

MONATSBERICHT HINTERGRUNDMESSNETZ UMWELTBUNDESAMT

Februar 2010

REPORT REP-0271

Wien, 2010

Wolfgang Spangl Umschlagfoto © Luftmessstelle Klöch (B. Gröger) Weitere Informationen zu Publikationen des Umweltbundesamt unter: http://www.umweltbundesamt.at/ **Impressum** Medieninhaber und Herausgeber: Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien/Österreich Eigenvervielfältigung Diese Publikation erscheint ausschließlich in elektronischer Form auf http://www.umweltbundesamt.at/.

Projektleitung

© Umweltbundesamt GmbH, Wien, 2010

Alle Rechte vorbehalten ISBN 978-3-99004-072-0

INHALT

1	EINLEITUNG	5
2	ABKÜRZUNGEN	6
3	DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS	8
4	GRENZWERTE	11
5	WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	13
6	VERFÜGBARKEIT – FEBRUAR 2010	14
7	MONATSMITTELWERTE – FEBRUAR 2010	15
8	ÜBERSCHREITUNGEN	16
9	TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	17
10	GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	25

1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/1997 i. d. g. F.) und gemäß Ozongesetz (BGBI. 210/1992 idgF) in Österreich derzeit insgesamt 7 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 500/2006) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM10 und PM2,5 Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von Blei, Benzol, der im Rahmen des EMEP-Messprogramms¹ zusätzlich erfassten Luftschadstoffe sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamtes (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamtes bilden das österreichische Hintergrundmessnetz. Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamtes der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen SO₂, NO_x und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM10 zu rechnen.

¹ EMEP – European Monitoring and Evaluation Programme

2 ABKÜRZUNGEN

Luftschadstoffe

SO ₂	Schwefeldioxid
PM10	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 % aufweist
PM2,5	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 % aufweist
PM1	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 1 µm eine Abscheidewirksamkeit von 50 % aufweist
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NOy	oxidierte Stickstoffverbindungen
СО	Kohlenstoffmonoxid
O ₃	Ozon
CO ₂	Kohlenstoffdioxid
CH ₄	Methan

Einheiten

mg/m ³	Milligramm pro Kubikmeter	
μg/m³	Mikrogramm pro Kubikmeter	
ppb	parts per billion	
ppm	parts per million	

 $^{1 \}text{ mg/m}^3 = 1000 \mu\text{g/m}^3$

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in $\mu g/m^3$ bzw. mg/m³ bei 1013 hPa und 20 °C (Normbedingungen).

SO ₂	1 μ g/m ³ = 0,37528 ppb	1 ppb = $2,6647 \mu g/m^3$	
NO	1 μg/m³ = 0,80186 ppb	1 ppb = 1,2471 μg/m ³	
NO ₂	1 μg/m ³ = 0,52293 ppb	1 ppb = 1,9123 μg/m ³	
СО	1 mg/m ³ = 0,85911 ppm	1 ppm = $1,1640 \text{ mg/m}^3$	
O ₃	1 μg/m ³ = 0,50115 ppb	1 ppb =1,9954 μg/m ³	

¹ ppm = 1000 ppb

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75 %
JMW	Jahresmittelwert	75 % im Sommer und im Winter
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode

3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS

3.1 Ausstattung der Messstellen

Messstelle	O ₃	SO ₂	NO ₂ , NO	СО	PM10	PM2,5	PM1
Enzenkirchen	APOA-360E	TEI 43CTL	TEI 42i		DHA80, Gravimetrie		
Illmitz	APOA-360E	TEI 43CTL	TEI 42i	APMA- 360CE	DHA80, Gravimetrie	DHA80, Gravimetrie	DHA80, Gravimetrie
Klöch			TEI 42C		DHA80, Gravimetrie		
Pillersdorf	TEI 49	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		
Ried im Zillertal	API 400E		API 200EU		DHA80, Gravimetrie		
Sonnblick	TEI 49C		TEI 42CTL	APMA- 360CE ²			
Vorhegg	API 400E	TEI 43CTL	TEI 42CTL	APMA- 360CE	DHA80, Gravimetrie		
Zöbelboden	APOA-360E	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		

Die **CO₂-Messung** auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs URAS-14 (Hartmann&Braun).

Die Messung der Konzentration des Treibhausgases **CH**₄ (Methan) erfolgt mit einem Gerät der Type TEI 55C.

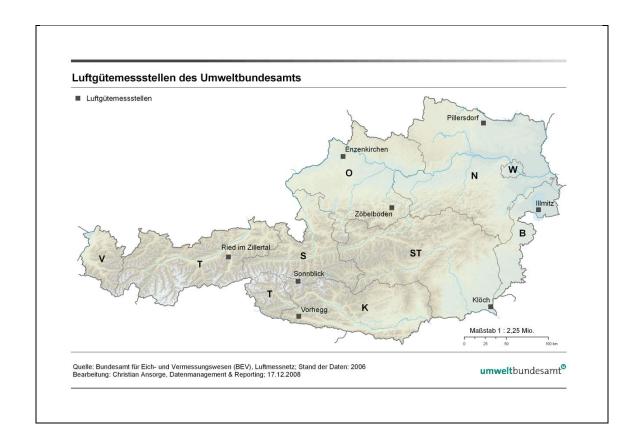
In Illmitz werden im Rahmen des **EMEP-Messprogramms** weiters partikuläres Sulfat, Nitrat und Ammonium sowie Salpetersäure und Ammoniak gemessen, in Illmitz, Vorhegg und Zöbelboden die nasse Deposition und deren Inhaltsstoffe. Die Ergebnisse dieser Messungen sowie den Messungen von Benzol und Blei im PM10 sind im Jahresbericht der Luftgütemessungen des Umweltbundesamtes zu finden (http://www.umweltbundesamt.at/jahresberichte/).

