

MONATSBERICHT HINTERGRUNDMESSNETZ UMWELTBUNDESAMT

April 2014

REPORT REP-0460

Wien 2014

INHALT

1	EINLEITUNG	5
2	ABKÜRZUNGEN	6
3	DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTES	8
4	GRENZWERTE	11
5	WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	13
6	VERFÜGBARKEIT – APRIL 2014	14
7	MONATSMITTELWERTE – APRIL 2014	15
8	ÜBERSCHREITUNGEN	16
9	TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	17
10	GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	24

1 EINLEITUNG

Das Umweltbundesamt betreibt gemäß Immissionsschutzgesetz Luft (IG-L, BGBI. I 115/1997 i.d.g.F.) und gemäß Ozongesetz (BGBI. 210/1992 i.d.g.F.) in Österreich insgesamt 7 Luftgütemessstellen.

In der Messkonzept-Verordnung zum Immissionsschutzgesetz Luft (BGBI. II 500/2006) ist festgelegt, dass alle Messnetzbetreiber und somit auch das Umweltbundesamt längstens drei Monate nach Ende eines Monats einen Monatsbericht zu veröffentlichen haben. Dieser Bericht enthält für die kontinuierlich gemessenen Luftschadstoffe sowie für PM₁₀, PM_{2,5}, PM₁ und die Partikelanzahl Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenzwerten und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (dritte von vier Kontrollstufen) erstellt.

Die Messdaten werden nach den mehrmals jährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von aromatischen Kohlenwasserstoffen, PM_{2,5}-Inhaltsstoffen, polyzyklischen aromatischen Kohlenwasserstoffen und Schwermetallen sowie der meteorologischen Messungen im Jahresbericht publiziert. Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Homepage des Umweltbundesamtes (http://www.umweltbundesamt.at) abrufbar.

Die Messstellen des Umweltbundesamtes bilden das österreichische Hintergrundmessnetz. Ziel der Messungen ist vor allem die Erhebung der großräumigen Hintergrundbelastung. Dadurch sollen Grundlagen geschaffen werden, um über

- die großflächige Hintergrundbelastung und deren Trend
- den Ferntransport von Luftschadstoffen

Aussagen treffen zu können. Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung von großräumigem Schadstofftransport dient (EMEP-Messprogramm).

Darüber hinaus dienen die Hintergrundmessstellen des Umweltbundesamtes der Überwachung der Einhaltung von Grenzwerten und Zielwerten zum Schutz von Ökosystemen und der Vegetation.

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten liegen. Dies bedeutet, dass die auftretenden Schadstoffkonzentrationen im Normalfall unter der Belastung liegen, welche üblicherweise in städtischen Gebieten gemessen wird. Dies hat zur Folge, dass vor allem bei den Schadstoffen SO_2 , NO_x und CO an die Messtechnik besonders hohe Anforderungen gestellt werden. Mit Überschreitungen von Grenzwerten und Zielwerten ist in der Regel nur bei den Komponenten Ozon und PM_{10} zu rechnen.

2 ABKÜRZUNGEN

Luftschadstoffe

SO ₂	Schwefeldioxid
PM ₁₀	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 µm eine Abscheidewirksamkeit von 50 % aufweist
PM _{2,5}	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 µm eine Abscheidewirksamkeit von 50 % aufweist
PM ₁	Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 1 µm eine Abscheidewirksamkeit von 50 % aufweist
NO	Stickstoffmonoxid
NO ₂	Stickstoffdioxid
NO _y	oxidierte Stickstoffverbindungen
СО	Kohlenstoffmonoxid
O ₃	Ozon
CO ₂	Kohlenstoffdioxid
CH ₄	Methan

Einheiten

mg/m ³	Milligramm pro Kubikmeter		
μg/m³	Mikrogramm pro Kubikmeter		
ppb	parts per billion		
ppm	parts per million		

 $[\]frac{1}{1}$ mg/m³ = 1.000 µg/m³

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in $\mu g/m^3$ bzw. mg/m^3 bei 1.013 hPa und 20 °C (Normbedingungen).

SO ₂	1 μ g/m ³ = 0,37528 ppb	1 ppb = 2,6647 μg/m ³
NO	1 μ g/m ³ = 0,80186 ppb	1 ppb = 1,2471 μg/m ³
NO ₂	1 μ g/m ³ = 0,52293 ppb	1 ppb = 1,9123 μg/m ³
СО	1 mg/m ³ = 0,85911 ppm	1 ppm = 1,1640 mg/m ³
O ₃	1 μg/m ³ = 0,50115 ppb	1 ppb = 1,9954 μg/m ³

¹ ppm = 1.000 ppb

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M5866, April 2000)
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12
TMW	Tagesmittelwert	40
MMW	Monatsmittelwert	75 %
JMW	Jahresmittelwert	75 % im Sommer und im Winter
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode

3 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTES

3.1 Ausstattung der Messstellen

Messstelle	O ₃	SO ₂	NO ₂ , NO	со	PM ₁₀	PM _{2,5}	PM ₁	Partikel- zahl
Enzen-	TEI 49i	TEI 43i	TEI 42i		Grimm	Grimm		Grimm
kirchen					EDM 180	EDM		EDM
						180		180
Illmitz	API 400E	TEI 43i	API 200EU		DHA80,	DHA80,	DHA80,	
				360CE	Gravimetrie	Gravimetrie	Gravimetrie	
Klöch			TEI 42i		Sharp 5030			
Pillersdorf	TEI 49C	TEI 43i	API 200EU		Grimm	Grimm		Grimm
					EDM 180	EDM 180		EDM
								180
Sonnblick	TEI 49i		TEI 42CTL	APMA- 360CE ¹				
Vorhegg	API 400E	TEI 43CTI	_ TEI 42i	APMA- 370	Sharp 5030			
Zöbelboden	TEI 49C	TEI 43CTI	API 200EU		Grimm EDM 180	Grimm EDM 180		Grimm EDM 180

