

MONATSBERICHT ZUM HINTERGRUNDMESSNETZ DES UMWELTBUNDESAMTES

Juli 2015

REPORT REP-0514

Wien 2015

© Umweltbundesamt GmbH, Wien, 2015

Alle Rechte vorbehalten ISBN 978-3-99004-325-7

INHALT

EINLEITUNG	5
DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTES	6
Ausstattung der Hintergrundmessstellen	6
Angaben zu den Messgeräten	8
BEURTEILUNGSGRUNDLAGEN	9
WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS	12
VERFÜGBARKEIT – JULI 2015	13
MONATSMITTELWERTE – JULI 2015	14
ÜBERSCHREITUNGEN	15
TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	16
GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN	23
ABKÜRZUNGEN UND ERLÄUTERUNGEN	26
LITERATURVERZEICHNIS	28
	UMWELTBUNDESAMTES Ausstattung der Hintergrundmessstellen Angaben zu den Messgeräten BEURTEILUNGSGRUNDLAGEN WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS VERFÜGBARKEIT – JULI 2015 MONATSMITTELWERTE – JULI 2015 ÜBERSCHREITUNGEN TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN GRAPHISCHE DARSTELLUNG VON

1 EINLEITUNG

Das Immissionsschutzgesetz Luft (IG-L) und das Ozongesetz verpflichten das Umweltbundesamt zur Erhebung der großräumigen Hintergrundbelastung in Österreich. Um dieser Verpflichtung nachzukommen, betreibt das Umweltbundesamt insgesamt sieben Luftgütemessstellen.

Die Messung der Hintergrundbelastung dient mehreren Zwecken:

- Überwachung der Einhaltung von Grenz- und Zielwerten zum Schutz der menschlichen Gesundheit.
- Überwachung der Einhaltung von Grenz- und Zielwerten zum Schutz von Ökosystemen und der Vegetation.
- Ableiten von belastbaren Aussagen über die großflächige Hintergrundbelastung und deren Trend.
- Ableiten von belastbaren Aussagen über den Ferntransport von Luftschadstoffen.

Die drei Hintergrundmessstellen Illmitz, Vorhegg und Zöbelboden sind zudem Teil eines europaweiten Schadstoffmessnetzes, welches innerhalb der Konvention über weiträumige, grenzüberschreitende Luftverunreinigung betrieben wird und der Ermittlung des großräumigen Schadstofftransportes dient (EMEP-Messprogramm).

Um diesen Aufgaben gerecht werden zu können, wurden die Messstellen so situiert, dass sie nicht im unmittelbaren Einflussbereich von Schadstoffemittenten (Ballungsräumen, verkehrsnahe Stellen, Industriestandorte) liegen (UMWELT-BUNDESAMT 2015). Die gemessenen Schadstoffkonzentrationen sind im Normalfall niedriger als bei emittentennahen Messstellen, sodass die Anforderungen an die Messtechnik sehr hoch sind. Mit Überschreitungen von Grenz- und Zielwerten ist in der Regel nur bei den Schadstoffen Ozon und PM_{10} zu rechnen.

Beim vorliegenden Report handelt es sich um den Monatsbericht des Umweltbundesamtes gemäß Messkonzept-Verordnung zum Immissionsschutzgesetz Luft. Dieser Bericht enthält unter anderem Informationen über die Verfügbarkeit der Messdaten, die Monatsmittelwerte, die maximalen Mittelwerte und die Überschreitungen von Grenz-, Alarm- und Zielwerten.

Der Monatsbericht wird aus kontrollierten Daten (entsprechend der Dritten von vier Kontrollstufen) erstellt; im Rahmen dieser Kontrolle werden die täglichen Funktionskontrollen, die Plausibilitätsprüfung der Messwerte und Informationen über technische Probleme an den Messstellen herangezogen.