In Enzenkirchen, Illmitz, Klöch und Pillersdorf, wird zusätzlich zur gravimetrischen PM10-Messung (gemäß EN 12341) die **PM10-Konzentration** mittels β -Absorption kontinuierlich gemessen, in Ried im Zillertal mittels TEOM-FDMS; diese Messung dient u. a. dem Methodenvergleich.

An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxod und Ozon sowie der meteorologischen Größen Windrichtung und –geschwindigkeit, Lufttemperatur und Globalstrahlung durch.

-

² erfolgt im Rahmen des GAW-Messprogramms der WMO


Meteorologische Messungen

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.

In Enzenkirchen, Illmitz, Pillersdorf, Ried im Zillertal und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/.

3.2 Angaben zu den Messgeräten

olume- PM1-) Kopf netrische

Die kleinste angegebene Konzentration ist für NO_2 (Horiba), O_3 , PM10, PM2,5 und PM1 1 μ g/m³, für SO_2 und NO_2 (TEI 42CTL) 0,1 μ g/m³, für CO 0,10 μ g/m³.

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in $\mu g/m^3$ mit < 1 angegeben.

³ Empfindlichkeit 0,1 ppm, Messbereich 340 bis 440 ppm.

4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamtes kontinuierlich erfassten Schadstoffe angegeben.

Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 34/2006

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

SO ₂	120 μg/m ³	Tagesmittelwert
SO ₂	200 μg/m ³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 µg/m³ gelten nicht als Überschreitung
PM10	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: von 2005 bis 2009: 30, ab 2010: 25
PM10	40 μg/m ³	Jahresmittelwert
СО	10 mg/m ³	Gleitender Achtstundenmittelwert
NO ₂	200 μg/m ³	Halbstundenmittelwert
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge beträgt 30 μ g/m³ bei Inkrafttreten des Gesetzes und wird am 1.1. jedes Jahres bis 1.1. 2005 um 5 μ g/m³ verringert. Die Toleranzmarge von 10 μ g/m³ gilt gleich bleibend vom 1.1. 2005 bis 31.12.2009. Die Toleranzmarge von 5 μ g/m³ gilt gleich bleibend vom 1.1. 2010 bis 31.12.2011
Blei im PM10	0,5 μg/m ³	Jahresmittelwert
Benzol	5 μg/m ³	Jahresmittelwert

Alarmwerte gemäß Anlage 4.

SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert	
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert	

Zielwerte gemäß Anlage 5.

PM10	50 μg/m ³	TMW, sieben Überschreitungen im Kalenderjahr erlaubt
PM10	20 μg/m ³	JMW
NO ₂	80 μg/m ³	TMW

Zielwerte gemäß Anlage 5b.

Benzo(a)pyren	1 ng/m ³	JMW
Arsen im PM10	6 ng/m ³	JMW
Cadmium im PM10	5 ng/m ³	JMW
Nickel im PM10	20 ng/m³	JMW

Ozongesetz i.d.g.F. (BGBI. I 34/2006, Art. II)

Mit der Novelle zum Ozongesetz (BGBl. I 2003/34) wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

Informationsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle	240 μg/m³	Nicht gleitender Einstundenmittelwert

Zielwert für den Schutz der menschlichen Gesundheit gemäß Anlage 2 (einzuhalten ab 2010).

120 µg/m³	Höchster (nicht gleitender) Achtstunden-	gemittelt über 3 Jahre sind Überschreitungen
	mittelwert des Tages	an maximal 25 Tagen pro Jahr zugelassen

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

18.000 µg/m³.h	AOT40, berechnet aus den MW1 von Mai bis Juli	Mittelwert über 5 Jahre
----------------	---	-------------------------

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	20 μg/m ³	Jahresmittelwert und Wintermittelwert
NO _x ⁽⁴⁾	30 μg/m ³	Jahresmittelwert

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	50 μg/m ³	Tagesmittelwert
NO_2	80 μg/m³	Tagesmittelwert

 $^{^4}$ NO $_x$ als Summe von NO und NO $_2$ in ppb gebildet und mit dem Faktor 1,9123 in $\mu g/m^3$ umgerechnet

5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Februar 2010 wies im Großteil Österreichs unterdurchschnittliche Temperaturen – verglichen mit dem Mittel der Klimaperiode 1961–90 – auf, wobei der Alpenhauptkamm in Westösterreich sowie Nord- und Ostösterreich am kältesten waren.

