | 4.0                          | 0.9                  | 0.2             | 17                |
| 9.07.  | 4.6                   | 2.7                          | 0.5                  | 0.2             | 18                |
| 10.07. | 6.7                   | 3.8                          | 1.4                  | 0.4             | 14                |
| 11.07. | 19.2                  | 4.4                          | 1.3                  | 0.4             | 20                |
| 12.07. | 8.6                   | 4.4                          | 1.1                  | 0.5             | 24                |
| 13.07. | 8.1                   | 5.0                          | 2.2                  | 0.5             | 25                |
| 14.07. | 8.5                   | 5.2                          | 2.2                  | 0.6             | 23                |
| 15.07. | 4.3                   | 3.1                          | 0.6                  | 0.4             | 16                |
| 16.07. | 4.2                   | 2.6                          | 0.7                  | 0.4             | 11                |
| 17.07. | 10.1                  | 4.0                          | 5.9                  | 0.7             | 17                |
| 18.07. | 14.4                  | 5.1                          | 3.3                  | 0.7             | 22                |
| 19.07. | 17.4                  | 6.7                          | 2.8                  | 0.8             | 29                |
| 20.07. | 16.6                  | 7.1                          | 2.2                  | 0.8             | 31                |
| 21.07. | 10.9                  | 5.9                          | 2.2                  | 0.7             | 33                |
| 22.07. | 9.3                   | 4.9                          | 1.1                  | 0.7             | 27                |
| 23.07. | 7.5                   | 4.7                          | 1.2                  | 0.6             | 17                |
| 24.07. | 13.3                  | 6.1                          | 1.9                  | 0.8             | 21                |
| 25.07. | 12.3                  | 5.0                          | 2.3                  | 0.7             | 22                |
| 26.07. | 21.8                  | 6.5                          | 1.7                  | 0.7             | 32                |
| 27.07. | 10.7                  | 5.9                          | 1.7                  | 0.8             | 30                |
| 28.07. | 12.3                  | 7.0                          | 2.6                  | 0.9             | 27                |
| 29.07. | 14.4                  | 5.8                          | 1.4                  | 0.7             | 15                |
| 30.07. | 9.9                   | 5.3                          | 2.0                  | 0.8             | 14                |
| 31.07. | 18.0                  | 7.3                          | 4.0                  | 1.0             | 19                |
| Max.   | 24.0                  | 8.9                          | 5.9                  | 1.0             | 33                |