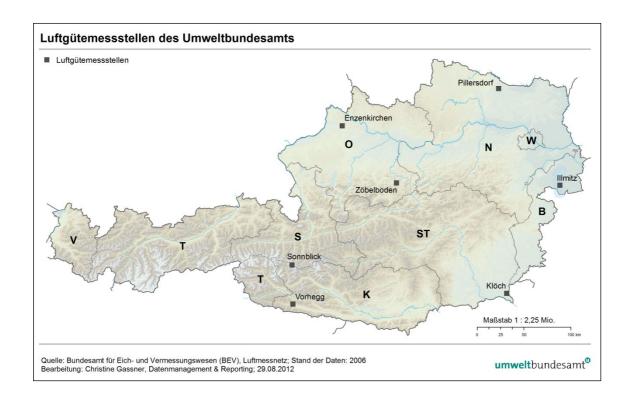
Die CO₂- und CH₄-Messung auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO erfolgt mit einem Monitor des Typs Picaro G2301.

In Illmitz wird zusätzlich zur gravimetrischen PM_{10} -Messung (gemäß EN 12341) die PM_{10} -Konzentration mittels β -Absorption kontinuierlich gemessen, diese Messung dient der tagesaktuellen Information der Öffentlichkeit.

Die Messung der PM₁-Konzentration erfolgt in Illmitz mit Probenahme an jedem dritten Tag; daher liegt die Verfügbarkeit der Tagesmittelwerte bei vollständiger Abdeckung des Monats um 33 %.

An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxod und Ozon sowie der meteorologischen Größen Windrichtung und -geschwindigkeit, Lufttemperatur und Globalstrahlung durch. Die Messung der Partikelanzahl erfolgt mit Geräten der Type Grimm EDM 180, welche nur Partikel mit einer Größe über 250 nm erfassen.

Meteorologische Messungen


Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik.

In Enzenkirchen, Illmitz, Pillersdorf und Vorhegg werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck gemessen.

¹ erfolgt im Rahmen des GAW-Messprogramms der WMO

Auf dem Zöbelboden werden Windrichtung und Windgeschwindigkeit, Lufttemperatur, relative Feuchte, Globalstrahlung, Strahlungsbilanz, Sonnenscheindauer, Niederschlagsmenge und der Luftdruck bestimmt.

Die Lage der vom Umweltbundesamt betriebenen Messstellen ist in der folgenden Graphik ersichtlich. Eine genauere Beschreibung der Standorte findet sich unter http://www.umweltbundesamt.at/umweltschutz/luft/messnetz/.

3.2 Angaben zu den Messgeräten

	Nachweisgrenze	Messprinzipien
SO ₂		
TEI 43CTL	0,13 μg/m ³ (0,05 ppb)	UV-Fluoreszenz
TEI 43i	0,13 μg/m ³ (0,05 ppb)	UV-Fluoreszenz
PM ₁₀ , PM _{2,5} , PM	N ₁	
DHA80, Gravimetrie	< 0,1 μg/m³	Gravimetrie: Probenahme mittels Digitel High-Volume-Sampler DHA80 mit PM ₁₀ - (bzw. PM _{2,5} - und PM ₁ -) Kopf (Tagesproben, Durchfluss 720 m³/d) und gravimetrische Massenbestimmung gemäß EN 12341
Sharp 5030	1 μg/m³	beta-Absortption und Nephelometer
Grimm EDM 180	1 μg/m³	Streulichtmessung (optische Partikelzählung)
NO + NO ₂		
TEI 42CTL	NO: 0,06 μg/m ³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42i	NO: 0,06 μg/m ³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
API 200EU	NO: 0,05 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO _x : 0,1 μg/m³ (0,05 ppb)	Differenz von NO _x und NO bestimmt.
СО		
APMA-360CE	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
APMA-370	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
O ₃		
TEI 49C, 49i	0,8 μg/m ³ (0,4 ppb)	Ultraviolett-Absorption
API 400E	1,2 μg/m³ (0,6 ppb)	Ultraviolett-Absorption
CO ₂ , CH ₄		
Picarro G2301	CO ₂ : 500 ppb CH ₄ : 1 ppb	Cavity Ring-Down Spektrometrie

Die kleinste angegebene Konzentration ist für O_3 , PM_{10} , $PM_{2,5}$ und PM_1 1 $\mu g/m^3$, für SO_2 und NO_2 0,1 $\mu g/m^3$, für CO 0,10 mg/m^3 .

Liegt ein Messwert (HMW) unter der jeweiligen Nachweisgrenze oder ein Mittelwert, der aus HMW gebildet wird, unter der entsprechenden Genauigkeit, so ist dies z. B. bei Angabe in $\mu g/m^3$ mit < 1 angegeben.

4 GRENZWERTE

Im Folgenden sind Immissionsgrenzwerte und Immissionszielwerte Österreichischer Gesetze sowie von Richtlinien der Europäischen Union für die im Luftgütemessnetz des Umweltbundesamtes kontinuierlich erfassten Schadstoffe angegeben.

