

MONATSBERICHT HINTERGRUNDMESSNETZ UMWELTBUNDESAMT

Juli 2010

REPORT REP-0276

Wien, 2010

Umschlagfoto © Luftmessstelle Klöch (B. Gröger) Weitere Informationen zu Publikationen des Umweltbundesamt unter: http://www.umweltbundesamt.at/ **Impressum** Medieninhaber und Herausgeber: Umweltbundesamt GmbH Spittelauer Lände 5, 1090 Wien/Österreich Eigenvervielfältigung Diese Publikation erscheint ausschließlich in elektronischer Form auf http://www.umweltbundesamt.at/. © Umweltbundesamt GmbH, Wien, 2010

Projektleitung

Wolfgang Spangl

Alle Rechte vorbehalten ISBN 978-3-99004-077-5

INHALT

1	EINLEITUNG	5
2	ABKÜRZUNGEN	6
3	DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS	8
4	GRENZWERTE	11
5	WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	13
6	VERFÜGBARKEIT – JULI 2010	14
7	MONATSMITTELWERTE – JULI 2010	15
8	ÜBERSCHREITUNGEN	16
9	TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	17
10	GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	25

1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/1997 i. d. g. F.) und gemäß Ozongesetz (BGBI. 210/1992 idgF) in Österreich derzeit insgesamt 7 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 500/2006) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM10 und PM2,5 Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von Blei, Benzol, der im Rahmen des EMEP-Messprogramms¹ zusätzlich erfassten Luftschadstoffe sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamtes (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamtes bilden das österreichische Hintergrundmessnetz. Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamtes der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen SO₂, NO_x und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM10 zu rechnen.

¹ EMEP – European Monitoring and Evaluation Programme

2 ABKÜRZUNGEN

Luftschadstoffe

SO ₂	Schwefeldioxid
PM10	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 % aufweist
PM2,5	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 % aufweist
PM1	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 1 µm eine Abscheidewirksamkeit von 50 % aufweist
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NOy	oxidierte Stickstoffverbindungen
СО	Kohlenstoffmonoxid
O ₃	Ozon
CO ₂	Kohlenstoffdioxid
CH ₄	Methan

Einheiten

mg/m ³	Milligramm pro Kubikmeter		
μg/m³	Mikrogramm pro Kubikmeter		
ppb	parts per billion		
ppm	parts per million		

 $^{1 \}text{ mg/m}^3 = 1000 \mu\text{g/m}^3$

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in $\mu g/m^3$ bzw. mg/m³ bei 1013 hPa und 20 °C (Normbedingungen).

SO ₂	1 μ g/m ³ = 0,37528 ppb	1 ppb = $2,6647 \mu g/m^3$
NO	1 μ g/m ³ = 0,80186 ppb	1 ppb = 1,2471 μg/m ³
NO ₂	1 μ g/m ³ = 0,52293 ppb	1 ppb = 1,9123 μg/m ³
СО	$1 \text{ mg/m}^3 = 0.85911 \text{ ppm}$	1 ppm = $1,1640 \text{ mg/m}^3$
O ₃	1 μ g/m ³ = 0,50115 ppb	1 ppb =1,9954 μg/m ³

¹ ppm = 1000 ppb

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75 %
JMW	Jahresmittelwert	75 % im Sommer und im Winter
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode

3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTS

3.1 Ausstattung der Messstellen

Messstelle	O ₃	SO ₂	NO ₂ , NO	СО	PM10	PM2,5	PM1
Enzenkirchen	APOA-360E	TEI 43CTL	TEI 42i		DHA80, Gravimetrie		
Illmitz	APOA-360E	TEI 43CTL	TEI 42i	APMA- 360CE	DHA80, Gravimetrie	DHA80, Gravimetrie	DHA80, Gravimetrie
Klöch			TEI 42C		DHA80, Gravimetrie		
Pillersdorf	TEI 49	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		
Ried im Zillertal	API 400E		API 200EU		DHA80, Gravimetrie		
Sonnblick	TEI 49C		TEI 42CTL	APMA- 360CE ²			
Vorhegg	API 400E	TEI 43CTL	TEI 42CTL	APMA- 360CE	DHA80, Gravimetrie		
Zöbelboden	APOA-360E	TEI 43CTL	TEI 42CTL		DHA80, Gravimetrie		

Die **CO₂-Messung** auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs URAS-14 (Hartmann&Braun).

Die Messung der Konzentration des Treibhausgases **CH**₄ (Methan) erfolgt mit einem Gerät der Type TEI 55C.

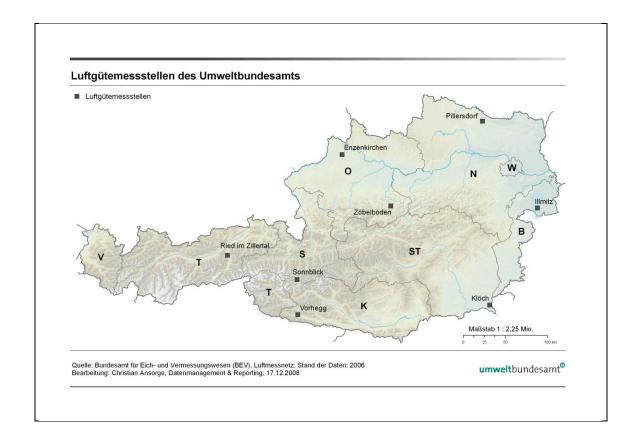
In Illmitz werden im Rahmen des **EMEP-Messprogramms** weiters partikuläres Sulfat, Nitrat und Ammonium sowie Salpetersäure und Ammoniak gemessen, in Illmitz, Vorhegg und Zöbelboden die nasse Deposition und deren Inhaltsstoffe. Die Ergebnisse dieser Messungen sowie den Messungen von Benzol und Blei im PM10 sind im Jahresbericht der Luftgütemessungen des Umweltbundesamtes zu finden (http://www.umweltbundesamt.at/jahresberichte/).