Die Messdaten werden nach Jahresende unter Berücksichtigung der Ergebnisse der vierteljährlich durchzuführenden Kalibrierungen der Messgeräte einer weiteren Prüfung und gegebenenfalls einer Korrektur unterzogen. Die endgültigen Messwerte (Kontrollstufe 4, nach internationalem Abgleich der Kalibrierstandards) werden ebenso wie die Messergebnisse von aromatischen Kohlenwasserstoffen, PM_{2,5}-Inhaltsstoffen, polyzyklischen aromatischen Kohlenwasserstoffen und Schwermetallen sowie der meteorologischen Messungen im Jahresbericht publiziert (UMWELTBUNDESAMT 2014). Die Jahresberichte sowie die Monatsberichte ab 1999 sind von der Website des Umweltbundesamtes¹ abrufbar.

http://www.umweltbundesamt.at/monatsberichte/ sowie http://www.umweltbundesamt.at/jahresberichte/

2 DAS LUFTGÜTEMESSNETZ DES UMWELTBUNDESAMTES

Die Lage der vom Umweltbundesamt betriebenen sieben Messstellen ist in der folgenden Grafik ersichtlich. Eine genauere Beschreibung der Standorte findet sich auf der Umweltbundesamt-Website².

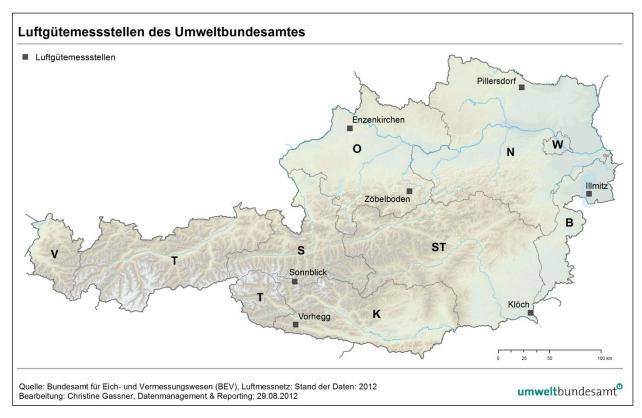


Abbildung 1: Karte der sieben – vom Umweltbundesamt – betriebenen Messstellen in Österreich.

2.1 Ausstattung der Hintergrundmessstellen

Für die Messung von O₃, SO₂, CO, NO/NO₂ sowie zur gravimetrischen PM-Messung werden die in der Messkonzept-Verordnung angeführten Referenzmethoden eingesetzt.³ Für die kontinuierliche Messung von PM₁₀ und PM_{2,5} kommen äquivalenzgeprüfte Messmethoden zum Einsatz.⁴

² http://www.umweltbundesamt.at/messnetz/

³ ÖNORM EN 12341 (1999), ÖNORM EN 14211 (2005), ÖNORM EN 14212 (2005), ÖNORM EN 14625 (2005), ÖNORM EN 14626 (2005), ÖNORM EN 14907 (2005)

 $^{^{4}\,}$ Ec Wg (2010): Guide to the demonstration of equivalence of ambient air monitoring methods.

Tabelle 1: An den Hintergrundmesstellen im Einsatz befindliche Messgeräte.

Messstelle	Messger	äte						
	O ₃	SO ₂	NO ₂ , NO	СО	PM ₁₀	PM _{2,5}	PM ₁	Partikelzahl
Enzenkirchen	TEI 49i	TEI 43i	TEI 42i		Grimm EDM 180	Grimm EDM180		Grimm EDM 180
Illmitz	API 400E	TEI 43i	API 200EU	APMA-370	DHA80, Gravimetrie	DHA80, Gravimetrie	DHA80, Gravimetrie	Grimm EDM 180
Klöch			TEI 42i		Sharp 5030			
Pillersdorf	TEI 49i	TEI 43i	API 200EU		Grimm EDM 180	Grimm EDM 180		Grimm EDM 180
Sonnblick	TEI 49i		TEI 42CTL ⁵	APMA-360CE ⁶				
Vorhegg	API 400E	TEI 43CTL	TEI 42i	APMA-370	Sharp 5030			
Zöbelboden	TEI 49C	TEI 43i	API 200EU		Grimm EDM 180	Grimm EDM 180		Grimm EDM 180

Zusätzliche Messungen

Die CO₂- und CH₄-Messung auf dem Sonnblick im Rahmen des Global Atmospheric Watch (GAW) Programms der WMO⁷ erfolgt mit einem Monitor des Typs Picarro G2301.