Die Niederschlagsmengen im größten Teil Österreichs weit unter dem langjährigen Mittel. Der Raum Wien sowie Vorarlberg und das westliche Nordtirol waren mit weniger als 50 % des Klimamittelwertes am trockensten. Demgegenüber fielen in der Südsteiermark und in Südkärnten über 150 % der durchschnittlichen Niederschlagsmenge, im Raum Villach mehr als das Doppelte.

Der Witterungsverlauf war von einer durchgehend kalten Periode bis 17.2. gekennzeichnet, während derer häufig Hochdruckwetterlagen auftraten. Danach stieg die Temperatur an, es überwogen Süd- bis Westwetterlagen mit häufigen Föhnsituationen. Die hohen Regen- bzw. Schneemengen in Südösterreich konzentrierten sich auf den 5., 19., 19. und 26.2.

Die Belastung der Schadstoffe SO₂, NO₂ und PM10 lag an den meisten Messstellen über dem Durchschnitt der letzten Jahre – d.h. deutlich höher als 2007 bis 2009, aber zumeist unter dem Niveau der Jahre 2005 oder 2006.

Illmitz registrierte an zehn Tagen PM10-Tagesmittelwerte über 50 μ g/m³, Klöch an neun Tagen, Enzenkirchen und Pillersdorf an je sieben Tagen. In Vorhegg und auf dem Zöbelboden traten keine Überschreitungen auf.

In Nordostösterreich lassen sich drei Ferntransportereignisse feststellen. Am 5. und 6.2. traten in Illmitz, am 5.2. in Klöch PM10-TMW über 50 µg/m³ bei östlichem Wind auf.

Von 9. bis 12.2. waren Pillersdorf und Illmitz von Überschreitungen betroffen, zunächst bei Wind aus Nordost bis Südost, der dann auf Nordwest drehte und bis 7 m/s erreichte. Am 9.12. traten bei Nordostwind in Pillersdorf mit einem maximalen HMW von 41 µg/m³ ungewöhnlich hohe SO₂-Konzentrationen auf. Insgesamt lassen sich an allen vier Tagen die Hauptquellen der erhöhten PM10- und SO₂-Belastung in Tschechien lokalisieren, während die in Illmitz, nicht aber in Pillersdorf stark erhöhte NO₂-Belastung wohl auf Quellen im Raum Wien zurückgeht.

Von 16. bis 19.2. war Illmitz, von 16. bis 18.2. auch Pillersdorf von Überschreitungen betroffen, wobei zunächst nördlicher Wind wehte, der schon am 16.2. auf Ost bis Südost wechselte, sodass vermutlich Quellen in Ungarn, Serbien und Südrumänien für die erhöhte PM10-Belastung verantortlich waren. Ferntransport von Osten erreichte am 17. und 18.2. auch Enzenkirchen.

Dagegen dürfte die Überschreitung in Enzenkirchen am 6.2. bei variablem Wind eher regionalen Quellen zuzuordnen sein. Die TMW über 50 μg/m³ von 10. bis 13.2. fielen mit beständigem Westwind zusammen.

In Klöch spielte bei den Überschreitungen am 5.2. und am 9. und 10.2. Ferntransport von Osten bis Nordosten eine wesentliche Rolle. Die Überschreitungen am 12. und 13.2. sowie von 16. bis 19.2. – wobei am 18.2. mit 96 µg/m³ der höchste Tagesmittelwert auftrat – waren mit variablem Wind verbunden und dürften damit überwiegend auf regionale Schadstoffakkumulation zurückgehen.

Bei Ozon registrierten Illmitz und Pillersdorf eine überdurchschnittliche Belastung, Enzenkirchen, Sonnblick und Zöbelboden eine durchschnittliche, Vorhegg eine vergleichsweise niedrige.

Die CO-Konzentration wies in Illmitz ein durchschnittliches Niveau auf, auf dem Sonnblick war sie relativ niedrig, dagegen registrierte Vorhegg den höchsten Monatsmittelwert im Februar seit 1996.

6 VERFÜGBARKEIT – FEBRUAR 2010

Verfügbarkeit der Halbstundenmittelwerte (bei PM10, PM2,5 und PM1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte:

	O ₃	SO ₂	NO ₂	NO	СО	PM10	PM2,5	PM1	CO ₂	CH₄	NO _y
Enzenkirchen	95	97	95	95		100					
Illmitz	97	98	98	98	98	100	100	100			_
Klöch			98	98		100					
Pillersdorf	97	97	94	94		100					
Ried im Zillertal	0		0	0		0					
Sonnblick	98				98				88		98
Vorhegg	98	97	98	98	98	100					
Zöbelboden	97	89	97	97		100				99	

Die Verfügbarkeit soll gemäß $\S4$ (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO_2 , CO, NO_2 und O_3 mindestens 90% betragen.

Die Messung von PM10 wurde in Ried im Zillertal am 8.1., jene von SO₂, NO, NO₂ und Ozon am 14.1. vorläufig eingestellt.