Immissionsschutzgesetz Luft, BGBI. 115/97 i.d.F. BGBI. I 77/2010

Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

SO ₂	120 μg/m ³	Tagesmittelwert
SO ₂	200 μg/m ³	Halbstundenmittelwert; bis zu drei Halbstundenmittelwerte pro Tag, jedoch maximal 48 Halbstundenmittelwerte im Kalenderjahr bis zu 350 μg/m³ gelten nicht als Überschreitung
PM ₁₀	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr sind 25 Überschreitungen zulässig
PM ₁₀	40 μg/m³	Jahresmittelwert
СО	10 mg/m ³	Gleitender Achtstundenmittelwert
NO ₂	200 μg/m ³	Halbstundenmittelwert
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten. Die Toleranzmarge von 5 μ g/m³ gilt gleich bleibend ab 1.1. 2010
Blei im PM ₁₀	0,5 μg/m ³	Jahresmittelwert
Benzol	5 μg/m ³	Jahresmittelwert

Immissionsgrenzwert für PM_{2,5} gemäß Anlage 1b

Als Immissionsgrenzwert der Konzentration von $PM_{2,5}$ gilt der Wert von 25 $\mu g/m^3$ als Mittelwert während eines Kalenderjahres (Jahresmittelwert). Der Immissionsgrenzwert von 25 $\mu g/m^3$ ist ab dem 1. Jänner 2015 einzuhalten. Die Toleranzmarge von 20 % für diesen Grenzwert wird ausgehend vom 11. Juni 2008 am folgenden 1. Jänner und danach alle 12 Monate um einen jährlich gleichen Prozentsatz bis auf 0 % am 1. Jänner 2015 reduziert.

Alarmwerte gemäß Anlage 4.

SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert

Zielwerte gemäß Anlage 5.

PM ₁₀	50 μg/m ³	TMW, sieben Überschreitungen im Kalenderjahr erlaubt
PM ₁₀	20 μg/m ³	JMW
NO ₂	80 μg/m ³	TMW

Zielwerte gemäß Anlage 5b.

Benzo(a)pyren	1 ng/m ³	JMW
Arsen im PM ₁₀	6 ng/m ³	JMW
Cadmium im PM ₁₀	5 ng/m³	JMW
Nickel im PM ₁₀	20 ng/m³	JMW

Ozongesetz i.d.g.F. (BGBI. I 34/2006, Art. II)

Mit der Novelle zum Ozongesetz (BGBI. I 2003/34) wurden die Informations- und Alarmschwellenwerte sowie die Zielwerte der EU-RL 2002/3/EG in nationales Recht übergeführt.

Informations- und Warnwerte gemäß Anlage 1.

Informationsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle	240 μg/m³	Nicht gleitender Einstundenmittelwert

Zielwert für den Schutz der menschlichen Gesundheit gemäß Anlage 2 (einzuhalten ab 2010).

120 µg/m³	Höchster (nicht gleitender) Achtstunden-	gemittelt über 3 Jahre sind Überschreitungen an
	mittelwert des Tages	maximal 25 Tagen pro Jahr zugelassen

Zielwert für den Schutz der Vegetation gemäß Anlage 2 (einzuhalten ab 2010).

18.000 µg/m³.h	AOT40, berechnet aus den MW1 von April bis April	Mittelwert über 5 Jahre
	, ,	

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation (BGBI. II 298/2001)

Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	20 μg/m ³	Jahresmittelwert und Wintermittelwert
$NO_x^{(2)}$	30 μg/m ³	Jahresmittelwert

Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

SO ₂	50 μg/m ³	Tagesmittelwert
NO ₂	80 μg/m³	Tagesmittelwert

_

 $^{^{2}}$ NO_x als Summe von NO und NO₂ in ppb gebildet und mit dem Faktor 1,9123 in μ g/m³ umgerechnet

5 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der April 2013 wies in ganz Österreich Temperaturen um ca. 2 °C über dem langjährigen Mittel (Klimaperiode 1981–2010) auf.

Das ostösterreichische Flachland sowie der Ostalpenraum waren von überdurchschnittlichen Regenmengen betroffen, besonders hoch waren die Niederschläge im Raum Wien. Dagegen wiesen das Waldviertel, Oberösterreich sowie Westkärnten und Osttirol teilweise deutlich zu niedrige Niederschlagsmengen auf.

Das Wettergeschehen wurde von Nord- bis Nordwest und Tiefdrucklagen dominiert.

Auffallend an der Immissionssituation ist die außerordentlich geringe Ozonbelastung. In Illmitz wurde im April 2014 der niedrigste Ozonmonatsmittelwert im April seit 1991 gemessen, in Pillersdorf und auf dem Zöbelboden seit 1995, in Enzenkirchen seit 1998 (Beginn der Messung), in Vorhegg seit 1999.

Die SO₂-Belastung lag in Enzenkirchen und Pillersdorf deutlich unter dem jangjährigen Niveau, Illmitz registrierte eine durchschnittliche SO₂-Belastung.

Die NO₂-Belastung wies an den meisten Hintergrundmessstellen ein durchschnittliches Niveau auf, in Vorhegg wurde dagegen der niedrigste Monatsmittelwert im April seit Beginn der Messung 1991 beobachtet.

Die PM₁₀-Belastung lag in Enzenkirchen, Illmitz und am Zöbelboden auf durchschnittlichem Niveau. Sehr hoch war sie in Pillersdorf und Vorhegg, ungewöhnlich niedrig in Klöch.

Pillersdorf registrierte vier Tagesmittelwerte über 50 μ g/m³ (3. bis 6.4.), Enzenkirchen zwei (5. und 6.4.) und Illmitz eine Überschreitung (5.4.).

Die Luftmassen, die Pillersdorf am 3. und 4.4. erreichten, kamen mit geringer Windgeschwindigkeit von Südosten; hohe sehr NO_2 -Konzentrationen deuten auf einen großen Beitrag nahe gelegener Quellen (Wien, Bratislava) hin. Am 4.4. drehte der Wind auf Nordost, an den folgenden Tagen war nicht nur die NO_2 -, sondern auch die SO_2 -Konzentration stark erhöht, was auf nennenswerte Beiträge von Schadstofftransport aus Mähren und Südpolen hinweist.