v: Verfügbarkeit nicht ausreichend

#### Pillersdorf - Juli 2006

| Datum  | O <sub>3</sub> Max.<br>MW1<br>μg/m³ | O <sub>3</sub> Max.<br>MW8<br>μg/m³ | SO <sub>2</sub> Max.<br>HMW<br>μg/m³ | SO <sub>2</sub><br>TMW<br>µg/m³ | NO <sub>2</sub> Max.<br>HMW<br>μg/m³ | NO <sub>2</sub><br>TMW<br>μg/m³ | NO Max.<br>HMW<br>µg/m³ | NO<br>TMW<br>µg/m³ | PM10<br>TMW<br>µg/m³ |
|--------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------------|----------------------|
| 1.07.  | 78                                  | 72                                  | 3.3                                  | 1.1                             | 4.3                                  | 3.4                             | 1.1                     | 0.7                | V                    |
| 2.07.  | 91                                  | 86                                  | 7.0                                  | 3.6                             | 6.6                                  | 3.8                             | 1.4                     | 0.7                | V                    |
| 3.07.  | 91                                  | 86                                  | 5.0                                  | 2.3                             | 9.1                                  | 5.6                             | 2.7                     | 0.9                | V                    |
| 4.07.  | 103                                 | 99                                  | 1.6                                  | 0.9                             | 7.6                                  | 5.1                             | 4.5                     | 0.9                | 21                   |
| 5.07.  | 116                                 | 111                                 | 4.4                                  | 2.5                             | 8.3                                  | 5.0                             | 1.8                     | 0.8                | 29                   |
| 6.07.  | 144                                 | 132                                 | 7.3                                  | 3.8                             | 8.0                                  | 5.6                             | 1.7                     | 0.8                | 31                   |
| 7.07.  | 146                                 | 131                                 | 3.7                                  | 1.9                             | 10.9                                 | 5.4                             | 1.3                     | 0.8                | V                    |
| 8.07.  | 113                                 | 107                                 | 1.0                                  | 0.5                             | 5.6                                  | 3.2                             | 1.2                     | 0.7                | V                    |
| 9.07.  | 122                                 | 109                                 | 3.5                                  | 1.0                             | 6.1                                  | 3.5                             | 1.5                     | 0.8                | V                    |
| 10.07. | 119                                 | 109                                 | 1.8                                  | 0.8                             | 15.2                                 | 3.8                             | 1.9                     | 0.8                | V                    |
| 11.07. | 164                                 | 158                                 | 15.5                                 | 5.0                             | 34.0                                 | 4.9                             | 4.2                     | 0.8                | 33                   |
| 12.07. | 151                                 | 136                                 | 13.0                                 | 3.0                             | 6.0                                  | 4.3                             | 6.8                     | 0.9                | 37                   |
| 13.07. | 149                                 | 139                                 | 5.1                                  | 2.4                             | 7.3                                  | 4.9                             | 1.2                     | 0.7                | 29                   |
| 14.07. | 147                                 | 129                                 | 9.1                                  | 2.4                             | 11.1                                 | 4.7                             | 1.5                     | 0.7                | 28                   |
| 15.07. | 84                                  | 86                                  | 1.5                                  | 0.6                             | 4.7                                  | 2.9                             | 1.0                     | 0.7                | 13                   |
| 16.07. | 84                                  | 81                                  | 3.4                                  | 1.2                             | 4.2                                  | 2.3                             | 1.0                     | 0.6                | 10                   |
| 17.07. | 99                                  | 93                                  | 1.7                                  | 1.2                             | 6.3                                  | 2.8                             | 1.1                     | 0.7                | 11                   |
| 18.07. | 125                                 | 122                                 | 3.2                                  | 2.1                             | 14.3                                 | 4.3                             | 1.6                     | 0.8                | 19                   |
| 19.07. | 137                                 | 132                                 | 3.8                                  | 2.2                             | 9.6                                  | 3.8                             | 1.3                     | 0.7                | 22                   |
| 20.07. | 214                                 | 193                                 | 5.7                                  | 3.0                             | 12.1                                 | 8.2                             | 1.6                     | 0.8                | 35                   |
| 21.07. | 163                                 | 155                                 | 5.4                                  | 2.6                             | 10.1                                 | 6.8                             | 1.2                     | 0.9                | 36                   |
| 22.07. | 156                                 | 141                                 | 3.8                                  | 1.5                             | 10.4                                 | 5.2                             | 1.2                     | 0.9                | 27                   |
| 23.07. | 146                                 | 134                                 | 3.2                                  | 1.5                             | 8.7                                  | 4.5                             | 1.1                     | 0.8                | 33                   |
| 24.07. | 136                                 | 134                                 | 2.3                                  | 1.0                             | 9.8                                  | 4.0                             | 1.0                     | 0.7                | 19                   |
| 25.07. | 161                                 | 155                                 | 2.8                                  | 1.6                             | 20.9                                 | 5.9                             | 1.2                     | 0.8                | 34                   |
| 26.07. | 161                                 | 154                                 | 2.7                                  | 1.7                             | 12.8                                 | 6.4                             | 2.3                     | 0.8                | 31                   |
| 27.07. | 168                                 | 164                                 | 8.8                                  | 4.1                             | 11.9                                 | 6.5                             | 1.2                     | 0.8                | 38                   |
| 28.07. | 185                                 | 175                                 | 10.3                                 | 3.7                             | 15.0                                 | 7.6                             | 1.6                     | 0.8                | 37                   |
| 29.07. | 137                                 | 142                                 | 2.0                                  | 1.1                             | 10.9                                 | 5.7                             | 2.2                     | 0.9                | 28                   |
| 30.07. | 128                                 | 127                                 | 2.3                                  | 0.8                             | 7.8                                  | 4.3                             | 1.2                     | 0.8                | 19                   |
| 31.07. | 126                                 | 115                                 | 3.3                                  | 1.0                             | 13.6                                 | 5.4                             | 8.5                     | 1.0                | ٧                    |
| Max.   | 214                                 | 193                                 | 15.5                                 | 5.0                             | 34.0                                 | 8.2                             | 8.5                     | 1.0                | 38                   |