7 MONATSMITTELWERTE – FEBRUAR 2010

	O ₃ µg/m³	SO ₂ µg/m³	NO ₂ µg/m³	NO μg/m³	CO mg/m³	PM10 µg/m³	PM2,5 µg/m³	PM1 µg/m³	CO ₂ ppm	CH₄ ppm	NO _y ppb
Enzenkirchen	53	3.3	21.8	2.0		36					_
Illmitz	64	5.1	12.6	0.7	0.49	40	36	24			
Klöch			15.1	0.5		38					_
Pillersdorf	66	6.3	13.0	1.2		37					_
Ried im Zillertal	٧		٧	٧		٧					
Sonnblick	94				0.22				396		1.48
Vorhegg	72	1.0	6.4	0.5	0.33	9					
Zöbelboden	75	1.3	9.0	0.3		13				1.9	

v: Verfügbarkeit nicht ausreichend

8 ÜBERSCHREITUNGEN

Anzahl der Tage mit Überschreitungen im Februar 2010.

	O ₃ MW1 > 180 μg/m³	O ₃ MW8 > 120 μg/m³	PM10 TMW > 50 μg/m³
Enzenkirchen	0	0	7
Illmitz	0	0	10
Klöch			9
Pillersdorf	0	0	7
Ried im Zillertal	0	0	0
Sonnblick	0	0	
Vorhegg	0	0	0
Zöbelboden	0	0	0

Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2010.

	O₃ MW1 > 180 μg/m³	Ο ₃ MW8 > 120 μg/m³	PM10 TMW > 50 μg/m³
Enzenkirchen	0	0	15
Illmitz	0	0	22
Klöch			21
Pillersdorf	0	0	17
Ried im Zillertal	0	0	2
Sonnblick	0	0	
Vorhegg	0	0	0
Zöbelboden	0	0	0

9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

9.1 Enzenkirchen – Februar 2010

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 μg/m³	SO₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW μg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.02.	75	68	3.3	1.4	29.4	17.2	6.5	1.4	17
2.02.	71	66	1.8	1.2	27.0	14.0	3.7	1.1	15
3.02.	81	79	1.0	0.7	17.8	11.3	1.3	0.5	4
4.02.	63	64	7.0	1.7	34.0	19.1	12.7	1.8	10
5.02.	63	60	6.6	3.8	34.6	23.6	22.2	1.8	48
6.02.	52	46	11.3	4.1	38.7	27.6	12.1	1.9	64
7.02.	80	66	11.7	5.5	34.0	17.2	2.2	0.7	45
8.02.	75	69	9.8	5.2	26.3	12.1	4.9	1.1	30
9.02.	71	68	6.4	3.9	32.3	15.0	3.8	8.0	39
10.02.	52	51	3.0	2.2	38.8	22.8	4.1	1.3	65
11.02.	38	40	4.2	2.7	66.5	40.5	11.6	3.7	58
12.02.	55	42	11.6	6.6	66.7	42.3	27.9	5.6	75
13.02.	66	60	8.1	5.4	51.9	33.9	13.8	3.4	73
14.02.	70	65	3.7	2.7	24.1	18.0	3.5	8.0	46
15.02.	70	64	8.0	3.3	45.3	19.1	37.1	1.6	39
16.02.	76	68	11.2	4.5	51.5	26.6	11.4	2.3	43
17.02.	103	95	10.4	6.5	41.5	29.3	7.4	1.7	63
18.02.	75	73	7.5	3.1	29.4	23.3	5.1	1.2	59
19.02.	48	44	10.2	2.5	65.4	35.5	10.1	3.2	34
20.02.	65	59	3.4	1.9	50.1	21.6	4.5	1.3	23
21.02.	79	63	10.5	1.6	22.0	13.8	2.5	8.0	13
22.02.	73	72	15.7	6.8	61.8	26.4	9.4	2.1	19
23.02.	75	59	9.2	4.3	64.2	٧	44.5	٧	36
24.02.	69	64	10.4	4.0	48.6	٧	17.1	٧	44
25.02.	80	73	6.8	2.3	33.5	19.6	77.1	3.9	19
26.02.	81	77	5.2	1.6	22.3	11.7	6.5	1.1	8
27.02.	96	91	9.1	1.2	13.5	5.8	2.7	0.7	8
28.02.	85	86	7.0	1.9	16.6	8.5	3.7	0.7	10
Max.	103	95	15.7	6.8	66.7	42.3	77.1	5.6	75