Die erhöhte Belastung in Illmitz am 5. und 6.4. geht wahrscheinlich auf Quellen im Raum Bratislava zurück.

In Enzenkirchen wehte am 5. und 6.4. schwacher, überwiegend westlicher Wind. Die von erhöhter NO_2 -Konzentration begleitete PM_{10} -Belastung lässt sich regionalen Quellen sowie solchen in Süddeutschland zuordnen.

Der am 4. und 5.4. in Teilen Westösterreichs beobachtete Ferntransport von Sahara-Staub erfasste die Messstellen des Umweltbundesamtes nicht. Die erhöhte PM_{10} -Belastung am Zöbelboden (45 μ g/m³ am 5.4.) geht, wie die gleichzeitige sehr hohe NO_2 -Konzentration und die hohe Luftfeuchtigkeit zeigen, auf Transport belasteter Luft aus dem Ennstal bzw. dem Alpenvorland zurück.

6 VERFÜGBARKEIT – APRIL 2014

Verfügbarkeit der Halbstundenmittelwerte (bei PM_{10} , $PM_{2,5}$ und PM_1 der Tagesmittelwerte) in Prozent der maximal möglichen Werte.

	O ₃	SO ₂	NO ₂	NO	со	PM ₁₀	PM _{2,5}	PM ₁	PM Anzahl	CO ₂	CH₄	NO _y
Enzenkirchen	96	96	96	96		97	97		98			
Illmitz	98	97	97	97	98	100	100	33				
Klöch			97	97		100						
Pillersdorf	98	97	97	97		90	90		91			
Sonnblick	49				49					49	49	49
Vorhegg	97	97	95	97	97	100						
Zöbelboden	97	97	96	96		100	100		100			

Die Verfügbarkeit soll gemäß § 4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO_2 , CO, NO_2 und O_3 mindestens 90 % betragen.

Die PM₁-Messung in Illmitz erfolgt mit Probenahme jeden dritten Tag.

Die Messstelle Sonnblick ist seit 16. April wegen eines Stromausfalls außer Betrieb.

7 MONATSMITTELWERTE – APRIL 2014

	O ₃ µg/m³	SO ₂ µg/m³	_		CO mg/m³		,-		PM An- zahl Teil- chen	CO ₂ ppm	CH₄ ppm	NO _y ppb
Enzenkirchen	70	1.0	9.8	1.0		21	15		204.306			
Illmitz	72	1.4	8.1	0.5	0.21	22	15	11				
Klöch			5.8	0.5		16						
Pillersdorf	74	1.5	8.8	0.5		24	18		250.516			
Sonnblick	٧				٧					٧	٧	٧
Vorhegg	81	0.2	2.2	0.2	0.17	10						
Zöbelboden	83	0.1	5.4	0.2		14	9		133.764			

v: Verfügbarkeit nicht ausreichend

8 ÜBERSCHREITUNGEN

Anzahl der Tage mit Überschreitungen im April 2014.

	O ₃ MW1 > 180 μg/m ³	O ₃ MW8 > 120 μg/m ³	PM ₁₀ TMW > 50 μg/m ³
Enzenkirchen	0	1	2
Illmitz	0	1	1
Klöch			0
Pillersdorf	0	1	4
Sonnblick	0	4	
Vorhegg	0	1	0
Zöbelboden	0	0	0

Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2014.

	O ₃ MW1 > 180 μg/m ³	O ₃ MW8 > 120 μg/m ³	PM ₁₀ TMW > 50 μg/m ³
Enzenkirchen	0	1	4
Illmitz	0	1	11
Klöch			4
Pillersdorf	0	1	8
Sonnblick	0	12	
Vorhegg	0	3	0
Zöbelboden	0	0	0

9 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Enzenkirchen - April 2014

Datum	O ₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	TMW	PM Anzahl TMW Teilchen/m³
1.4.	122	111	4.2	2.1	18.5	10.0	2.7	0.7	40	32	432.754
2.4.	116	110	2.8	1.7	16.3	11.1	2.6	0.7	43	29	383.223
3.4.	131	124	6.9	2.3	24.3	11.0	2.3	0.7	36	23	292.248
4.4.	103	115	9.2	3.2	31.5	16.9	6.5	1.7	37	24	278.661
5.4.	93	92	2.5	1.3	32.0	15.2	3.5	1.4	55	38	437.825
6.4.	73	63	1.0	0.6	18.3	12.3	2.8	1.2	52	45	545.509
7.4.	105	99	10.0	1.1	17.1	9.1	4.3	8.0	25	17	214.276
8.4.	88	88	6.2	1.4	31.7	12.8	7.7	1.3	16	10	143.277
9.4.	85	83	2.1	0.6	16.7	9.5	2.7	0.7	10	6	83.665
10.4.	66	61	1.0	0.5	18.7	14.1	6.9	0.9	21	18	243.323
11.4.	76	73	6.5	1.5	20.5	10.4	3.4	1.0	18	13	200.822
12.4.	93	85	1.2	0.6	24.9	10.3	6.8	1.2	19	15	224.332
13.4.	99	90	1.1	0.7	16.7	10.8	2.8	0.8	23	20	287.238
14.4.	91	84	1.0	0.5	23.6	12.4	2.0	0.7	17	13	190.428
15.4.	75	71	0.8	0.4	13.4	8.5	1.4	0.6	6	3	48.886
16.4.	85	81	1.9	0.6	17.8	9.8	4.2	1.2	10	6	91.864
17.4.	96	92	3.0	1.3	12.8	6.4	3.5	0.8	11	6	97.142
18.4.	82	89	2.4	1.1	26.5	12.2	4.3	1.2	16	12	161.680
19.4.	90	84	2.0	1.2	10.2	7.4	1.3	0.5	25	20	278.098
20.4.	99	92	3.5	1.0	9.4	6.3	8.0	0.3	9	5	89.726
21.4.	114	105	2.7	1.0	10.4	5.6	1.2	0.4	5	2	53.278
22.4.	108	95	1.4	0.5	17.7	9.3	7.2	1.0	10	6	101.823
23.4.	108	102	2.4	0.7	28.3	7.6	8.6	1.4	10	5	97.206
24.4.	111	100	1.8	8.0	20.5	7.2	12.9	1.8	16	11	175.151
25.4.	104	101	2.4	0.8	9.7	5.4	2.4	0.5	14	9	146.466
26.4.	110	99	6.1	8.0	11.2	6.2	2.4	0.4	13	9	165.157
27.4.	72	86	4.6	0.5	15.2	6.4	15.5	1.4	10	5	87.620
28.4.	81	73	0.5	0.3	21.2	7.8	9.4	1.3	11	6	105.862
29.4.	59	54	0.5	0.4	26.5	13.5	32.4	3.0	22	17	260.813
30.4.	74	50	0.4	٧	10.9	٧	0.9	٧	٧	V	V
Max.	131	124	10.0	3.2	32.0	16.9	32.4	3.0	55	45	545.509