v: Verfügbarkeit nicht ausreichend

#### Sonnblick - Juli 2006

| Datum  | O <sub>3</sub> Max. MW1<br>μg/m³ | O <sub>3</sub> Max. MW8<br>µg/m³ | CO Max. MW8g<br>mg/m³ | CO <sub>2</sub> TMW | NO <sub>y</sub> Max. HMW | NO <sub>y</sub> TMW |
|--------|----------------------------------|----------------------------------|-----------------------|---------------------|--------------------------|---------------------|
| 1.07.  | 132                              | 129                              | 0.19                  | 376                 | 1.36                     | 1.10                |
| 2.07.  | 132                              | 121                              | 0.19                  | 374                 | 1.08                     | 0.90                |
| 3.07.  | 138                              | 135                              | 0.19                  | 376                 | 1.34                     | 0.94                |
| 4.07.  | 141                              | 136                              | 0.20                  | 374                 | 2.09                     | 1.64                |
| 5.07.  | 164                              | 142                              | 0.20                  | 377                 | 2.26                     | 1.41                |
| 6.07.  | 160                              | 158                              | 0.19                  | 376                 | 2.27                     | 1.33                |
| 7.07.  | 134                              | 132                              | 0.19                  | 377                 | 1.45                     | 0.99                |
| 8.07.  | 121                              | 119                              | 0.19                  | 378                 | 0.91                     | 0.69                |
| 9.07.  | 129                              | 117                              | 0.18                  | 376                 | 1.06                     | 0.70                |
| 10.07. | 125                              | 124                              | 0.18                  | 376                 | 1.11                     | 0.90                |
| 11.07. | 137                              | 125                              | 0.19                  | 374                 | 2.28                     | 1.23                |
| 12.07. | 155                              | 145                              | 0.20                  | 376                 | 2.50                     | 1.76                |
| 13.07. | 163                              | 158                              | 0.22                  | 373                 | 1.94                     | 1.58                |
| 14.07. | 154                              | 150                              | 0.22                  | 372                 | 1.97                     | 1.68                |
| 15.07. | 148                              | 149                              | 0.22                  | 376                 | 1.81                     | 1.52                |
| 16.07. | 124                              | 123                              | 0.20                  | 375                 | 1.47                     | 0.85                |
| 17.07. | 145                              | 132                              | 0.19                  | 376                 | 1.62                     | 0.83                |
| 18.07. | 166                              | 159                              | 0.18                  | 376                 | 1.76                     | 1.07                |
| 19.07. | 151                              | 138                              | 0.20                  | 374                 | 1.99                     | 1.49                |
| 20.07. | 162                              | 149                              | 0.22                  | 373                 | 2.43                     | 1.91                |
| 21.07. | 168                              | 165                              | 0.24                  | 375                 | 2.55                     | 2.03                |
| 22.07. | 162                              | 157                              | 0.20                  | 377                 | 2.26                     | 1.73                |
| 23.07. | 158                              | 153                              | 0.20                  | 377                 | 1.81                     | 1.55                |
| 24.07. | 150                              | 147                              | 0.19                  | 377                 | 1.75                     | 1.25                |
| 25.07. | 144                              | 138                              | 0.19                  | 377                 | 1.95                     | 1.42                |
| 26.07. | 160                              | 152                              | 0.20                  | 378                 | 3.01                     | 1.96                |
| 27.07. | 163                              | 154                              | 0.20                  | 378                 | 3.96                     | 1.87                |
| 28.07. | 166                              | 160                              | 0.20                  | 378                 | 2.43                     | 1.77                |
| 29.07. | 139                              | 133                              | 0.18                  | 380                 | 1.05                     | 0.83                |
| 30.07. | 147                              | 141                              | 0.19                  | 379                 | 1.36                     | 1.13                |
| 31.07. | 140                              | 139                              | 0.18                  | 377                 | 1.61                     | 1.32                |
| Max.   | 168                              | 165                              | 0.24                  | 380                 | 3.96                     | 2.03                |