In Illmitz wird zusätzlich zur gravimetrischen Messung von PM_{10} , $PM_{2,5}$ und PM_{1} (gemäß ÖNORM EN 12341) die Konzentration dieser PM-Fraktionen mittels Grimm EDM 180 kontinuierlich gemessen; diese Messung dient der tagesaktuellen Information der Öffentlichkeit.

Die Messung der PM₁-Konzentration erfolgt in Illmitz mit Probenahme an jedem dritten Tag.

An der Messstelle Klöch bei Bad Radkersburg führt das Amt der Steiermärkischen Landesregierung Messungen der Konzentration von Schwefeldioxid und Ozon sowie der meteorologischen Größen Windrichtung und -geschwindigkeit, Lufttemperatur und Globalstrahlung durch.

Meteorologische Messungen

Tabelle 2: An den Hintergrundmessstellen erfasste meteorologische Parameter.

	Enzenkirchen	IIImitz	Pillersdorf	Vorhegg	Zöbelboden
Windrichtung	X	Х	X	Х	X
Windgeschwindigkeit	X	Х	X	Х	X
Lufttemperatur	Х	Х	Х	Х	Х
relative Feuchte	Х	Х	Х	Х	Х
Globalstrahlung	Х	Х	Х	Х	Х
Strahlungsbilanz					Х
Sonnenscheindauer					Х
Niederschlagsmenge	Х	Х	Х	Х	Х
Luftdruck	Х	Х	Х	Х	Х

⁵ NO_v

⁶ erfolgt im Rahmen des GAW-Messprogramms der WMO

Globales Messnetz zur Erfassung von klimarelevanten Gasen und Luftschadstoffen in der Atmosphäre, www.wmo.int/gaw

Am Sonnblick erfolgen die meteorologischen Messungen durch die Zentralanstalt für Meteorologie und Geodynamik⁸, in Klöch durch das Amt der Steiermärkischen Landesregierung.

2.2 Angaben zu den Messgeräten

Tabelle 3: Spezifikationen der eingesetzten Messgeräte.

	Nachweisgrenze	Messprinzipien
SO ₂		
TEI 43CTL	0,13 μg/m³ (0,05 ppb)	UV-Fluoreszenz
TEI 43i	0,13 μg/m³ (0,05 ppb)	UV-Fluoreszenz
PM ₁₀ , PM _{2,5} , PM ₁		
DHA80, Gravimetrie	< 0,1 µg/m³	Gravimetrie: Probenahme mittels Digitel High-Volume-Sampler DHA80 mit PM ₁₀ - (bzw. PM _{2,5} - und PM ₁ -) Kopf (Tagesproben, Durchfluss 720 m³/d) und gravimetrische Massenbestimmung gemäß ÖNORM EN 12341
Sharp 5030	1 μg/m³	beta-Absorption und Nephelometer
Grimm EDM 180	1 μg/m³	Streulichtmessung (optische Partikelzählung)
NO+NO ₂		
TEI 42CTL	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
TEI 42i	NO: 0,06 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO ₂ : 0,2 μg/m ³ (0,1 ppb)	Differenz von NO _x und NO bestimmt.
API 200EU	NO: 0,05 μg/m³ (0,05 ppb)	Chemilumineszenz. NO ₂ wird als
	NO _x : 0,1 μg/m³ (0,05 ppb)	Differenz von NO _x und NO bestimmt.
CO		
APMA-360CE	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
APMA-370	0,05 mg/m ³ (0,05 ppm)	Nichtdispersive Infrarot-Absorption
O ₃		
TEI 49C, 49i	0,8 μg/m³ (0,4 ppb)	Ultraviolett-Absorption
API 400E	1,2 μg/m³ (0,6 ppb)	Ultraviolett-Absorption
CO ₂ , CH ₄		
Picarro G2301	CO ₂ : 500 ppb	Cavity Ring-Down Spektrometrie
	CH₄: 1 ppb	

Als kleinste Konzentration wird für O_3 , PM_{10} , $PM_{2,5}$ und PM_1 1 $\mu g/m^3$ angegeben, im Fall von SO_2 und NO_2 liegt der kleinste angegebene Wert bei 0,1 $\mu g/m^3$ und für CO bei 0,10 mg/m^3 .