v: Verfügbarkeit nicht ausreichend

Illmitz – April 2014

Datum	O ₃ Max. MW1 μg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	TMW	PM _{2,5} TMW µg/m³	TMW
1.4.	127	117	5.3	3.3	16.9	11.1	1.9	0.5	0.27	45	33	٧
2.4.	114	94	2.4	1.6	23.4	13.4	3.7	8.0	0.31	44	31	20
3.4.	124	109	1.3	0.9	10.5	8.1	1.0	0.4	0.27	34	18	٧
4.4.	81	76	1.2	8.0	17.9	12.2	2.2	8.0	0.27	41	22	٧
5.4.	109	102	6.1	2.8	19.7	11.3	2.5	0.6	0.32	52	33	11
6.4.	94	82	6.8	3.1	16.5	11.5	1.8	0.5	0.34	49	36	٧
7.4.	116	105	2.8	1.4	12.8	9.1	3.0	0.6	0.26	34	23	٧
8.4.	113	96	1.5	0.9	10.5	7.2	1.2	0.4	0.25	21	13	12
9.4.	88	85	1.2	0.7	9.4	6.4	1.1	0.4	0.18	8	5	٧
10.4.	80	76	1.1	0.6	13.2	7.4	1.4	0.4	0.19	8	5	٧
11.4.	90	82	2.3	1.2	13.2	8.9	5.3	0.9	0.21	14	11	9
12.4.	102	91	2.5	1.3	19.7	11.7	3.9	0.9	0.25	24	19	٧
13.4.	92	88	4.4	1.0	16.7	10.3	2.1	0.5	0.31	22	17	٧
14.4.	100	95	1.1	0.5	19.5	6.7	3.2	0.4	0.24	13	9	6
15.4.	85	86	0.7	0.5	7.3	5.1	0.9	0.4	0.18	5	3	٧
16.4.	79	76	1.8	1.0	11.6	5.5	2.2	0.4	0.19	10	7	٧
17.4.	93	88	3.9	2.5	15.0	7.7	1.6	0.6	0.22	16	11	9
18.4.	109	101	3.1	1.4	13.4	9.3	3.4	8.0	0.23	13	9	٧
19.4.	106	90	2.7	1.7	10.8	8.2	1.9	0.6	0.25	22	17	٧
20.4.	101	94	1.7	0.9	6.2	4.4	0.6	0.2	0.21	9	7	6
21.4.	99	93	1.3	8.0	6.1	4.3	0.6	0.2	0.25	15	11	٧
22.4.	109	98	1.2	0.7	12.2	6.2	1.9	0.6	0.21	12	9	٧
23.4.	119	113	1.5	8.0	12.1	7.2	2.8	0.7	0.20	14	11	10
24.4.	120	112	4.7	2.3	15.8	8.4	3.6	8.0	0.23	19	13	٧
25.4.	80	91	2.5	1.0	11.7	7.1	1.6	0.5	0.19	13	9	٧
26.4.	72	66	2.5	1.0	10.9	6.2	0.7	0.3	0.20	24	16	9
27.4.	99	95	12.0	2.9	10.5	5.7	0.9	0.4	0.20	19	11	٧
28.4.	108	94	1.8	1.0	13.5	7.5	3.0	0.7	0.19	12	13	٧
29.4.	90	78	2.8	1.6	11.1	8.3	1.7	0.5	0.22	23	15	12
30.4.	134	127	6.2	1.8	14.9	7.6	2.8	0.6	0.20	19	13	٧
Max.	134	127	12.0	3.3	23.4	13.4	5.3	0.9	0.34	52	36	20