In Enzenkirchen, Illmitz, Klöch und Pillersdorf, wird zusätzlich zur gravimetrischen PM10-Messung (gemäß EN 12341) die **PM10-Konzentration** mittels β -Absorption kontinuierlich gemessen, in Ried im Zillertal mittels TEOM-FDMS; diese Messung dient u. a. dem Methodenvergleich.

An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxid und Ozon sowie der meteorologischen Größen Windrichtung und -geschwindigkeit, Lufttemperatur und Globalstrahlung durch.

-

² erfolgt im Rahmen des GAW-Messprogramms der WMO


Meteorologische Messungen

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.

In Enzenkirchen, Illmitz, Pillersdorf, Ried im Zillertal und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/.

3.2 Angaben zu den Messgeräten

	Nachweisgrenze	Messprinzipien
SO ₂		
TEI 43CTL	0,13 μg/m³ (0,05 ppb)	UV-Fluoreszenz
PM10, PM2,5, I	PM1	
DHA80, Gravimetrie	< 0,1 μg/m³	Gravimetrie: Probenahme mittels Digitel High-Volume- Sampler DHA80 mit PM10- (bzw. PM2,5- und PM1-) Kopf (Tagesproben, Durchfluss 720 m³/d) und gravi- metrische Massenbestimmung gemäß EN 12341
NO + NO ₂		
TEI 42CTL	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42C	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42i	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
API 200EU	NO: 0,05 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO _x : 0,1 μg/m³ (0,05 ppb)	Differenz von NO _x und NO bestimmt.
СО		
APMA-360CE	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
O ₃		
APOA-360E	0,8 μg/m³ (0,4 ppb)	Ultraviolett-Absorption
TEI 49	4 μg/m³ (2 ppb)	Ultraviolett-Absorption
API 400E	1,2 μg/m³ (0,6 ppb)	Ultraviolett-Absorption
CO ₂		
URAS-14	3	Infrarot-Absorption
CH ₄		
TEI 55C	0,1 ppm	Flammenionisationsdetektor

Die kleinste angegebene Konzentration ist für NO_2 (Horiba), O_3 , PM10, PM2,5 und PM1 1 μ g/m³, für SO_2 und NO_2 (TEI 42CTL) 0,1 μ g/m³, für CO 0,10 μ g/m³.

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in $\mu g/m^3$ mit < 1 angegeben.

³ Empfindlichkeit 0,1 ppm, Messbereich 340 bis 440 ppm.

4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamtes kontinuierlich erfassten Schadstoffe angegeben.

Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 34/2006

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

SO ₂	120 μg/m ³	Tagesmittelwert	
SO ₂	200 μg/m ³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu $350~\mu g/m^3$ gelten nicht als Überschreitung	
PM10	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr ist die folgende Zahl von Überschreitungen zulässig: von 2005 bis 2009: 30, ab 2010: 25	
PM10	40 μg/m ³	Jahresmittelwert	
СО	10 mg/m ³	Gleitender Achtstundenmittelwert	
NO ₂	200 μg/m ³	Halbstundenmittelwert	
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge beträgt 30 μ g/m³ bei Inkrafttreten des Gesetzes und wird am 1.1. jedes Jahres bis 1.1. 2005 um 5 μ g/m³ verringert. Die Toleranzmarge von 10 μ g/m³ gilt gleich bleibend vom 1.1. 2005 bis 31.12.2009. Die Toleranzmarge von 5 μ g/m³ gilt gleich bleibend vom 1.1. 2010 bis 31.12.2011	
Blei im PM10	0,5 μg/m ³	Jahresmittelwert	
Benzol	5 μg/m ³	Jahresmittelwert	

Alarmwerte gemäß Anlage 4.

SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert	
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert	

Zielwerte gemäß Anlage 5.

PM10	50 μg/m ³	TMW, sieben Überschreitungen im Kalenderjahr erlaubt
PM10	20 μg/m ³	JMW
NO ₂	80 μg/m ³	TMW

Zielwerte gemäß Anlage 5b.

Benzo(a)pyren	1 ng/m ³	JMW
Arsen im PM10	6 ng/m ³	JMW
Cadmium im PM10	5 ng/m ³	JMW
Nickel im PM10	20 ng/m³	JMW

Ozongesetz i.d.g.F. (BGBI. I 34/2006, Art. II)

Mit der Novelle zum Ozongesetz (BGBl. I 2003/34) wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

Informationsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle	240 μg/m³	Nicht gleitender Einstundenmittelwert

Zielwert für den Schutz der menschlichen Gesundheit gemäß Anlage 2 (einzuhalten ab 2010).