v: Verfügbarkeit nicht ausreichend

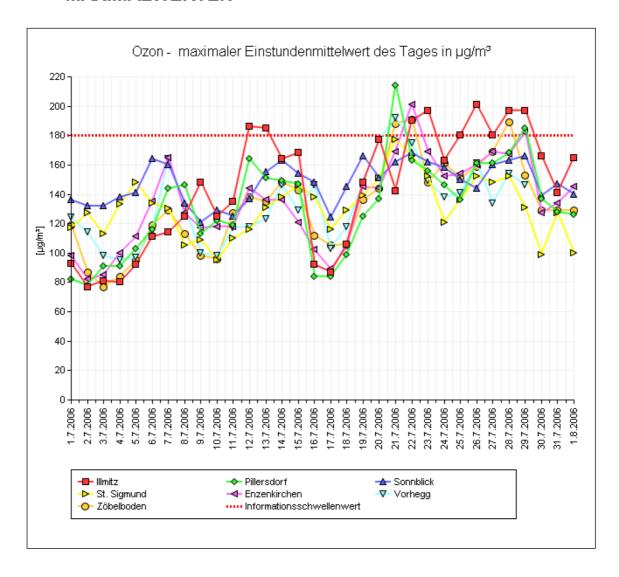
#### St. Sigmund - Juli 2006

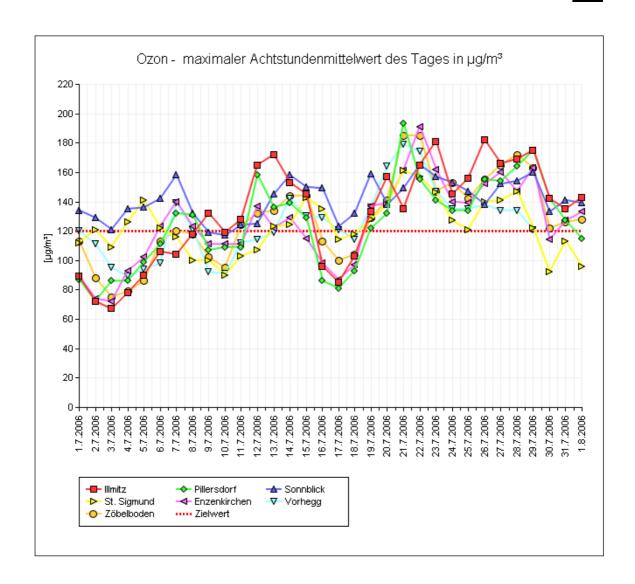
| Datum  | _   | O₃ Max.<br>MW8 µg/m³ | SO <sub>2</sub> Max.<br>HMW μg/m³ | SO <sub>2</sub> TMW µg/m³ | NO <sub>2</sub> Max.<br>HMW μg/m³ | NO <sub>2</sub> TMW<br>μg/m³ | NO Max.<br>HMW μg/m³ | NO TMW<br>μg/m³ |
|--------|-----|----------------------|-----------------------------------|---------------------------|-----------------------------------|------------------------------|----------------------|-----------------|
| 1.07.  | 127 | 121                  | 0.3                               | 0.1                       | 3.6                               | 2.4                          | 0.5                  | 0.3             |
| 2.07.  | 113 | 109                  | 0.4                               | 0.2                       | 3.1                               | 1.9                          | 0.5                  | 0.3             |
| 3.07.  | 133 | 126                  | 0.3                               | 0.2                       | 5.5                               | 2.5                          | 1.0                  | 0.3             |
| 4.07.  | 148 | 141                  | 0.3                               | 0.2                       | 6.9                               | 3.2                          | 0.6                  | 0.3             |
| 5.07.  | 134 | 122                  | 0.2                               | 0.1                       | 3.3                               | 2.4                          | 0.6                  | 0.2             |
| 6.07.  | 130 | 116                  | 0.2                               | 0.1                       | 5.3                               | 2.5                          | 0.8                  | 0.3             |
| 7.07.  | 105 | 100                  | 0.2                               | 0.1                       | 6.3                               | 2.1                          | 1.2                  | 0.2             |
| 8.07.  | 109 | 100                  | 0.1                               | 0.1                       | 2.9                               | 1.5                          | 8.0                  | 0.2             |
| 9.07.  | 95  | 90                   | 0.3                               | 0.1                       | 2.2                               | 1.3                          | 1.5                  | 0.2             |
| 10.07. | 110 | 103                  | 0.3                               | 0.2                       | 9.4                               | 1.9                          | 1.5                  | 0.3             |
| 11.07. | 116 | 107                  | 0.5                               | 0.2                       | 13.2                              | 2.3                          | 5.9                  | 0.5             |
| 12.07. | 131 | 123                  | 0.4                               | 0.2                       | 6.9                               | 2.4                          | 6.6                  | 0.4             |
| 13.07. | 138 | 124                  | 0.3                               | 0.2                       | 4.6                               | 2.3                          | 1.0                  | 0.3             |
| 14.07. | 146 | 143                  | 0.4                               | 0.2                       | 5.3                               | 2.9                          | 0.5                  | 0.3             |
| 15.07. | 138 | 135                  | 0.4                               | 0.3                       | 7.6                               | 3.3                          | 1.3                  | 0.3             |