v: Verfügbarkeit nicht ausreichend

Klöch - April 20141

Datum	NO₂ Max. HMW μg/m³	NO₂ TMW µg/m³	NO Max. HMW μg/m³	NO TMW μg/m³	PM ₁₀ TMW µg/m³
1.4.	15.9	7.0	1.6	0.4	42
2.4.	20.7	8.0	3.6	0.5	32
3.4.	13.3	9.5	2.3	0.6	26
4.4.	13.0	8.1	2.2	0.5	29
5.4.	9.2	6.5	2.4	0.3	33
6.4.	8.2	5.9	1.0	0.3	30
7.4.	11.4	7.1	3.6	0.7	19
8.4.	19.2	9.1	4.8	1.0	18
9.4.	5.6	4.2	0.9	0.3	5
10.4.	16.0	7.2	4.9	0.7	8
11.4.	8.1	4.9	1.2	0.4	7
12.4.	15.4	7.8	11.8	0.9	15
13.4.	12.1	6.3	2.9	0.6	12
14.4.	9.4	6.5	1.9	0.5	8
15.4.	6.3	4.1	0.7	0.3	4
16.4.	9.0	4.3	0.8	0.3	9
17.4.	7.8	4.6	0.5	0.2	10
18.4.	9.0	5.6	2.5	0.4	12
19.4.	14.8	7.2	2.6	0.5	22
20.4.	6.3	4.0	0.5	0.3	12
21.4.	5.5	4.0	0.7	0.3	12
22.4.	7.6	4.3	1.0	0.4	6
23.4.	8.7	5.1	9.7	0.6	11
24.4.	23.1	6.3	26.5	1.2	15
25.4.	6.5	4.2	1.0	0.3	11
26.4.	6.3	3.4	0.6	0.3	23
27.4.	6.9	4.0	1.2	0.4	14
28.4.	6.3	4.8	0.8	0.4	14
29.4.	8.2	5.4	1.1	0.4	17
30.4.	9.7	5.0	1.1	0.4	15
Max.	23.1	9.5	26.5	1.2	42

v: Verfügbarkeit nicht ausreichend

Pillersdorf - April 2014

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m³	PM Anzahl TMW Teil- chen/m³
1.4.	118	114	4.5	2.4	30.9	10.6	8.0	0.3	42	36	528.070
2.4.	116	103	8.0	3.8	25.2	15.5	2.5	0.7	50	36	496.241
3.4.	124	113	2.8	1.8	23.6	13.3	2.4	0.5	51	32	434.685
4.4.	95	94	2.4	1.5	30.9	15.0	2.2	0.6	51	32	376.663
5.4.	102	94	8.8	5.2	22.6	16.7	2.0	0.6	58	46	592.633
6.4.	89	83	9.2	3.5	19.8	12.4	0.7	0.3	53	43	558.716
7.4.	108	103	3.2	1.1	15.3	9.9	2.6	0.5	29	20	269.684
8.4.	94	84	2.4	1.1	17.0	10.9	2.0	0.5	21	14	199.066
9.4.	88	84	0.7	0.5	7.0	4.7	0.7	0.3	7	2	52.066
10.4.	80	75	1.3	0.6	8.7	6.6	8.0	0.3	10	7	110.713
11.4.	74	68	2.3	0.9	9.2	6.3	1.5	0.4	14	11	176.327
12.4.	98	91	2.3	1.3	13.0	6.7	1.1	0.3	19	14	225.255
13.4.	94	87	4.1	1.5	13.3	8.0	0.4	0.2	24	20	284.742
14.4.	90	87	1.1	0.6	11.5	5.7	0.7	0.3	12	8	121.131
15.4.	74	80	1.2	0.5	6.8	3.9	0.8	0.3	7	3	63.199
16.4.	87	83	2.0	0.8	7.1	4.0	0.7	0.3	9	5	84.949
17.4.	95	90	3.9	2.0	14.9	5.6	0.7	0.3	13	8	118.455
18.4.	97	94	2.7	1.1	11.8	7.4	2.8	0.5	14	9	140.781
19.4.	109	100	6.6	2.8	11.5	8.8	1.0	0.4	30	21	282.668
20.4.	107	102	4.7	1.6	13.3	7.1	1.7	0.4	16	11	161.385
21.4.	95	91	1.4	0.8	13.4	8.3	1.0	0.5	20	17	243.293
22.4.	92	84	1.5	0.7	14.5	9.1	2.1	0.7	17	13	193.272
23.4.	107	100	2.4	0.9	17.7	8.8	3.0	0.7	17	13	209.730
24.4.	114	105	3.5	1.6	10.2	7.6	1.2	0.5	19	14	210.834
25.4.	88	81	4.2	1.3	18.6	10.2	2.5	0.9	24	19	278.284
26.4.	94	90	1.1	0.5	16.4	8.5	1.1	0.5	17	13	209.083
27.4.	105	99	7.5	1.7	20.0	11.2	2.7	0.9	22	12	190.249
28.4.	110	91	0.9	0.4	15.2	7.2	3.0	0.6	٧	٧	٧
29.4.	89	84	2.0	0.8	8.3	5.8	1.0	0.4	٧	٧	٧
30.4.	128	121	2.0	1.0	12.8	7.2	1.3	0.4	٧	٧	٧
Max.	128	121	9.2	5.2	30.9	16.7	3.0	0.9	58	46	592.633