120 µg/m³	Höchster (nicht gleitender) Achtstun-	gemittelt über 3 Jahre sind Überschreitungen an
	denmittelwert des Tages	maximal 25 Tagen pro Jahr zugelassen

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

18.000 μg/m³.h	AOT40, berechnet aus den MW1 von Mai bis Juli	Mittelwert über 5 Jahre

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	20 μg/m ³	Jahresmittelwert und Wintermittelwert
NO _x ⁽⁴⁾	30 μg/m ³	Jahresmittelwert

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	50 μg/m ³	Tagesmittelwert
NO_2	80 μg/m ³	Tagesmittelwert

⁴ NO_x als Summe von NO und NO₂ in ppb gebildet und mit dem Faktor 1,9123 in μg/m³ umgerechnet

5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Juli 2010 zeichnete sich durch sehr warmes, aber auch wechselhaftes Wetter aus. Die Tempertur lag im nördlichen Teil Österreichs um ca. 2,5 °C über dem Mittelwert der Klimaperiode 1961–90, südlich des Alpenhauptkamms um bis zu über 3 °C darüber, im Westen nur um ca. 2 °C. Sehr ungleich verteilt waren die Niederschlagsmengen; während südlich des Alpenhauptkamms teilweise nur die Hälfte des durchschnittlichen Niederschlags fiel, waren die Gebiete nördlich des Alpenhauptkamms eher regenreich; im nördlichen Vorarlberg, im nördlichen Oberösterreich und im östlichen Niederösterreich wurde gebietsweise bis zum Doppelten der üblichen Niederschlagsmenge erreicht. Der Witterungsverlauf war von mehreren sehr warmen Perioden – bis 4.7., von 10. bis 17.7. sowie von 21. bis 23.7. – gekennzeichnet, die jeweils von einem markanten Kaltlufteinbruch beendet wurden, verbunden mit sehr intensiven Niederschlägen nördlich des Alpenhauptkamms.

Die hohen Temperaturen wirkten sich u. a. in deutlich überdurchschnittlichen Ozonkonzentrationen an allen Hintergrundmessstellen aus. Die Informationsschwelle wurde in Illmitz am 2.7. überschritten (maximaler Einstundenmittelwert 183 μ g/m³). An diesem Tag traten verbreitet in Nordostösterreich Ozonspitzenwerte über 180 μ g/m³ auf.

Bei SO₂ registrierten Enzenkirchen und Illmitz durchschnittliche, Pillersdorf und Zöbelboden etwas überdurchschnittliche Konzentrationen.

Deutlich über dem langjährigen Durchschnitt für Juli waren die NO₂-Konzentrationen, die in Enzenkirchen, Illmitz, Vorhegg und Klöch gemessen wurden; in Illmitz trat der höchste Monatsmittelwert im Juli seit Beginn der Messung 1999 auf, in Klöch seit Beginn der Messung 2006.

Demgegenüber lag die CO-Belastung in Illmitz deutlich unter dem langjährigen Mittel, Vorhegg und Sonnblick registrierten durchschnittliche CO-Konzentrationen.

Deutlich überdurchschnittlich war die PM10-Belastung in Enzenkirchen, Illmitz, Klöch, Vorhegg und Zöbelboden, wobei die Messstellen südlich des Alpenhauptkamms die höchsten Konzentrationen erreichten. In Vorhegg wurde der höchste Monatsmittelwert seit 2004, in Klöch der höchste Montsmittelwert seit Beginn der Messung 2007 beobachtet. Allerdings trat an keiner Messstelle ein Tagesmittelwert über 50 µg/m³ auf.

6 VERFÜGBARKEIT – JULI 2010

Verfügbarkeit der Halbstundenmittelwerte (bei PM10, PM2,5 und PM1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte.

	O ₃	SO ₂	NO ₂	NO	СО	PM10	PM2,5	PM1	CO ₂	CH₄	NO _y
Enzenkirchen	98	97	98	98		100					
Illmitz	97	97	83	83	97	84	100	100			
Klöch			98	98		97					
Pillersdorf	97	97	97	97		100					
Ried im Zillertal	98		98	98		100					
Sonnblick	67				98				4		54
Vorhegg	86	87	87	87	87	100					
Zöbelboden	96	96	96	96		97				80	

Die Verfügbarkeit soll gemäß §4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO₂, CO, NO₂ und O₃ mindestens 90% betragen.

Das NO_x -Gerät in Illmitz war von 16. bis 19.7. defekt, der PM10-Probenehmer fiel von 4. bis 7.7. wegen eines Defekts des Filterstandsanzeigers aus.

Das NO_y - und das Ozongerät auf dem Sonnblick fielen am 14.7. wegen eines Blitzschlags aus; das Ozongerät konnte am 23.7. getauscht werden.

Die CO₂-Messung auf dem Sonnblick ist seit 2.7. wegen des Tauschs eines Ventils unterbrochen.

Die Messstelle Vorhegg (außer PM10) war von 8. bis 12.7. wegen eines Stromausfalls nach einem Blitzschlag außer Betrieb.

7 MONATSMITTELWERTE – JULI 2010

	O ₃ µg/m³	SO ₂ µg/m³	NO ₂ µg/m³	NO μg/m³	CO mg/m³	PM10 µg/m³	PM2,5 µg/m³	PM1 µg/m³	CO ₂	CH₄ ppm	NO _y ppb
Enzenkirchen	91	1.0	6.6	0.6		17					
Illmitz	87	1.1	7.6	0.4	0.16	20	13	12			
Klöch			5.9	0.2		18					
Pillersdorf	92	1.5	4.9	0.4		19					
Ried im Zillertal	61		9.9	1.8		15					
Sonnblick	٧				0.16				V		٧
Vorhegg	95	0.3	3.0	0.2	0.18	13					
Zöbelboden	100	0.7	3.3	0.2		12				1.8	

v: Verfügbarkeit nicht ausreichend

8 ÜBERSCHREITUNGEN

Anzahl der Tage mit Überschreitungen im Juli 2010.