v: Verfügbarkeit nicht ausreichend

9.2 Illmitz – Februar 2010

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³	PM2,5 TMW µg/m³	PM1 TMW µg/m³
1.02.	82	78	1.7	1.3	17.2	8.2	1.4	0.5	0.35	12	10	7
2.02.	77	71	1.7	1.2	19.0	9.6	2.0	0.6	0.53	19	17	13
3.02.	64	61	1.9	1.7	25.6	15.9	2.4	0.6	0.74	35	32	20
4.02.	78	68	2.7	2.0	30.1	18.7	2.6	0.7	0.69	70	65	45
5.02.	79	75	8.3	5.1	13.4	9.8	8.0	0.4	0.62	55	53	41
6.02.	81	74	24.8	11.3	29.7	14.1	0.6	0.3	0.60	45	42	35
7.02.	84	78	26.7	16.4	18.3	9.8	0.9	0.3	0.62	47	43	29
8.02.	87	85	16.2	11.0	14.8	9.3	1.6	0.5	0.46	44	41	29
9.02.	85	81	13.4	7.1	15.7	9.0	0.6	0.3	0.54	52	45	29
10.02.	97	90	19.5	11.5	48.4	14.5	1.4	0.4	0.64	64	62	39
11.02.	70	64	25.7	12.0	37.6	24.4	5.1	1.2	0.61	56	52	37
12.02.	71	65	13.8	11.2	41.1	22.7	4.0	1.3	0.62	58	56	39
13.02.	71	68	10.7	7.8	31.8	15.0	2.2	8.0	0.65	41	38	27
14.02.	69	68	6.2	5.1	13.2	11.6	2.8	0.9	0.45	25	24	17
15.02.	64	64	6.9	5.5	30.5	16.3	3.3	1.0	0.54	36	32	23
16.02.	86	74	3.8	1.9	28.2	13.7	3.9	1.0	0.69	60	54	31
17.02.	113	105	18.3	11.7	18.2	11.1	0.9	0.4	0.79	74	71	47
18.02.	102	102	17.7	7.9	24.8	12.3	0.6	0.3	0.85	85	77	47
19.02.	82	69	2.2	1.5	22.0	14.1	1.5	0.5	1.08	74	51	29
20.02.	68	64	1.8	1.3	27.4	12.4	1.5	0.6	0.83	17	15	12
21.02.	92	87	2.5	1.2	12.0	6.8	0.8	0.4	0.35	14	13	11
22.02.	85	82	2.2	1.0	8.5	5.9	1.3	0.5	0.36	10	9	8
23.02.	73	69	2.0	0.9	37.3	15.5	8.7	1.7	0.51	19	17	14
24.02.	67	63	1.9	1.1	47.5	17.1	5.8	1.0	0.70	34	28	16
25.02.	87	76	5.7	1.5	26.9	15.8	8.9	1.9	0.61	34	29	19
26.02.	84	79	1.6	0.9	19.3	7.9	1.6	0.4	0.45	14	12	9
27.02.	94	90	1.1	0.6	10.6	5.5	0.6	0.4	0.34	9	6	5
28.02.	93	88	1.9	1.1	9.6	5.0	0.5	0.3	0.37	10	8	7
Max.	113	105	26.7	16.4	48.4	24.4	8.9	1.9	1.08	85	77	47

v: Verfügbarkeit nicht ausreichend

9.3 Klöch – Februar 2010

Datum	NO₂ Max. HMW µg/m³	NO₂ TMW µg/m³	NO Max. HMW μg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.02.	24.9	12.9	3.2	0.7	16
2.02.	46.7	22.2	6.3	1.1	30
3.02.	25.7	17.9	3.2	0.8	21
4.02.	33.4	15.7	3.2	0.7	24
5.02.	29.5	20.6	3.1	0.6	88
6.02.	17.5	13.5	0.6	0.1	38
7.02.	18.1	12.4	2.3	0.4	43
8.02.	15.8	11.5	1.8	0.3	47
9.02.	20.8	16.2	1.2	0.3	58
10.02.	19.2	17.2	1.1	0.2	57
11.02.	18.0	15.2	1.4	0.4	38
12.02.	23.8	19.6	2.4	0.6	60
13.02.	25.2	18.8	3.7	0.8	56
14.02.	18.1	13.5	1.3	0.3	42
15.02.	19.3	14.3	2.3	0.4	41
16.02.	27.0	19.7	3.9	0.9	58
17.02.	27.7	22.2	2.0	0.3	93
18.02.	30.4	24.8	4.2	0.5	96
19.02.	27.0	21.1	2.0	0.4	54
20.02.	25.8	14.9	1.9	0.4	15
21.02.	19.4	9.3	4.5	0.5	10
22.02.	13.0	9.9	1.0	0.3	7
23.02.	13.3	9.4	1.9	0.3	9
24.02.	18.1	12.6	4.4	0.7	19
25.02.	26.3	16.2	9.0	1.5	24
26.02.	14.9	9.5	0.6	0.1	13
27.02.	9.4	5.8	1.2	0.2	7
28.02.	7.5	5.6	0.4	0.1	10
Max.	46.7	24.8	9.0	1.5	96