Liegt ein Messwert oder ein Mittelwert unter der jeweiligen Nachweisgrenze (NWG) so wird dieser Wert als "< NWG" dargestellt (z. B. < 1 μ g/m³ im Fall eines gemessenen Wertes von unter 0,5 μ g/m³ und einer NWG von 1 μ g/m³).

⁸ http://www.sonnblick.net/portal/component/option,com_frontpage/ltemid,1/lang,de/

3 BEURTEILUNGSGRUNDLAGEN

Im Folgenden sind gesetzlich festgelegte Grenzwerte, Zielwerte, Informationsund Alarmschwellen für jene Schadstoffe zusammengefasst, welche an den Messstellen des Umweltbundesamtes gemessen werden.

Immissionsschutzgesetz Luft (IG-L)

Das im Jahr 1997 veröffentlichte IG-L legt Grenzwerte, Zielwerte und Alarmwerte für verschiedene Luftschadstoffe zum Schutz der menschlichen Gesundheit sowie von Ökosystemen und der Vegetation, die Zeitpunkte für deren Einhaltung sowie die Vorgangsweise und mögliche Maßnahmen bei Überschreitung dieser Werte fest.

Tabelle 4: Immissionsgrenzwerte gemäß Anlage 1 zum langfristigen Schutz der menschlichen Gesundheit.

Schad- stoff	Grenzwert	Mittelungszeitraum bzw. Grenzwertdefinition
SO ₂	120 μg/m ³	Tagesmittelwert
SO ₂	200 μg/m ³	Halbstundenmittelwert; maximal drei Halbstundenmittelwerte pro Tag und maximal 48 Halbstundenmittelwerte pro Kalenderjahr dürfen einen Wert von 350 μg/m³ nicht überschreiten
PM ₁₀	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr sind 25 Überschreitungen zulässig
PM ₁₀	40 μg/m ³	Jahresmittelwert
СО	10 mg/m ³	Gleitender Achtstundenmittelwert
NO ₂	200 μg/m ³	Halbstundenmittelwert
NO ₂	30 μg/m ³	Jahresmittelwert. Dieser Grenzwert ist ab 2012 einzuhalten, allerdings gilt weiterhin eine Toleranzmarge ⁹ von 5 μg/m ³ .
Blei im PM ₁₀	0,5 μg/m ³	Jahresmittelwert
Benzol	5 μg/m ³	Jahresmittelwert

Immissionsgrenzwert für **PM**_{2,5} gemäß Anlage 1b:

Als Immissionsgrenzwert der Konzentration von $PM_{2,5}$ gilt der Wert von 25 $\mu g/m^3$ als Mittelwert während eines Kalenderjahres (Jahresmittelwert). Der Immissionsgrenzwert von 25 $\mu g/m^3$ ist ab dem 1. Jänner 2015 einzuhalten.

Schadstoff	Alarmwert	Mittelungszeitraum
SO ₂	500 μg/m ³	Gleitender Dreistundenmittelwert
NO ₂	400 μg/m ³	Gleitender Dreistundenmittelwert

Tabelle 5: Alarmwerte¹⁰ gemäß Anlage 4.

⁹ Toleranzmarge im Sinne des IG-L bezeichnet das Ausmaß, in dem der Immissionsgrenzwert innerhalb der in Anlage 1 festgesetzten Fristen überschritten werden darf, ohne die Erstellung von Statuserhebungen (§ 8) und Programmen (§ 9a) zu bedingen.

Alarmwert im Sinne des IG-L ist ein Wert, bei dessen Überschreitung bei kurzfristiger Exposition ein Risiko für die Gesundheit der Bevölkerung insgesamt besteht und unverzüglich Maßnahmen ergriffen werden müssen.

Tabelle 6: Zielwerte¹¹ gemäß Anlage 5.

Schadstoff	Zielwert	Mittelungszeitraum
PM ₁₀	50 μg/m ³	Tagesmittelwert; pro Kalenderjahr sind sieben Überschreitungen erlaubt
PM ₁₀	20 μg/m ³	Jahresmittelwert
NO ₂	80 μg/m ³	Tagesmittelwert

Tabelle 7: Grenzwerte gemäß Anlage 5b.