	O ₃ MW1 > 180 μg/m ³	O ₃ MW8 > 120 μg/m ³	PM10 TMW > 50 μg/m ³
Enzenkirchen	0	15	0
Illmitz	1	12	0
Klöch			0
Pillersdorf	0	14	0
Ried im Zillertal	0	6	0
Sonnblick	0	10	
Vorhegg	0	11	0
Zöbelboden	0	13	0

Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2010.

	$O_3 MW1 > 180 \mu g/m^3$	O ₃ MW8 > 120 µg/m ³	PM10 TMW > 50 μg/m ³
Enzenkirchen	0	25	17
Illmitz	1	20	24
Klöch			21
Pillersdorf	0	20	17
Ried im Zillertal	0	13	2
Sonnblick	0	52	
Vorhegg	0	33	2
Zöbelboden	0	31	0

9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

9.1 Enzenkirchen – Juli 2010

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	153	144	1.0	0.6	10.8	5.7	4.1	0.5	21
2.07.	158	152	3.8	0.8	15.5	6.9	1.1	0.4	24
3.07.	161	152	2.8	0.9	13.1	6.0	2.2	0.4	25
4.07.	150	139	2.1	8.0	9.4	6.8	7.8	0.6	31
5.07.	127	118	0.6	0.4	9.5	5.7	1.7	0.5	20
6.07.	109	99	1.3	0.7	11.3	6.1	4.8	8.0	15
7.07.	115	108	1.1	0.7	19.1	7.2	17.0	1.1	13
8.07.	128	121	7.4	2.2	16.3	7.9	2.8	0.7	16
9.07.	136	131	11.9	3.1	17.4	8.7	8.5	8.0	20
10.07.	133	120	9.2	2.6	15.4	7.2	1.4	0.4	17
11.07.	150	136	3.8	1.9	9.0	5.7	0.7	0.3	19
12.07.	146	137	6.2	1.6	21.5	7.7	2.7	0.4	21
13.07.	131	125	1.3	0.6	29.7	6.7	15.3	1.0	14
14.07.	155	145	9.2	2.1	17.5	7.7	2.0	0.4	19
15.07.	132	133	1.1	0.5	14.1	7.6	5.4	0.7	19
16.07.	152	146	5.0	0.9	11.6	6.9	1.8	0.5	23
17.07.	130	127	1.0	0.5	12.7	5.9	1.2	0.3	16
18.07.	83	88	0.9	0.4	10.4	6.5	2.2	0.5	13
19.07.	89	86	6.8	1.3	8.9	4.8	2.6	0.4	13
20.07.	119	105	4.4	1.2	16.4	5.5	1.2	0.5	17
21.07.	160	145	3.3	0.9	9.8	5.2	2.2	0.5	20
22.07.	163	148	7.5	1.7	17.3	7.5	2.9	0.6	21
23.07.	90	119	0.8	0.4	9.6	7.1	3.0	0.6	12
24.07.	62	65	0.6	0.3	8.9	6.7	0.8	0.3	8
25.07.	99	95	0.8	0.5	12.9	4.9	4.3	0.6	14
26.07.	110	97	1.8	8.0	11.7	7.0	4.4	8.0	19
27.07.	90	88	1.8	0.5	22.2	6.5	35.5	1.3	11
28.07.	93	85	1.3	0.6	16.0	8.4	3.5	8.0	16
29.07.	79	74	1.1	0.5	10.2	6.1	6.7	0.9	11
30.07.	67	56	0.7	0.4	11.6	7.1	7.6	1.1	16
31.07.	102	95	2.4	0.8	10.1	5.5	2.5	0.7	12
Max.	163	152	11.9	3.1	29.7	8.7	35.5	1.3	31