| 16.07. | 116 | 114                  | 0.8                               | 0.3                       | 13.1                              | 3.4                          | 8.2                  | 0.4             |
| 17.07. | 129 | 118                  | 0.5                               | 0.3                       | 7.8                               | 3.4                          | 2.2                  | 0.4             |
| 18.07. | 139 | 128                  | 0.4                               | 0.3                       | 6.1                               | 3.5                          | 1.6                  | 0.3             |
| 19.07. | 151 | 138                  | 0.5                               | 0.4                       | 7.3                               | 4.2                          | 0.7                  | 0.3             |
| 20.07. | 177 | 161                  | 0.8                               | 0.5                       | 9.8                               | 4.4                          | 2.5                  | 0.3             |
| 21.07. | 166 | 157                  | 0.6                               | 0.3                       | 5.2                               | 3.7                          | 0.6                  | 0.3             |
| 22.07. | 152 | 146                  | 0.3                               | 0.2                       | 4.0                               | 3.0                          | 0.6                  | 0.3             |
| 23.07. | 121 | 127                  | 0.3                               | 0.2                       | 4.3                               | 2.4                          | 0.5                  | 0.2             |
| 24.07. | 136 | 121                  | 0.3                               | 0.2                       | 5.6                               | 2.6                          | 0.9                  | 0.3             |
| 25.07. | 152 | 140                  | 0.3                               | 0.2                       | 7.3                               | 3.4                          | 1.3                  | 0.3             |
| 26.07. | 148 | 141                  | 0.3                               | 0.2                       | 6.9                               | 3.2                          | 0.6                  | 0.3             |
| 27.07. | 152 | 147                  | 0.9                               | 0.2                       | 5.5                               | 2.9                          | 1.6                  | 0.3             |
| 28.07. | 131 | 122                  | 1.6                               | 0.3                       | 6.9                               | 3.0                          | 1.7                  | 0.3             |
| 29.07. | 99  | 92                   | 0.5                               | 0.2                       | 6.1                               | 2.1                          | 5.6                  | 0.4             |
| 30.07. | 127 | 113                  | 0.3                               | 0.2                       | 2.8                               | 1.8                          | 0.5                  | 0.2             |
| 31.07. | 100 | 96                   | 0.3                               | 0.2                       | 3.8                               | 2.1                          | 0.5                  | 0.3             |
| Max.   | 177 | 161                  | 1.6                               | 0.5                       | 13.2                              | 4.4                          | 8.2                  | 0.5             |