Schadstoff	Grenzwert	Mittelungszeitraum
Benzo(a)pyren	1 ng/m ³	Jahresmittelwert
Arsen im PM ₁₀	6 ng/m ³	Jahresmittelwert
Cadmium im PM ₁₀	5 ng/m ³	Jahresmittelwert
Nickel im PM ₁₀	20 ng/m³	Jahresmittelwert

Ozongesetz

Im Ozongesetz werden Informations- und Alarmschwellenwerte sowie Zielwerte für den Ozongehalt in der Luft festgelegt.

Tabelle 8: Informations- und Alarmschwellen für Ozon gemäß Anlage 1.

Art der Schwelle	Wert	Mittelungszeitraum
Informationsschwelle	180 μg/m³	Nicht gleitender Einstundenmittelwert
Alarmschwelle	240 μg/m³	Nicht gleitender Einstundenmittelwert

Tabelle 9: Zielwerte für Ozon gemäß Anlage 2.

Schutzziel	Zielwert	Mittelungszeitraum
Zielwert für den Schutz der menschlichen Gesundheit	120 μg/m³	Höchster (nicht gleitender) Achtstundenmittelwert des Tages; gemittelt über 3 Jahre sind Überschreitungen an maximal 25 Tagen pro Jahr zugelassen
Zielwert für den Schutz der Vegetation	18.000 μg/m³.h	AOT40, berechnet aus den stündlich gleitenden Einstundenmittelwerten von Mai bis Juli, Mittelwert über 5 Jahre

10

¹¹ Zielwert gemäß Anlage 5 oder einer Verordnung nach § 3 Abs. 5 ist die nach Möglichkeit in einem bestimmten Zeitraum zu erreichende Immissionskonzentration, die mit dem Ziel festgelegt wird, die schädlichen Einflüsse auf die menschliche Gesundheit und die Umwelt insgesamt zu vermeiden, zu verhindern oder zu verringern.

Verordnung über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation

Schadstoff	Grenzwert	Mittelungszeitraum
SO ₂	20 μg/m³	Jahresmittelwert und Wintermittelwert
NO _x ⁽¹²⁾	30 μg/m ³	Jahresmittelwert

Tabelle 10: Immissionsgrenzwerte zum Schutz der Ökosysteme und der Vegetation.

Schadstoff	Zielwert	Mittelungszeitraum
SO ₂	50 μg/m ³	Tagesmittelwert
NO ₂	80 μg/m ³	Tagesmittelwert

Tabelle 11: Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

-

 $^{^{12}\,\}text{NO}_{x}$ als Summe von NO und NO $_{2}$ in ppb gebildet und mit dem Faktor 1,9123 in $\mu\text{g/m}^{3}$ umgerechnet

4 WETTERLAGE UND INTERPRETATION DES IMMISSIONSGESCHEHENS

Der Juli 2015 war österreichweit der wärmste Juli seit Beginn meteorologischer Messungen in Österreich, gefolgt von 2006, 1983 und 1994. Im Mittel über ganz Österreich lag die Monatsmitteltemperatur um 3,1 °C über dem Klimamittelwert (1981–2010), wobei es im Norden und Westen mit Abweichungen über 3,5 °C etwas wärmer, südlich des Alpenhauptkamms mit Abweichungen unter 2,5 °C etwas "kühler" war.

Der Norden und Westen Österreichs registrierte deutlich unterdurchschnittliche Regenmengen; in Vorarlberg, im Großteil Oberösterreichs und im westlichen Niederösterreich lagen die Niederschlagsmengen bei weniger als der Hälfte des langjährigen Durchschnitts. Die Gebiete südlich des Alpenhauptkamms erhielten mehr Regen, gebietsweise wurde mehr als das Eineinhalbfache des Klimawertes erreicht.

Der Witterungsverlauf war von zwei sehr warmen Perioden von 1. bis 8.7. sowie von 12. bis 25.7. gekennzeichnet. Ab dem 26.7. war es -v. a. im Westen - relativ kühl.