v: Verfügbarkeit nicht ausreichend

9.2 Illmitz – Juli 2010

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	TMW	PM2,5 TMW µg/m³	FPM1 TMW pg/m³
1.07.	169	164	2.6	1.3	18.4	8.7	2.0	0.4	0.22	25	19	17
2.07.	183	172	5.9	2.7	14.8	9.4	1.2	0.3	0.22	31	22	21
3.07.	173	158	4.0	2.0	12.1	7.8	0.9	0.2	0.21	26	20	18
4.07.	139	135	10.1	3.4	14.5	9.0	0.5	0.2	0.19	V	14	13
5.07.	135	129	2.7	1.2	18.8	9.5	1.0	0.3	0.21	V	16	14
6.07.	113	107	1.0	0.5	11.7	7.4	0.5	0.2	0.20	V	9	7
7.07.	108	102	3.3	1.3	16.3	9.6	1.9	0.4	0.15	V	7	6
8.07.	130	120	4.5	1.8	15.6	9.2	1.1	0.3	0.16	V	10	8
9.07.	142	135	11.9	2.3	12.6	8.2	1.1	0.3	0.16	20	14	13
10.07.	177	163	17.1	3.7	31.5	10.2	2.6	0.5	0.21	27	19	18
11.07.	147	136	2.5	1.1	30.1	9.1	5.4	0.6	0.21	24	17	15
12.07.	112	105	1.1	0.5	19.8	8.8	5.1	1.0	0.18	27	18	16
13.07.	132	124	8.0	0.4	33.7	7.2	1.7	0.5	0.16	25	15	11
14.07.	141	128	4.0	1.4	13.7	7.7	1.2	0.5	0.17	29	17	15
15.07.	153	88	1.9	٧	22.7	9.1	1.6	0.7	0.22	35	23	20
16.07.	97	87	1.4	0.2	10.5	٧	1.8	٧	0.26	22	15	12
17.07.	115	89	1.1	0.3	٧	٧	٧	٧	0.18	29	21	18
18.07.	98	93	0.7	0.3	٧	٧	٧	٧	0.16	10	6	5
19.07.	89	82	0.9	0.7	11.2	٧	0.4	٧	0.14	14	9	8
20.07.	102	90	2.5	1.4	11.9	٧	2.4	٧	0.18	23	16	14
21.07.	129	115	0.7	0.4	11.9	٧	1.0	٧	0.17	24	18	14
22.07.	142	133	1.1	0.5	12.3	6.3	3.8	0.3	0.19	27	19	16
23.07.	159	144	0.7	0.4	12.2	5.3	1.5	0.3	0.17	18	13	12
24.07.	95	114	0.3	0.2	5.9	3.4	0.7	0.2	0.15	8	5	4
25.07.	91	87	1.6	0.7	9.0	5.0	0.5	0.1	0.14	12	6	5
26.07.	82	73	2.0	0.9	21.3	9.9	1.8	0.5	0.16	11	7	7
27.07.	113	106	4.7	1.2	18.2	8.5	2.7	0.7	0.20	14	9	7
28.07.	114	111	1.0	0.5	8.4	5.5	0.5	0.3	0.16	11	8	6
29.07.	110	99	1.0	0.4	5.8	4.5	1.1	0.3	0.15	7	7	4
30.07.	87	81	0.5	0.3	9.2	6.5	1.8	0.3	0.15	7	5	4
31.07.	104	99	1.5	8.0	10.2	6.3	1.0	0.4	0.16	14	11	9
Max.	183	172	17.1	3.7	33.7	10.2	5.4	1.0	0.26	35	23	21

v: Verfügbarkeit nicht ausreichend

9.3 Klöch - Juli 2010

Datum	NO ₂ Max. HMW μg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	16.3	6.2	17.3	0.7	25
2.07.	18.8	5.6	3.0	0.3	27
3.07.	6.8	4.2	0.4	0.1	25
4.07.	6.6	4.5	0.3	0.1	23
5.07.	11.1	6.4	1.1	0.3	14
6.07.	9.0	5.5	0.5	0.2	12
7.07.	11.6	4.8	3.5	0.3	12
8.07.	8.5	5.6	0.8	0.2	16
9.07.	7.7	5.5	0.4	0.1	19
10.07.	7.3	5.1	0.4	0.1	22
11.07.	10.1	4.8	1.0	0.1	25
12.07.	11.4	6.2	0.6	0.2	27
13.07.	10.5	6.4	1.0	0.2	26
14.07.	12.9	6.6	3.7	0.4	25
15.07.	10.9	6.3	2.4	0.3	34
16.07.	11.2	4.8	1.6	0.3	23
17.07.	6.9	4.6	0.6	0.2	31
18.07.	5.6	3.4	0.3	0.1	8
19.07.	7.7	5.0	2.7	0.3	V
20.07.	11.5	6.3	1.3	0.3	29
21.07.	11.7	6.4	2.1	0.3	26
22.07.	14.5	7.1	1.7	0.2	15
23.07.	9.5	6.2	0.4	0.1	5
24.07.	10.8	6.2	0.9	0.2	7
25.07.	9.8	5.3	0.9	0.1	1
26.07.	9.6	6.5	0.6	0.2	9
27.07.	17.2	8.0	1.4	0.3	10
28.07.	14.2	7.5	7.2	0.5	8
29.07.	12.5	7.0	0.9	0.2	10
30.07.	10.2	7.4	0.8	0.2	5
31.07.	10.0	7.1	1.3	0.3	11
Max.	18.8	8.0	17.3	0.7	34