v: Verfügbarkeit nicht ausreichend

9.4 Pillersdorf – Februar 2010

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.02.	76	74	3.3	1.8	13.9	8.7	2.5	0.9	13
2.02.	68	68	3.0	1.7	20.2	13.6	4.0	1.3	14
3.02.	75	70	2.7	1.7	15.6	11.0	2.2	1.0	9
4.02.	72	52	3.3	2.3	43.3	22.7	14.3	4.2	26
5.02.	83	82	13.3	6.6	16.4	13.2	1.2	8.0	46
6.02.	90	87	26.6	16.1	33.5	13.3	1.5	0.9	50
7.02.	69	68	23.6	12.3	24.7	10.2	1.3	8.0	47
8.02.	88	82	9.5	7.0	21.4	9.7	2.9	1.1	47
9.02.	85	78	41.2	17.0	30.8	19.4	5.6	1.7	75
10.02.	94	87	15.2	10.4	22.0	15.3	2.2	1.0	66
11.02.	79	73	24.6	13.9	20.7	15.1	3.0	1.3	59
12.02.	80	74	14.6	11.9	16.5	13.0	3.2	1.2	53
13.02.	65	66	14.0	8.7	14.0	10.7	2.3	1.0	29
14.02.	72	69	7.1	5.9	9.7	7.6	1.7	8.0	18
15.02.	75	68	12.0	9.5	28.6	12.6	1.6	1.0	38
16.02.	99	91	8.4	5.2	20.0	14.9	3.4	1.4	54
17.02.	112	103	19.2	12.8	16.2	14.0	1.7	0.9	59
18.02.	102	104	17.5	9.6	32.3	13.1	1.5	0.9	71
19.02.	81	76	4.6	3.1	22.4	13.9	1.9	1.0	36
20.02.	83	81	5.4	1.9	13.9	8.4	2.3	0.9	15
21.02.	94	91	2.4	1.5	10.7	8.5	1.8	8.0	17
22.02.	86	85	5.0	3.3	31.9	16.4	6.0	1.7	31
23.02.	78	72	3.9	2.0	23.8	14.2	2.6	1.1	30
24.02.	99	88	3.3	1.7	26.8	17.3	12.7	2.0	39
25.02.	72	76	5.5	2.4	16.2	٧	2.5	٧	42
26.02.	76	60	3.2	1.6	35.4	٧	3.8	٧	32
27.02.	98	94	3.9	1.1	19.5	7.9	0.9	0.4	11
28.02.	85	78	3.9	1.6	10.6	8.0	1.8	0.5	15
Max.	112	104	41.2	17.0	43.3	22.7	14.3	4.2	75

v: Verfügbarkeit nicht ausreichend

9.5 Ried im Zillertal – Februar 2010

Datum	O ₃ Max. MW1 μg/m³	O₃ Max. MW8 µg/m³	NO₂ Max. HMW µg/m³	NO₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.02.	V	٧	٧	٧	V	V	V
2.02.	V	٧	٧	٧	V	V	V
3.02.	٧	٧	٧	٧	V	V	٧
4.02.	٧	٧	٧	٧	V	V	٧
5.02.	V	٧	٧	٧	V	V	V
6.02.	٧	٧	٧	٧	V	V	٧
7.02.	٧	٧	٧	٧	V	V	٧
8.02.	٧	٧	٧	٧	V	V	٧
9.02.	V	٧	٧	٧	V	V	V
10.02.	V	٧	٧	٧	V	V	V
11.02.	V	٧	٧	٧	V	V	V
12.02.	V	٧	٧	٧	V	V	V
13.02.	V	٧	٧	٧	V	V	V
14.02.	V	٧	٧	٧	V	V	V
15.02.	V	٧	٧	٧	V	V	V
16.02.	٧	٧	٧	٧	V	٧	V
17.02.	V	٧	٧	٧	V	V	V
18.02.	٧	٧	٧	٧	V	V	V
19.02.	V	٧	٧	٧	V	V	V
20.02.	V	٧	٧	٧	V	V	V
21.02.	V	V	٧	٧	V	V	V
22.02.	V	V	٧	٧	V	V	V
23.02.	V	٧	٧	٧	V	V	V
24.02.	V	V	٧	٧	V	V	V
25.02.	V	٧	٧	٧	V	V	٧
26.02.	V	V	٧	٧	V	V	V
27.02.	V	٧	٧	٧	V	V	٧
28.02.	V	٧	٧	٧	V	V	٧
Max.	V	V	٧	٧	V	V	٧