Entsprechend den meteorologischen Verhältnissen wies der Juli 2015 an fast allen Messstellen des Umweltbundesamtes – ausgenommen Vorhegg – deutlich überdurchschnittliche Ozonkonzentrationen auf. In Enzenkirchen, in Pillersdorf, auf dem Sonnblick und auf dem Zöbelboden wurde der höchste Monatsmittelwert seit Juli 2006 registriert. In Pillersdorf und auf dem Sonnblick wurde jeweils im Juli 1992, 1994, 1995, 2003 und 2006 ein höherer Monatsmittelwert gemessen als 2015.

Die Informationsschwelle für Ozon (180 μ g/m³ als Einstundenmittelwert) wurde am 7.7. in Pillersdorf und am 17.7. in Enzenkirchen überschritten.

Am 7.7. kam es im Raum Wien sowie nordwestlich des Ballungsraumes zu starker regionaler Ozonbildung; insgesamt waren 14 Messstellen von Überschreitungen der Informationsschwelle betroffen. In Klosterneuburg, in Tulln sowie auf dem Hermannskogel in Wien wurde die Alarmschwelle (240 μ g/m³ als Einstundenmittelwert) überschritten.

Am 17.7. überstieg die Ozonspitzenbelastung in großen Teilen Oberösterreichs sowie in Hallein im nördlichen Salzburg die Informationsschwelle. Dafür dürfte Transport hoch belasteter Luftmassen aus Bayern mitverantwortlich gewesen sein.

Die NO₂-Belastung lag an allen Hintergrundmessstellen außer Pillersdorf – wo sie vergleichsweise hoch war – auf durchschnittlichem Niveau.

Die PM_{10} -Belastung lag an den meisten Messstellen auf durchschnittlichem Niveau, in Pillersdorf darunter.

Bei SO₂ registrierten Pillersdorf und Illmitz eine überdurchschnittliche Belastung.

5 VERFÜGBARKEIT – JULI 2015

Tabelle 12: Verfügbarkeit der Halbstundenmittelwerte (bei PM₁0, PM₂,5 und PM₁ der Tagesmittelwerte) in Prozent der maximal möglichen Werte.

	O ₃	SO ₂	NO ₂	NO	СО	PM ₁₀	PM _{2,5}	PM ₁	PM Anzahl	CO ₂	CH₄	NO _y
Enzenkirchen	95	94	94	94		77	77		78			
Illmitz	98	92	78	78	98	94	100	26	100			
Klöch			97	97		100						
Pillersdorf	97	97	97	97		100	100		100			
Sonnblick	94		94	94	94					94	94	92
Vorhegg	97	97	95	95	96	0						
Zöbelboden	98	97	97	97		100	100		100			

Die Verfügbarkeit soll gemäß § 4 (1) der Verordnung über das Messkonzept zum Immissionsschutzgesetz-Luft (MKV) für die Messung mit kontinuierlich registrierenden Immissionsmessgeräten für die Komponenten SO_2 , CO, NO_2 und O_3 mindestens 90 % betragen.

Die PM₁-Messung in Illmitz erfolgt mit Probenahme jeden dritten Tag.

Das kontinuierliche PM-Messgerät war in Enzenkirchen von 1. bis 7.7. defekt.

Das NO_x-Messgerät war in Illmitz von 8. bis 14.7. defekt.

Das PM₁₀-Messgerät in Vorhegg war von Ende Juni bis 14.10. defekt.

6 MONATSMITTELWERTE – JULI 2015

Tabelle 13:: An den Hintergrundmesstellen gemessene Monatsmittelwerte.

	O ₃ µg/m³	SO ₂ µg/m³	NO ₂ µg/m³	NO μg/m³	CO mg/m³	PM ₁₀ µg/m³	PM _{2,5} µg/m³	PM ₁ μg/m³	PM Anzahl Teilchen/m³	CO ₂	CH ₄ ppm	NO _y ppb
Enzenkirchen	96	0.6	6.1	1.0		14	8		115.098			_
Illmitz	91	1.4	5.8	0.6	0.15	18	12	11	133.060			
Klöch			4.6	0.4		17						
Pillersdorf	92	8.0	5.5	0.4		12	6		110.307			
Sonnblick	118		0.5	0.1	0.15					396		1.26
Vorhegg	82	0.2	2.1	0.3	0.15	٧						
Zöbelboden	103	0.3	3.0	0.2		12	8		132.364			_

7 ÜBERSCHREITUNGEN

	O ₃ MW1 > 180 μg/m³	O ₃ MW8 > 120 μg/m³	PM ₁₀ TMW > 50 μg/m³
Enzenkirchen	1	16	0
Illmitz	0	18	0
Klöch			0
Pillersdorf	1	15	0
Sonnblick	0	20	
Vorhegg	0	9	0
Zöbelboden	0	16	0

Tabelle 14: Anzahl der Tage mit Überschreitungen im Juli 2015 .