v: Verfügbarkeit nicht ausreichend

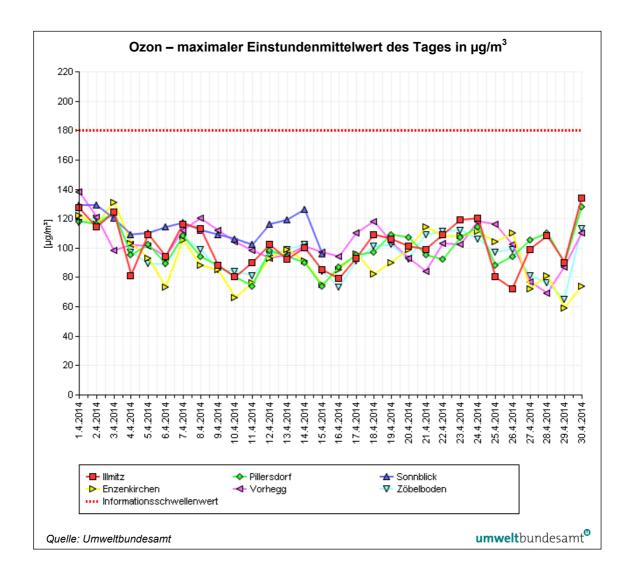
Sonnblick - April 2014

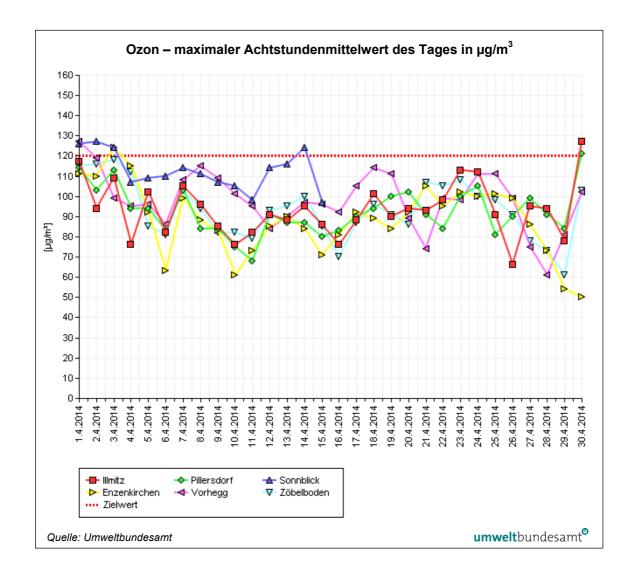
Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	CO Max. MW8g mg/m³	CO ₂ TMW ppm	CH₄ TMW ppm	NO _y Max. HMW ppb	NO _y TMW ppb
1.4.	129	126	0.17	400	1.9	2.11	1.11
2.4.	129	127	0.19	399	1.9	5.28	2.23
3.4.	120	124	0.18	401	1.9	1.39	0.88
4.4.	109	107	0.16	401	1.9	1.03	0.66
5.4.	110	109	0.19	401	1.9	2.37	1.33
6.4.	114	110	0.21	405	1.9	2.07	1.74
7.4.	117	114	0.19	402	1.9	1.72	1.06
8.4.	112	111	0.16	402	1.9	2.11	1.19
9.4.	109	107	0.17	402	1.9	1.53	1.20
10.4.	106	105	0.17	402	1.9	1.53	1.08
11.4.	102	98	0.16	401	1.9	1.05	0.69
12.4.	116	114	0.17	401	1.9	2.60	1.72
13.4.	119	116	0.18	402	1.9	2.72	1.76
14.4.	126	124	0.17	402	1.9	2.33	1.62
15.4.	96	97	0.18	405	1.9	2.12	1.48
16.4.	٧	V	0.17	V	٧	V	V
17.4.	٧	V	٧	V	٧	V	V
18.4.	٧	V	٧	V	٧	V	V
19.4.	٧	V	٧	V	V	V	V
20.4.	٧	V	٧	V	V	V	V
21.4.	٧	V	٧	V	٧	V	V
22.4.	٧	V	٧	V	V	V	V
23.4.	٧	V	٧	V	V	V	V
24.4.	٧	V	٧	V	V	V	V
25.4.	٧	V	٧	V	V	V	٧
26.4.	٧	V	٧	V	V	V	٧
27.4.	٧	V	٧	V	V	V	٧
28.4.	٧	٧	٧	V	٧	V	٧
29.4.	٧	٧	٧	V	٧	V	٧
30.4.	٧	٧	٧	٧	٧	V	٧
Max.	129	127	0.21	405	1.9	5.28	2.23