v: Verfügbarkeit nicht ausreichend

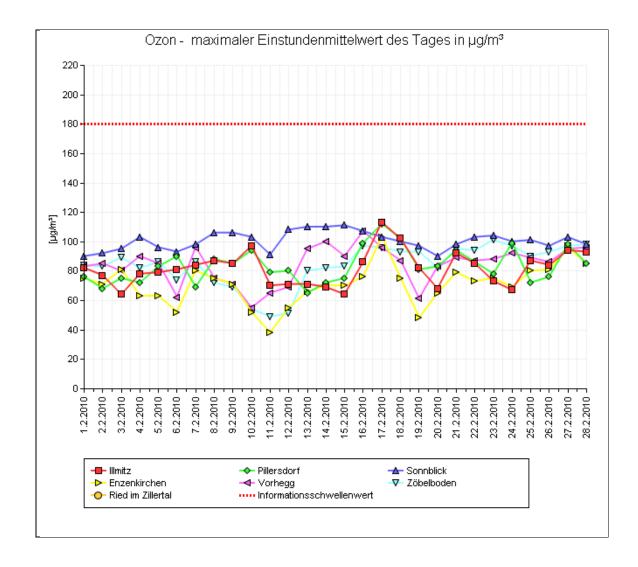
9.6 Sonnblick - Februar 2010

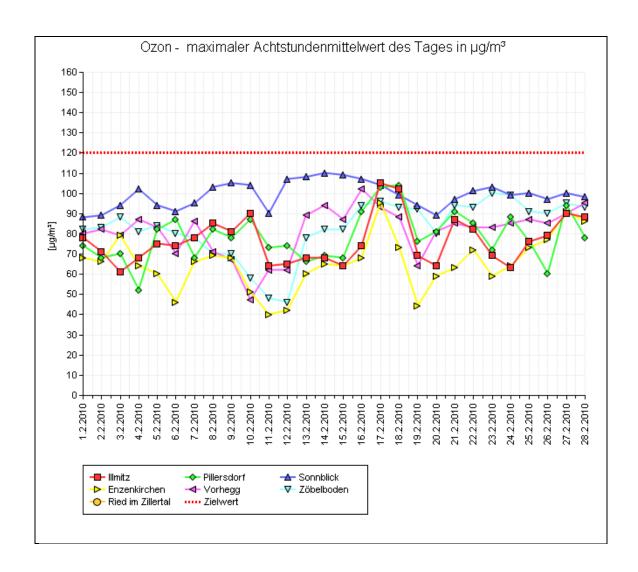
Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	CO Max. MW8g mg/m³	CO ₂ TMW ppm	NO _y Max. HMW ppb	NO _y TMW ppb
1.02.	90	88	0.25	395	1.47	1.06
2.02.	92	89	0.24	396	1.91	1.33
3.02.	95	94	0.21	393	0.98	0.78
4.02.	103	102	0.18	392	0.75	0.60
5.02.	96	94	0.23	394	2.94	1.26
6.02.	93	91	0.28	400	5.67	3.49
7.02.	98	95	0.29	399	7.91	3.46
8.02.	106	103	0.22	392	1.03	0.76
9.02.	106	105	0.19	393	0.91	0.78
10.02.	103	104	0.26	397	5.27	1.66
11.02.	91	90	0.37	402	5.33	2.65
12.02.	108	107	0.37	398	7.60	1.72
13.02.	110	108	0.25	397	1.50	1.27
14.02.	110	110	0.24	398	1.53	1.40
15.02.	111	109	0.28	399	2.36	1.77
16.02.	107	107	0.30	400	2.59	1.92
17.02.	103	104	0.27	396	1.72	1.18
18.02.	100	99	0.24	396	1.36	1.09
19.02.	97	94	0.25	398	4.95	1.74
20.02.	90	89	0.29	401	7.02	2.53
21.02.	98	97	0.23	396	1.37	1.08
22.02.	103	101	0.22	396	1.37	1.09
23.02.	104	103	0.21	395	1.07	0.92
24.02.	100	99	0.20	395	1.21	0.90
25.02.	101	100	0.21	396	1.46	1.08
26.02.	97	97	0.26	398	3.28	1.78
27.02.	103	100	0.23	395	1.34	0.92
28.02.	98	98	0.20	394	1.49	1.14
Max.	111	110	0.37	402	7.91	3.49