	O ₃ MW1 > 180 μg/m³	O ₃ MW8 > 120 μg/m³	PM ₁₀ TMW > 50 μg/m³
Enzenkirchen	1	25	0
Illmitz	0	34	7
Klöch			2
Pillersdorf	1	24	2
Sonnblick	0	71	
Vorhegg	0	20	0
Zöbelboden	0	36	0

Tabelle 15: Anzahl der Tage mit Überschreitungen seit Jahresbeginn 2015.

8 TABELLARISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

Tabelle 16: Enzenkirchen – Juli 2015.

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m³	PM Anzahl TMW Teilchen/m³
1.07.	140	135	3.6	1.5	12.1	6.6	1.4	0.7	٧	V	V
2.07.	157	148	2.7	1.0	10.7	6.2	2.5	0.9	٧	٧	V
3.07.	147	143	3.9	1.4	11.4	6.4	1.6	0.9	V	V	V
4.07.	144	133	2.6	0.9	20.5	6.2	1.6	0.9	٧	٧	V
5.07.	145	140	4.0	2.0	10.9	6.3	1.6	8.0	٧	٧	V
6.07.	154	141	10.7	1.6	23.6	8.9	4.7	1.3	٧	V	V
7.07.	157	153	0.2	V	12.4	V	2.0	٧	V	V	V
8.07.	63	53	0.7	٧	9.9	V	2.7	V	16	11	V
9.07.	77	70	1.0	0.4	15.6	7.1	3.0	0.9	11	7	71.870
10.07.	115	110	1.4	0.5	14.7	6.5	13.5	1.8	13	8	106.292
11.07.	138	131	5.1	1.5	21.5	6.1	6.8	0.9	11	6	80.978
12.07.	162	157	1.8	0.8	10.4	6.0	2.1	0.7	17	11	169.497
13.07.	92	126	1.1	0.4	14.7	7.9	2.1	0.9	14	9	103.244
14.07.	78	71	0.6	0.2	14.0	7.1	2.5	0.9	16	11	148.876
15.07.	103	98	0.8	0.3	13.3	6.4	4.8	1.1	12	8	124.625
16.07.	126	117	3.6	0.8	18.8	5.2	7.0	0.8	9	5	101.774
17.07.	181	167	1.5	0.5	8.7	4.5	7.4	0.8	14	7	162.744
18.07.	148	145	0.5	0.3	11.2	5.0	3.5	1.0	14	7	120.378
19.07.	141	132	2.8	0.5	8.9	5.0	2.9	0.9	16	10	159.925
20.07.	110	105	0.3	0.1	9.7	4.6	2.6	0.8	15	9	146.349
21.07.	133	127	0.5	0.1	14.9	4.5	9.8	1.2	21	8	142.407
22.07.	150	142	1.4	0.4	11.7	4.8	6.5	1.1	26	6	106.091
23.07.	119	117	0.4	0.1	10.9	6.7	2.4	0.9	13	9	155.902
24.07.	146	132	1.7	0.2	10.3	6.2	3.1	0.8	20	13	251.280
25.07.	106	105	0.2	0.1	11.6	6.1	4.0	1.1	10	7	97.076
26.07.	113	105	1.8	0.5	44.7	5.3	48.5	2.4	7	4	44.522
27.07.	94	97	1.2	0.4	11.1	5.2	2.3	0.6	6	4	49.354
28.07.	93	88	1.4	0.5	9.9	6.1	2.3	0.7	7	4	36.561
29.07.	96	92	0.7	0.3	10.1	5.3	3.2	0.9	8	6	75.790
30.07.	104	98	1.0	0.4	14.0	6.1	19.3	1.8	12	7	87.474
31.07.	118	113	2.6	0.6	20.4	7.2	7.4	1.2	10	6	64.465
Max.	181	167	10.7	2.0	44.7	8.9	48.5	2.4	26	13	251.280

v: Verfügbarkeit nicht ausreichend

Tabelle 17: Illmitz – Juli 2015.