v: Verfügbarkeit nicht ausreichend

9.4 Pillersdorf - Juli 2010

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	151	145	3.9	1.8	12.1	6.1	1.0	0.4	24
2.07.	143	139	3.2	1.8	8.1	5.2	1.1	0.4	26
3.07.	149	143	3.5	2.2	8.9	4.9	0.7	0.3	29
4.07.	128	125	4.0	2.4	6.8	4.4	0.9	0.3	18
5.07.	118	107	3.5	1.4	5.7	4.4	0.5	0.3	18
6.07.	96	100	1.2	0.6	4.7	3.9	0.4	0.3	14
7.07.	104	98	2.7	1.2	6.0	4.4	0.9	0.4	15
8.07.	125	119	4.0	2.1	15.1	٧	0.7	V	15
9.07.	135	130	5.4	2.7	9.2	5.3	1.1	0.4	19
10.07.	150	143	13.1	5.6	9.4	5.5	0.9	0.3	22
11.07.	138	134	6.1	3.9	7.1	4.7	0.7	0.3	23
12.07.	150	137	10.7	3.2	9.8	5.4	1.1	0.4	25
13.07.	130	126	4.1	1.2	8.6	4.6	0.6	0.3	20
14.07.	145	140	6.2	1.9	11.2	5.6	2.2	0.5	21
15.07.	156	147	2.9	1.3	8.8	5.4	0.7	0.4	24
16.07.	174	151	2.3	1.1	11.5	6.7	2.4	0.7	27
17.07.	131	117	3.5	1.3	13.7	7.7	1.9	0.7	30
18.07.	91	90	0.8	0.4	4.7	3.2	0.5	0.2	10
19.07.	85	80	1.1	0.5	10.1	4.7	0.6	0.3	12
20.07.	132	111	6.2	2.0	10.9	6.2	1.4	0.5	21
21.07.	146	135	2.6	1.4	13.2	7.6	2.6	0.6	27
22.07.	162	149	5.4	2.1	18.5	8.0	1.7	0.5	35
23.07.	122	117	1.9	0.5	18.2	4.9	0.6	0.3	17
24.07.	88	89	1.3	0.3	4.6	2.8	0.4	0.2	8
25.07.	84	81	2.5	0.9	4.6	3.3	0.4	0.2	13
26.07.	76	70	4.1	1.2	5.5	4.0	0.6	0.3	12
27.07.	110	102	2.6	8.0	4.9	3.8	0.7	0.3	15
28.07.	99	94	2.5	0.7	5.0	3.6	0.5	0.3	11
29.07.	93	84	0.6	0.3	7.3	4.3	1.4	0.4	8
30.07.	77	68	1.2	0.4	4.7	3.8	0.8	0.4	12
31.07.	88	85	3.4	0.9	4.9	3.3	0.9	0.3	15
Max.	174	151	13.1	5.6	18.5	8.0	2.6	0.7	35

v: Verfügbarkeit nicht ausreichend

9.5 Ried im Zillertal - Juli 2010

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³
1.07.	154	146	27.5	10.2	12.0	2.0	21
2.07.	161	151	28.4	10.4	12.6	1.9	25
3.07.	157	153	25.5	9.0	7.8	1.1	24
4.07.	138	131	32.5	12.5	3.5	1.0	21
5.07.	108	86	31.5	12.6	6.7	1.2	16
6.07.	77	64	19.2	9.3	5.1	1.0	12
7.07.	106	98	22.3	9.3	9.5	1.8	16
8.07.	110	98	20.2	11.0	31.1	2.7	17
9.07.	126	119	29.3	11.8	28.8	3.1	21
10.07.	141	129	24.2	10.3	13.0	1.4	21
11.07.	118	108	31.3	8.9	12.6	1.2	25
12.07.	116	101	23.2	8.5	18.5	2.0	22
13.07.	117	105	18.6	7.4	4.9	1.1	12
14.07.	117	93	22.2	10.4	17.6	2.3	17
15.07.	126	119	38.5	12.6	5.0	1.1	20
16.07.	127	125	36.5	11.1	18.2	2.2	25
17.07.	128	114	29.1	10.8	1.2	0.7	15
18.07.	61	77	22.1	9.2	4.4	1.1	9
19.07.	86	76	18.9	9.0	17.5	2.9	13
20.07.	107	99	19.8	9.9	36.4	3.8	17
21.07.	124	116	24.5	10.3	38.3	3.5	17
22.07.	128	119	20.4	9.6	12.4	2.3	18
23.07.	112	118	27.1	11.6	4.5	1.0	6
24.07.	59	54	17.2	8.9	3.2	0.9	4
25.07.	72	65	22.0	6.2	6.5	1.0	6
26.07.	94	84	22.7	7.8	4.8	1.1	9
27.07.	75	65	24.4	11.2	11.5	1.7	7
28.07.	75	56	26.7	11.6	19.3	3.0	9
29.07.	61	50	16.7	9.2	16.3	2.5	5
30.07.	65	56	21.0	9.4	8.2	1.9	6
31.07.	87	78	11.2	5.3	20.2	2.2	6
Max.	161	153	38.5	12.6	38.3	3.8	25