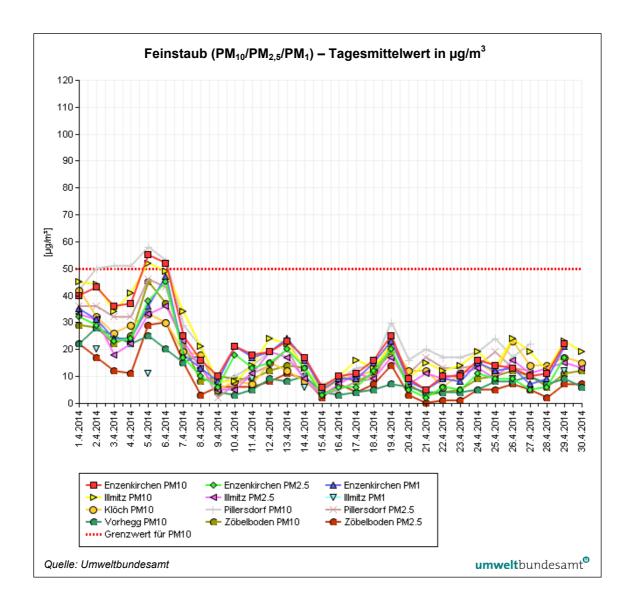
v: Verfügbarkeit nicht ausreichend

Vorhegg – April 2014

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW μg/m³	NO Max. HMW μg/m³	NO TMW μg/m³	CO Max. MW8g mg/m³	PM ₁₀ TMW µg/m³
1.4.	138	127	1.0	0.4	6.3	3.2	2.2	0.3	0.23	22
2.4.	121	119	0.3	0.2	6.2	3.7	0.6	0.2	0.23	28
3.4.	98	99	0.2	0.1	4.0	3.1	0.4	0.2	0.21	25
4.4.	102	95	0.3	0.2	3.8	1.8	0.9	0.2	0.20	22
5.4.	101	96	0.3	0.2	2.3	1.4	0.4	0.1	0.16	25
6.4.	94	86	0.3	0.2	3.3	2.1	0.7	0.2	0.20	20
7.4.	112	108	0.4	0.2	5.4	2.1	1.7	0.2	0.19	15
8.4.	120	115	0.5	0.2	6.3	3.1	1.1	0.2	0.20	18
9.4.	112	109	0.1	0.1	2.2	1.4	0.4	0.1	0.18	4
10.4.	104	101	0.1	0.1	2.8	1.2	0.5	0.1	0.15	3
11.4.	98	95	1.0	0.2	5.5	2.9	1.5	0.3	0.18	5
12.4.	93	84	0.3	0.1	3.3	2.3	0.8	0.2	0.19	9
13.4.	95	90	0.5	0.1	3.4	2.0	0.5	0.1	0.18	8
14.4.	101	97	0.2	0.1	6.8	2.7	0.6	0.1	0.19	10
15.4.	97	96	0.1	<0.1	2.7	V	0.3	0.1	0.17	4
16.4.	94	92	0.3	0.2	2.3	V	0.3	0.1	0.16	3
17.4.	110	105	0.9	0.4	5.8	2.4	1.5	0.2	0.16	4
18.4.	118	114	0.5	0.4	4.8	2.3	0.8	0.2	0.16	5
19.4.	104	111	0.3	0.2	3.4	2.1	0.4	0.2	0.19	7
20.4.	93	89	0.3	0.2	3.2	2.0	0.2	0.1	0.20	6
21.4.	84	74	0.4	0.2	2.6	1.4	0.5	0.1	0.20	4
22.4.	103	99	0.6	0.3	11.6	1.6	3.2	0.3	0.18	4
23.4.	102	98	0.3	0.2	4.2	2.1	1.3	0.2	0.16	4
24.4.	118	111	0.3	0.2	4.4	2.1	8.0	0.2	0.16	5
25.4.	116	111	0.6	0.3	5.3	2.4	0.6	0.2	0.16	8
26.4.	102	99	1.1	0.3	10.4	2.2	10.7	0.5	0.17	8
27.4.	77	75	0.3	0.2	2.4	1.6	0.4	0.2	0.17	10
28.4.	69	61	0.7	0.2	4.8	2.0	1.6	0.2	0.16	7
29.4.	87	81	0.2	0.2	3.4	1.8	0.5	0.2	0.16	9
30.4.	110	102	0.2	0.1	7.8	1.9	1.3	0.2	0.16	6
Max.	138	127	1.1	0.4	11.6	3.7	10.7	0.5	0.23	28


v: Verfügbarkeit nicht ausreichend


Zöbelboden – April 2014


Da- tum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m ³	PM An- zahl TMW Teil- chen/m³
1.4.	117	115	0.8	0.6	13.3	11.1	0.8	0.3	29	22	291.915
2.4.	120	116	0.4	0.2	9.2	6.9	0.3	0.2	28	17	235.356
3.4.	121	118	0.1	<0.1	9.5	5.2	2.2	0.2	22	12	149.457
4.4.	97	112	0.1	<0.1	6.2	4.5	0.4	0.1	25	11	124.080
5.4.	89	85	8.0	0.4	17.9	13.1	1.7	0.6	45	29	350.792
6.4.	89	81	0.5	<0.1	16.9	13.0	0.7	0.3	37	30	391.648
7.4.	107	103	<0.1	<0.1	9.9	7.4	0.2	0.1	22	15	181.309
8.4.	99	94	0.1	<0.1	7.8	4.6	0.6	0.1	8	3	55.028
9.4.	85	82	0.1	<0.1	7.8	V	0.6	V	10	6	98.080
10.4.	84	82	0.5	<0.1	9.6	6.8	0.4	0.1	9	6	100.837
11.4.	81	79	<0.1	<0.1	5.8	3.4	0.2	0.1	9	6	113.392
12.4.	95	93	0.6	<0.1	7.3	4.3	0.6	0.1	12	8	141.542
13.4.	99	95	0.2	<0.1	8.0	4.9	0.1	0.1	14	11	177.471
14.4.	102	100	0.4	<0.1	8.9	6.7	0.3	0.1	13	9	152.714
15.4.	84	85	<0.1	<0.1	7.9	4.5	0.6	0.2	5	2	51.620
16.4.	73	70	<0.1	<0.1	7.4	5.8	1.2	0.3	10	7	107.491
17.4.	91	87	8.0	0.1	3.7	2.7	0.5	0.2	8	4	78.776
18.4.	101	96	0.6	0.1	13.8	6.8	2.7	0.5	11	7	121.859
19.4.	102	91	0.7	0.2	8.1	5.8	0.5	0.2	19	14	224.424
20.4.	92	86	<0.1	<0.1	4.0	2.2	0.1	0.1	7	3	53.168
21.4.	109	107	<0.1	<0.1	2.0	1.7	0.1	<0.1	3	<0.1	26.492
22.4.	111	105	0.2	<0.1	6.5	3.8	0.2	0.1	4	1	37.134
23.4.	112	108	0.1	<0.1	4.5	3.1	0.2	0.1	5	1	46.270
24.4.	106	100	0.7	0.1	4.9	3.3	0.3	0.1	9	5	101.614
25.4.	97	98	<0.1	<0.1	3.3	2.2	0.2	0.1	10	5	94.803
26.4.	99	91	<0.1	<0.1	7.4	3.9	0.6	0.2	12	7	128.902
27.4.	81	78	<0.1	<0.1	7.6	3.8	1.1	0.2	10	5	85.558
28.4.	76	73	<0.1	<0.1	6.7	3.8	0.4	0.1	6	2	51.186
29.4.	65	61	<0.1	<0.1	8.5	6.7	0.9	0.3	11	7	124.860
30.4.	113	103	<0.1	<0.1	4.9	3.0	0.2	0.1	12	7	115.152
Max.	121	118	8.0	0.6	17.9	13.1	2.7	0.6	45	30	391.648

v: Verfügbarkeit nicht ausreichend

10 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Umweltbundesamt GmbH

Spittelauer Lände 5 1090 Wien/Österreich

Tel.: +43-(0)1-313 04 Fax: +43-(0)1-313 04/5400

office@umweltbundesamt.at www.umweltbundesamt.at