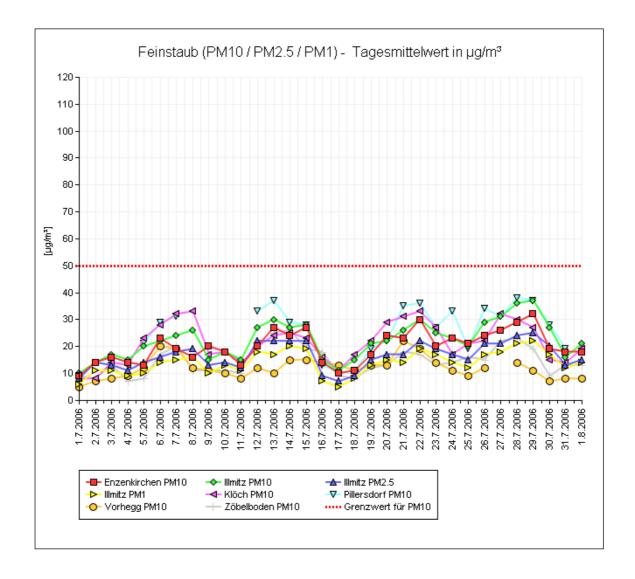
v: Verfügbarkeit nicht ausreichend

#### Vorhegg – Juli 2006

| Datum  | O <sub>3</sub> Max.<br>MW1<br>μg/m³ | O <sub>3</sub> Max.<br>MW8<br>μg/m³ | SO <sub>2</sub> Max.<br>HMW<br>µg/m³ | SO <sub>2</sub><br>TMW<br>µg/m³ | NO <sub>2</sub> Max.<br>HMW<br>μg/m³ | NO <sub>2</sub><br>TMW<br>µg/m³ | NO Max.<br>HMW<br>µg/m³ | NO<br>TMW<br>µg/m³ | CO Max.<br>MW8g<br>mg/m³ | PM10<br>TMW<br>µg/m³ |
|--------|-------------------------------------|-------------------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------------|--------------------------|----------------------|
| 1.07.  | 114                                 | 111                                 | 0.5                                  | 0.3                             | 4.6                                  | 3.0                             | 0.5                     | 0.1                | 0.19                     | 7                    |
| 2.07.  | 98                                  | 95                                  | 0.5                                  | 0.4                             | 4.1                                  | 2.9                             | 0.3                     | 0.1                | 0.19                     | 8                    |
| 3.07.  | 95                                  | 89                                  | 0.6                                  | 0.4                             | 7.0                                  | 4.1                             | 0.9                     | 0.2                | 0.20                     | 9                    |
| 4.07.  | 97                                  | 94                                  | 2.7                                  | 0.9                             | 7.1                                  | 5.2                             | 1.1                     | 0.3                | 0.21                     | 12                   |
| 5.07.  | 115                                 | 98                                  | 3.1                                  | 1.2                             | 8.0                                  | ٧                               | 0.6                     | ٧                  | 0.21                     | 20                   |
| 6.07.  | 164                                 | 139                                 | 3.1                                  | 0.8                             | 11.5                                 | 3.4                             | 4.2                     | 0.3                | 0.22                     | 19                   |
| 7.07.  | 131                                 | 121                                 | 0.5                                  | 0.3                             | 3.6                                  | 2.2                             | 0.2                     | 0.1                | 0.21                     | 12                   |
| 8.07.  | 100                                 | 92                                  | 0.3                                  | 0.2                             | 3.7                                  | 2.1                             | 0.9                     | 0.2                | 0.19                     | 11                   |
| 9.07.  | 98                                  | 91                                  | 0.5                                  | 0.2                             | 2.3                                  | 1.6                             | 0.4                     | 0.1                | 0.19                     | 10                   |
| 10.07. | 117                                 | 112                                 | 0.5                                  | 0.2                             | 5.2                                  | 2.4                             | 0.7                     | 0.2                | 0.19                     | 8                    |
| 11.07. | 118                                 | 114                                 | 0.7                                  | 0.3                             | 5.6                                  | 2.9                             | 1.8                     | 0.2                | 0.20                     | 12                   |
| 12.07. | 123                                 | 119                                 | 0.3                                  | 0.2                             | 5.5                                  | 2.5                             | 0.7                     | 0.2                | 0.20                     | 10                   |
| 13.07. | 146                                 | 142                                 | 1.3                                  | 0.6                             | 6.2                                  | 3.5                             | 0.9                     | 0.2                | 0.24                     | 15                   |
| 14.07. | 129                                 | 130                                 | 0.6                                  | 0.3                             | 4.6                                  | 3.2                             | 0.5                     | 0.1                | 0.24                     | 15                   |
| 15.07. | 146                                 | 129                                 | 1.0                                  | 0.3                             | 5.5                                  | 3.1                             | 0.7                     | 0.2                | 0.22                     | 14                   |