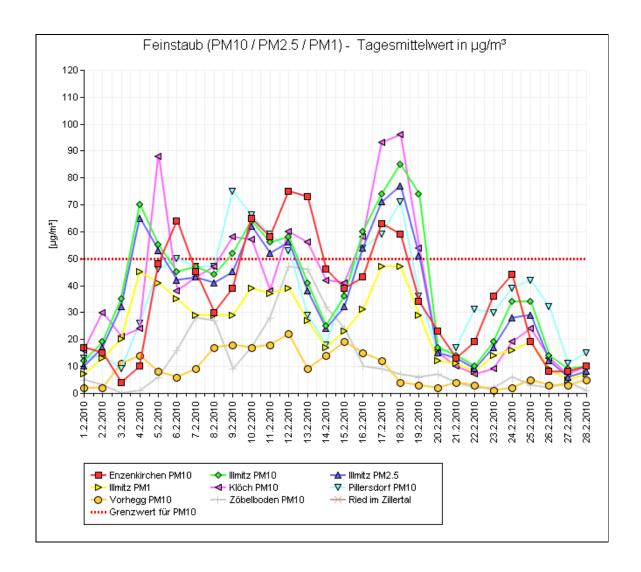
v: Verfügbarkeit nicht ausreichend

9.7 Vorhegg – Februar 2010

Datum		O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³
1.02.	83	80	0.9	0.8	8.7	3.3	3.4	0.5	0.27	2
2.02.	85	82	1.0	0.8	5.2	3.1	0.7	0.3	0.25	2
3.02.	80	79	2.2	1.3	28.3	11.5	5.7	1.1	0.33	11
4.02.	90	87	1.4	1.1	16.1	8.8	2.3	0.5	0.31	14
5.02.	85	83	1.0	0.7	11.6	5.4	0.4	0.2	0.30	8
6.02.	62	70	1.8	1.2	17.9	10.5	4.7	0.9	0.47	6
7.02.	96	86	2.8	1.6	10.6	5.8	2.1	0.4	0.47	9
8.02.	75	71	1.3	1.1	13.6	8.2	2.7	0.6	0.46	17
9.02.	71	67	1.9	0.9	24.7	8.8	2.6	0.6	0.46	18
10.02.	55	47	2.8	1.0	24.4	13.6	5.1	0.8	0.50	17
11.02.	65	62	5.2	3.2	24.4	12.4	3.2	8.0	0.51	18
12.02.	69	62	3.0	2.2	19.7	9.7	6.2	1.0	0.54	22
13.02.	95	89	2.1	1.0	12.3	4.9	1.7	0.4	0.48	9
14.02.	100	94	1.6	1.0	10.3	5.4	1.2	0.3	0.47	14
15.02.	90	87	1.4	1.0	13.3	7.0	1.4	0.3	0.52	19
16.02.	107	102	1.7	8.0	12.2	5.9	2.7	0.4	0.51	15
17.02.	96	93	1.1	0.8	14.1	6.4	3.8	0.8	0.47	12
18.02.	87	88	0.7	0.6	14.5	4.9	1.8	0.3	0.34	4
19.02.	61	64	0.8	0.6	37.8	11.5	4.4	0.7	0.45	3
20.02.	83	81	0.7	0.6	11.2	5.4	1.2	0.3	0.43	2
21.02.	89	85	0.8	0.6	9.6	3.4	1.0	0.3	0.29	4
22.02.	87	83	0.7	0.6	5.0	2.9	0.6	0.2	0.29	3
23.02.	88	83	0.7	0.6	11.5	2.2	1.3	0.3	0.25	1
24.02.	92	85	0.8	0.6	6.0	2.4	1.0	0.3	0.24	2
25.02.	89	87	1.0	0.6	9.4	4.0	2.7	0.4	0.28	5
26.02.	86	85	0.6	0.5	8.4	4.7	0.9	0.2	0.32	3
27.02.	95	90	1.1	0.6	7.2	3.0	0.8	0.2	0.26	3
28.02.	96	95	1.0	0.7	4.6	3.4	0.3	0.2	0.26	5
Max.	107	102	5.2	3.2	37.8	13.6	6.2	1.1	0.54	22


v: Verfügbarkeit nicht ausreichend


9.8 Zöbelboden – Februar 2010


Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³	CH₄ TMW ppm
1.02.	84	82	٧	٧	10.0	6.3	0.6	0.2	5	1.9
2.02.	83	83	V	٧	7.9	5.7	2.6	0.2	3	1.9
3.02.	89	88	0.6	٧	9.7	5.4	0.2	0.1	<0.1	1.9
4.02.	82	81	0.2	0.1	4.7	2.8	0.6	0.2	1	1.9
5.02.	86	84	0.2	0.1	9.0	5.0	1.6	0.3	6	1.9
6.02.	74	80	9.4	1.8	25.7	17.3	3.9	1.0	16	2.0
7.02.	86	78	12.8	7.9	16.2	10.2	1.1	0.2	28	1.9
8.02.	72	70	6.7	2.9	8.5	7.6	0.7	0.2	27	2.0
9.02.	69	70	1.9	1.0	13.9	9.6	1.3	0.4	9	1.9
10.02.	54	58	1.9	0.9	26.9	16.3	2.7	0.6	17	1.9
11.02.	49	48	2.7	1.5	28.9	20.5	2.7	0.7	28	1.9
12.02.	51	46	8.1	5.0	46.5	30.8	5.5	1.3	47	1.9
13.02.	80	78	9.0	6.0	36.7	24.2	2.8	0.7	46	1.9
14.02.	82	82	3.3	1.9	16.1	11.9	0.4	0.1	32	1.9
15.02.	83	82	1.2	8.0	15.6	10.6	0.4	0.2	24	1.9
16.02.	97	94	0.6	0.4	11.9	8.1	0.6	0.2	10	1.9
17.02.	96	96	0.5	0.3	13.2	7.6	1.7	0.3	9	1.9
18.02.	93	93	1.0	0.3	14.1	6.9	2.4	0.4	7	2.0
19.02.	93	92	2.3	0.3	31.9	8.2	0.3	0.1	6	2.0
20.02.	82	80	1.7	0.9	34.5	9.1	0.7	0.2	7	2.0
21.02.	95	94	0.7	0.1	8.0	4.5	0.3	0.1	4	2.0
22.02.	94	93	0.3	0.1	5.6	3.2	0.3	0.1	2	1.9
23.02.	101	100	0.4	0.2	6.7	3.8	1.2	0.2	2	1.9
24.02.	97	99	0.8	0.3	10.3	5.0	1.3	0.2	6	2.0
25.02.	90	91	0.3	0.1	4.1	3.0	0.3	0.1	3	1.9
26.02.	93	90	<0.1	<0.1	4.6	3.1	0.2	0.1	2	1.9
27.02.	97	95	0.1	<0.1	4.2	2.4	0.3	0.1	4	2.0
28.02.	98	93	1.6	0.2	10.8	3.0	0.2	0.1	1	1.9
Max.	101	100	12.8	7.9	46.5	30.8	5.5	1.3	47	2.0

v: Verfügbarkeit nicht ausreichend

10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Umweltbundesamt GmbH

Spittelauer Lände 5 1090 Wien/Österreich

Tel.: +43-(o)1-313 04 Fax: +43-(o)1-313 04/5400

office@umweltbundesamt.at www.umweltbundesamt.at