v: Verfügbarkeit nicht ausreichend

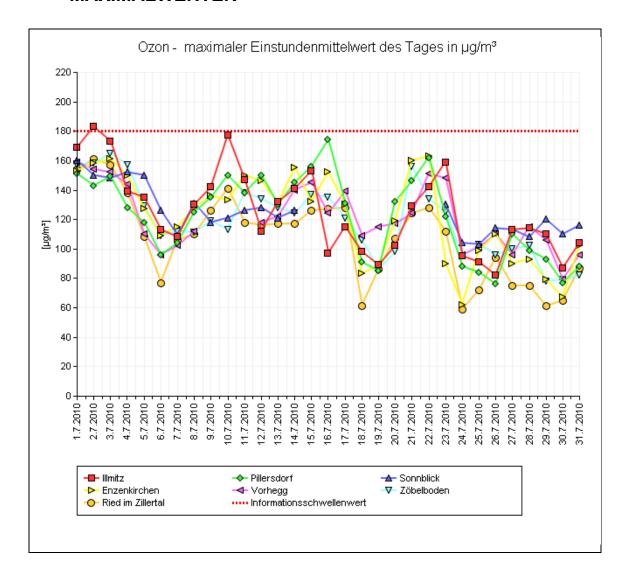
9.6 Sonnblick - Juli 2010

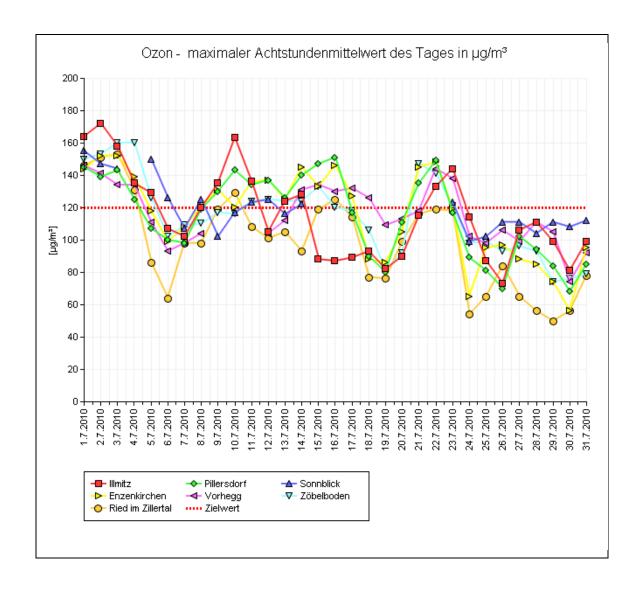
Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	CO Max. MW8g mg/m³	CO₂ TMW ppm	NO _y Max. HMW ppb	NO _y TMW ppb
1.07.	160	155	0.19	383	V	V
2.07.	150	147	0.19	V	V	V
3.07.	148	144	0.20	V	V	٧
4.07.	152	V	0.20	V	V	٧
5.07.	150	150	0.19	V	V	٧
6.07.	126	126	0.18	V	V	٧
7.07.	109	107	0.17	V	V	٧
8.07.	131	125	0.16	V	V	٧
9.07.	118	102	0.14	V	V	V
10.07.	121	117	0.16	V	V	V
11.07.	126	123	0.16	V	V	V
12.07.	128	125	0.16	V	V	V
13.07.	121	116	0.14	V	V	٧
14.07.	126	122	0.17	V	1.92	٧
15.07.	V	V	0.18	V	1.92	1.68
16.07.	٧	V	0.18	V	1.64	٧
17.07.	٧	V	0.19	٧	1.53	1.14
18.07.	٧	V	0.18	٧	1.18	0.88
19.07.	٧	V	0.17	V	1.76	1.29
20.07.	٧	V	0.16	٧	1.76	1.57
21.07.	٧	V	0.17	٧	1.62	1.26
22.07.	٧	V	0.18	V	2.05	1.51
23.07.	130	123	0.18	V	2.00	1.62
24.07.	104	99	0.17	V	0.92	0.73
25.07.	103	102	0.17	V	0.87	0.74
26.07.	114	111	0.17	V	1.26	0.89
27.07.	113	111	0.17	V	1.45	0.88
28.07.	108	104	0.17	V	1.36	1.02
29.07.	120	111	0.15	V	1.57	0.67
30.07.	110	108	0.17	V	0.97	0.69
31.07.	116	112	0.17	V	1.04	0.62
Max.	160	155	0.20	383	2.05	1.68