| 16.07. | 103                                 | 121                                 | 1.1                                  | 0.6                             | 5.8                                  | 3.6                             | 0.3                     | 0.1                | 0.22                     | 13                   |
| 17.07. | 118                                 | 114                                 | 1.2                                  | 0.7                             | 5.5                                  | 3.9                             | 0.7                     | 0.2                | 0.19                     | 11                   |
| 18.07. | 148                                 | 136                                 | 1.5                                  | 0.8                             | 7.7                                  | 4.4                             | 0.7                     | 0.2                | 0.19                     | 13                   |
| 19.07. | 177                                 | 164                                 | 2.1                                  | 1.0                             | 5.8                                  | 3.9                             | 0.5                     | 0.1                | 0.22                     | 13                   |
| 20.07. | 192                                 | 179                                 | 1.6                                  | 1.1                             | 6.8                                  | 4.0                             | 0.5                     | 0.1                | 0.24                     | 22                   |
| 21.07. | 175                                 | 174                                 | 1.7                                  | 0.9                             | 4.2                                  | 3.4                             | 0.2                     | 0.1                | 0.23                     | 19                   |
| 22.07. | 149                                 | 147                                 | 0.7                                  | 0.3                             | 5.3                                  | 3.7                             | 0.3                     | 0.1                | 0.20                     | 14                   |
| 23.07. | 138                                 | 135                                 | 0.3                                  | 0.2                             | 4.4                                  | 3.1                             | 0.2                     | 0.1                | 0.20                     | 11                   |
| 24.07. | 141                                 | 135                                 | 0.3                                  | 0.2                             | 6.1                                  | 3.2                             | 0.9                     | 0.2                | 0.20                     | 9                    |
| 25.07. | 161                                 | 138                                 | 0.7                                  | 0.3                             | 5.9                                  | 3.5                             | 1.2                     | 0.2                | 0.22                     | 12                   |
| 26.07. | 134                                 | 134                                 | 0.6                                  | 0.3                             | 5.2                                  | 3.1                             | 0.6                     | 0.1                | 0.23                     | ٧                    |
| 27.07. | 154                                 | 134                                 | 0.6                                  | 0.2                             | 7.4                                  | 3.1                             | 0.8                     | 0.2                | 0.21                     | 14                   |
| 28.07. | 146                                 | 121                                 | 0.4                                  | ٧                               | 5.6                                  | ٧                               | 1.0                     | ٧                  | 0.21                     | 11                   |
| 29.07. | ٧                                   | V                                   | V                                    | ٧                               | ٧                                    | ٧                               | V                       | ٧                  | 0.19                     | 7                    |
| 30.07. | ٧                                   | V                                   | V                                    | ٧                               | ٧                                    | ٧                               | V                       | ٧                  | 0.18                     | 8                    |
| 31.07. | ٧                                   | V                                   | V                                    | ٧                               | ٧                                    | ٧                               | V                       | ٧                  | 0.19                     | 8                    |
| Max.   | 192                                 | 179                                 | 3.1                                  | 1.2                             | 11.5                                 | 5.2                             | 4.2                     | 0.3                | 0.24                     | 22                   |


v: Verfügbarkeit nicht ausreichend


#### Zöbelboden - Juli 2006


| Datum  | O <sub>3</sub> Max.<br>MW1<br>μg/m³ | O₃ Max.<br>MW8<br>µg/m³ | SO <sub>2</sub> Max.<br>HMW<br>µg/m³ | SO <sub>2</sub><br>TMW<br>µg/m³ | NO <sub>2</sub> Max.<br>HMW<br>µg/m³ | NO <sub>2</sub><br>TMW<br>µg/m³ | NO Max.<br>HMW<br>µg/m³ | NO<br>TMW<br>µg/m³ | PM10<br>TMW<br>µg/m³ | N₂O<br>TMW<br>ppm | CH₄<br>TMW<br>ppm |
|--------|-------------------------------------|-------------------------|--------------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------|--------------------|----------------------|-------------------|-------------------|
| 1.07.  | 87                                  | 88                      | 0.5                                  | 0.2                             | 5.7                                  | 3.9                             | 0.5                     | 0.3                | 8                    | 0.30              | 1.8               |
| 2.07.  | 77                                  | 75                      | 1.6                                  | 0.5                             | 3.3                                  | 2.7                             | 0.4                     | 0.3                | 13                   | 0.30              | 1.8               |
| 3.07.  | 84                                  | 79                      | 0.1                                  | <0.1                            | 3.2                                  | 2.2                             | 0.4                     | 0.3                | 7                    | 0.30              | 1.8               |
| 4.07.  | 95                                  | 86                      | 0.3                                  | 0.1                             | 3.4                                  | 2.7                             | 0.4                     | 0.3                | 8                    | 0.30              | 1.8               |
| 5.07.  | 119                                 | 113                     | 0.6                                  | 0.2                             | 3.9                                  | 3.0                             | 0.4                     | 0.3                | 17                   | 0.31              | 1.8               |
| 6.07.  | 129                                 | 120                     | 1.3                                  | 0.5                             | 7.3                                  | 4.2                             | 1.0                     | 0.3                | 20                   | 0.30              | 1.8               |
| 7.07.  | 113                                 | 118                     | 0.6                                  | 0.1                             | 11.1                                 | 3.8                             | 1.9                     | 0.3                | 11                   | 0.31              | 1.8               |
| 8.07.  | 98                                  | 102                     | 0.5                                  | 0.1                             | 4.5                                  | 3.2                             | 0.4                     | 0.3                | 11                   | 0.31              | 1.8               |
| 9.07.  | 96                                  | 95                      | 0.5                                  | 0.2                             | 4.1                                  | 2.7                             | 0.3                     | 0.3                | 11                   | 0.31              | 1.8               |
| 10.07. | 127                                 | 124                     | 8.0                                  | 0.3                             | 3.8                                  | 3.0                             | 0.4                     | 0.3                | 10                   | 0.31              | 1.8               |
| 11.07. | 138                                 | 132                     | 0.6                                  | 0.3                             | 4.0                                  | 3.0                             | 0.4                     | 0.3                | ٧                    | 0.31              | 1.8               |
| 12.07. | 135                                 | 134                     | 2.7                                  | V                               | 6.5                                  | V                               | 0.4                     | V                  | 25                   | V                 | 1.8               |
| 13.07. | 148                                 | 144                     | 2.9                                  | 0.9                             | 5.0                                  | 3.5                             | 0.4                     | 0.3                | 26                   | 0.30              | 1.8               |
| 14.07. | 143                                 | 144                     | 1.3                                  | 0.4                             | 6.0                                  | 4.0                             | 0.4                     | 0.3                | 19                   | 0.30              | 1.8               |
| 15.07. | 112                                 | 113                     | 0.9                                  | 0.4                             | 5.4                                  | 3.9                             | 0.6                     | 0.3                | 18                   | 0.30              | 1.8               |
| 16.07. | 105                                 | 100                     | 2.3                                  | 0.9                             | 4.5                                  | 3.3                             | 0.4                     | 0.3                | 9                    | 0.30              | 1.8               |
| 17.07. | 106                                 | 104                     | 1.7                                  | 0.8                             | 3.6                                  | 2.8                             | 0.4                     | 0.3                | 8                    | 0.30              | 1.8               |
| 18.07. | 136                                 | 129                     | 1.4                                  | 0.7                             | 4.2                                  | 3.4                             | 0.4                     | 0.3                | 12                   | 0.30              | 1.8               |
| 19.07. | 144                                 | 141                     | 1.4                                  | 0.9                             | 3.9                                  | 3.2                             | 0.4                     | 0.3                | 13                   | 0.30              | 1.8               |
| 20.07. | 188                                 | 185                     | 1.6                                  | 1.0                             | 5.2                                  | 4.0                             | 0.4                     | 0.3                | 18                   | 0.30              | 1.8               |
| 21.07. | 191                                 | 185                     | 1.3                                  | 0.7                             | 5.0                                  | 4.0                             | 0.4                     | 0.3                | 17                   | 0.30              | 1.8               |
| 22.07. | 148                                 | 147                     | 0.7                                  | 0.3                             | 5.5                                  | 3.7                             | 0.4                     | 0.3                | 13                   | 0.29              | 1.8               |
| 23.07. | 161                                 | 153                     | 1.1                                  | 0.4                             | 6.5                                  | 3.8                             | 0.4                     | 0.3                | 14                   | 0.29              | 1.8               |
| 24.07. | 151                                 | 142                     | 1.3                                  | 0.5                             | 5.6                                  | 3.9                             | 0.4                     | 0.3                | 16                   | 0.29              | 1.8               |
| 25.07. | 159                                 | 155                     | 0.8                                  | 0.4                             | 3.9                                  | 3.3                             | 0.4                     | 0.3                | 15                   | 0.29              | 1.8               |
| 26.07. | 169                                 | 165                     | 1.1                                  | 0.7                             | 4.5                                  | 3.9                             | 0.3                     | 0.3                | 22                   | 0.29              | 1.8               |
| 27.07. | 189                                 | 172                     | 0.8                                  | 0.5                             | 5.9                                  | 4.2                             | 0.5                     | 0.3                | 23                   | 0.30              | 1.8               |
| 28.07. | 153                                 | 163                     | 1.0                                  | 0.3                             | 5.0                                  | 4.0                             | 0.4                     | 0.3                | 19                   | V                 | 1.8               |
| 29.07. | 129                                 | 122                     | 0.3                                  | 0.1                             | 6.2                                  | 4.7                             | 0.4                     | 0.3                | 9                    | v                 | 1.8               |
| 30.07. | 129                                 | 126                     | 0.7                                  | 0.1                             | 5.2                                  | 3.9                             | 0.4                     | 0.3                | 13                   | V                 | 1.8               |
| 31.07. | 129                                 | 128                     | 0.7                                  | 0.2                             | 7.0                                  | 4.1                             | 0.5                     | 0.3                | 13                   | v                 | 1.8               |
| Max.   | 191                                 | 185                     | 2.9                                  | 1.0                             | 11.1                                 | 4.7                             | 1.9                     | 0.3                | 26                   | 0.31              | 1.8               |

v: Verfügbarkeit nicht ausreichend

## 10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN