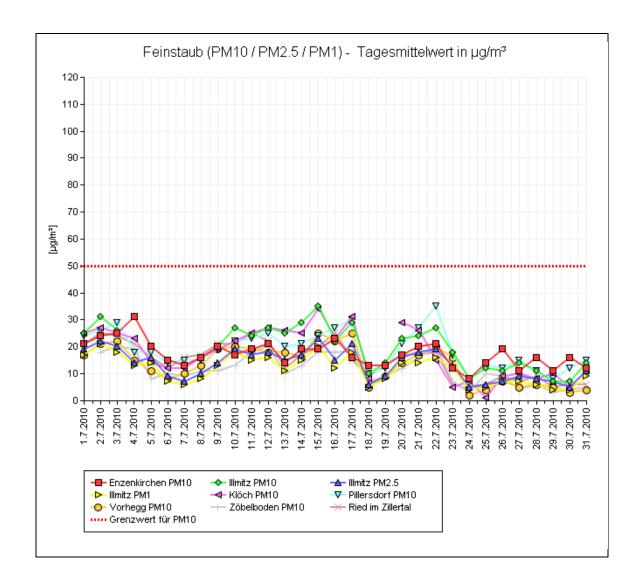
v: Verfügbarkeit nicht ausreichend

9.7 Vorhegg – Juli 2010

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³		SO₂ TMW µg/m³		NO ₂ TMW µg/m³		NO TMW µg/m³	CO Max. MW8g mg/m³	PM10 TMW µg/m³
1.07.	159	146	0.8	0.3	5.0	3.4	0.6	0.2	0.20	17
2.07.	154	141	0.5	0.3	5.8	3.6	0.7	0.2	0.22	21
3.07.	152	134	0.5	0.3	4.3	3.1	0.5	0.2	0.22	22
4.07.	144	134	0.4	0.3	4.1	2.8	0.4	0.2	0.21	15
5.07.	110	111	0.6	0.3	6.6	3.6	1.3	0.3	0.20	11
6.07.	96	93	0.3	0.2	4.8	2.9	0.9	0.2	0.20	8
7.07.	102	98	0.5	0.3	5.2	2.9	0.8	0.3	0.19	10
8.07.	112	104	0.7	0.4	6.8	3.3	1.7	0.3	0.19	13
9.07.	٧	٧	٧	٧	٧	٧	٧	٧	٧	19
10.07.	٧	٧	V	٧	V	٧	V	٧	٧	20
11.07.	٧	٧	٧	٧	٧	٧	٧	٧	٧	19
12.07.	118	104	0.5	٧	3.1	٧	0.4	٧	0.17	18
13.07.	122	112	0.6	0.3	4.7	2.7	0.6	0.2	0.19	18
14.07.	140	131	0.5	0.3	3.8	2.6	0.5	0.2	0.21	16
15.07.	145	134	0.7	0.4	3.9	2.9	0.4	0.2	0.21	25
16.07.	124	130	0.7	0.5	5.7	3.0	0.6	0.2	0.21	22
17.07.	139	132	1.1	0.7	3.7	2.6	0.3	0.2	0.22	25
18.07.	109	126	0.4	0.2	3.6	2.2	0.4	0.2	0.20	5
19.07.	115	109	0.5	0.3	5.7	3.0	1.0	0.3	0.18	9
20.07.	117	113	0.8	0.4	8.3	4.3	2.5	0.4	0.18	14
21.07.	124	118	0.7	0.4	7.7	3.5	7.4	0.6	0.19	17
22.07.	151	144	0.6	0.3	7.3	3.4	3.1	0.3	0.21	20
23.07.	148	138	0.6	0.4	4.3	3.2	0.4	0.2	0.21	16
24.07.	96	102	0.3	0.2	4.3	2.2	0.9	0.2	0.18	2
25.07.	101	98	0.3	0.2	2.4	2.0	0.3	0.2	0.17	4
26.07.	110	106	0.5	0.3	4.8	2.7	0.5	0.2	0.17	7
27.07.	96	99	0.4	0.3	6.4	2.8	1.5	0.2	0.17	5
28.07.	115	111	0.8	0.4	6.0	2.9	1.4	0.2	0.18	6
29.07.	106	105	0.5	0.3	5.1	3.1	0.9	0.2	0.18	5
30.07.	79	74	0.3	0.2	4.8	2.9	0.6	0.3	0.17	3
31.07.	96	92	0.4	0.3	3.7	2.3	0.7	0.3	0.17	4
Max.	159	146	1.1	0.7	8.3	4.3	7.4	0.6	0.22	25


v: Verfügbarkeit nicht ausreichend


9.8 Zöbelboden – Juli 2010


Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM10 TMW µg/m³	TMW
1.07.	157	150	1.2	٧	4.9	٧	0.2	٧	٧	٧
2.07.	158	153	0.8	0.6	4.2	3.5	0.2	0.2	18	1.8
3.07.	165	160	1.9	1.1	4.4	3.5	0.2	0.2	20	1.8
4.07.	157	160	1.4	8.0	5.3	4.3	0.3	0.2	19	1.8
5.07.	129	126	0.5	0.4	4.1	3.0	0.2	0.2	8	1.8
6.07.	109	102	1.8	8.0	5.5	4.3	0.5	0.2	10	1.8
7.07.	112	109	1.3	0.7	4.7	3.8	0.3	0.2	9	1.8
8.07.	111	110	0.8	0.7	4.1	3.3	0.2	0.2	11	1.8
9.07.	119	117	1.0	8.0	3.5	2.8	0.2	0.2	11	1.8
10.07.	113	116	1.3	1.0	3.3	2.7	0.2	0.2	13	1.7
11.07.	138	124	2.2	1.4	4.3	3.2	0.2	0.2	18	1.8
12.07.	134	125	1.8	1.2	4.2	3.4	0.2	0.2	20	1.8
13.07.	128	124	0.9	0.6	5.5	3.0	0.2	0.2	10	1.7
14.07.	124	124	0.8	0.6	3.8	2.8	0.4	0.2	13	1.7
15.07.	137	133	2.1	1.0	8.5	4.8	0.6	0.2	18	1.8
16.07.	135	120	0.8	0.5	4.6	3.3	0.5	0.2	18	V
17.07.	121	118	1.1	0.6	7.0	4.0	0.4	0.2	18	V
18.07.	106	106	0.8	0.5	3.8	2.9	0.4	0.2	7	V
19.07.	86	81	0.8	0.6	3.8	3.0	0.3	0.2	9	V
20.07.	98	92	1.2	0.6	5.3	3.1	0.4	0.2	12	V
21.07.	156	147	2.0	1.0	4.1	3.3	0.4	0.2	16	V
22.07.	134	141	1.3	1.0	7.3	3.4	0.3	0.2	20	1.8
23.07.	125	121	0.8	0.6	4.4	3.4	0.3	0.2	7	1.7
24.07.	95	98	0.6	0.5	4.1	3.0	0.4	0.2	3	1.7
25.07.	103	99	1.1	8.0	5.0	4.1	0.4	0.2	10	1.8
26.07.	96	93	1.5	1.0	4.8	3.8	0.4	0.2	9	1.7
27.07.	100	96	1.1	0.7	4.0	3.3	0.4	0.2	4	1.8
28.07.	102	93	0.9	0.7	4.8	3.6	0.4	0.2	6	1.7
29.07.	78	74	0.6	0.5	3.1	2.1	0.4	0.2	3	1.7
30.07.	79	76	0.6	0.5	4.4	3.3	0.5	0.2	4	1.8
31.07.	82	79	1.1	0.6	2.6	2.1	0.3	0.2	5	1.8
Max.	165	160	2.2	1.4	8.5	4.8	0.6	0.2	20	1.8

v: Verfügbarkeit nicht ausreichend

10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Umweltbundesamt GmbH

Spittelauer Lände 5 1090 Wien/Österreich

Tel.: +43-(o)1-313 04 Fax: +43-(o)1-313 04/5400

office@umweltbundesamt.at www.umweltbundesamt.at