Datum	O ₃ Max. MW1 µg/m³	O ₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m³	PM₁ TMW µg/m³	PM Anzahl TMW Teilchen/m³
1.07.	156	150	3.2	1.5	18.1	7.4	2.2	0.6	0.16	21	15	k	174.480
2.07.	156	150	4.0	2.2	16.3	6.5	2.6	0.5	0.17	25	18	15	255.130
3.07.	134	122	1.7	1.1	16.3	6.0	1.1	0.4	0.16	26	17	k	151.586
4.07.	122	120	2.1	1.2	8.5	4.2	8.0	0.4	0.15	21	13	k	128.917
5.07.	130	127	5.0	2.1	9.0	4.1	1.5	0.4	0.16	17	12	12	147.804
6.07.	146	141	3.9	1.3	11.5	4.7	3.7	0.6	0.18	24	19	k	256.265
7.07.	153	137	5.6	1.6	10.6	5.9	1.9	0.6	0.19	31	22	k	318.068
8.07.	138	122	1.7	8.0	10.1	٧	1.3	٧	0.20	17	12	10	166.743
9.07.	89	82	1.1	0.6	٧	٧	٧	٧	0.13	13	7	k	35.534
10.07.	118	114	2.0	1.0	٧	٧	٧	٧	0.14	9	7	k	50.975
11.07.	122	114	6.6	3.0	٧	٧	٧	٧	0.13	17	9	9	46.379
12.07.	170	157	8.1	2.5	٧	٧	٧	٧	0.16	20	15	k	105.674
13.07.	122	124	1.6	8.0	٧	٧	٧	٧	0.17	14	9	k	90.517
14.07.	83	87	1.6	٧	5.8	٧	0.5	٧	0.15	9	6	5	67.995
15.07.	110	95	٧	٧	11.1	5.4	2.2	0.6	0.17	13	9	k	107.150
16.07.	132	127	2.1	٧	10.0	6.3	2.7	0.6	0.19	25	14	k	162.716
17.07.	179	164	3.0	1.6	15.2	7.2	2.8	8.0	0.20	24	17	18	253.676
18.07.	145	132	2.3	1.1	8.4	4.8	1.1	0.4	0.17	18	13	k	141.707
19.07.	141	135	5.2	1.4	8.8	5.2	1.8	0.7	0.19	25	19	k	253.333
20.07.	111	105	1.0	8.0	12.5	5.1	1.2	0.5	0.19	13	8	6	99.688
21.07.	131	123	3.9	1.7	16.5	6.4	3.2	0.9	0.18	20	14	k	167.880
22.07.	142	133	7.3	2.6	8.5	4.9	2.1	0.7	0.20	25	17	k	213.011
23.07.	150	139	2.5	1.4	11.1	6.5	0.9	0.5	0.17	16	11	13	111.041
24.07.	162	155	7.2	3.0	10.1	6.2	1.4	0.6	0.19	29	19	k	237.233
25.07.	133	122	1.8	0.9	9.8	5.1	0.9	0.5	0.19	16	13	k	151.116
26.07.	111	102	1.1	0.7	6.5	4.3	0.6	0.3	0.14	k	5	k	25.142
27.07.	89	74	1.9	1.0	13.1	7.6	2.0	0.9	0.16	k	8	k	61.024
28.07.	86	79	1.1	0.7	11.5	6.1	3.0	0.7	0.15	10	7	k	35.759
29.07.	86	80	1.3	0.7	11.5	5.6	0.9	0.5	0.14	6	4	k	35.113
30.07.	104	96	1.1	0.7	10.1	5.7	2.0	0.6	0.14	8	6	k	40.103
31.07.	127	120	2.0	0.9	14.5	7.5	3.3	0.6	0.14	11	6	k	33.942
Max.	179	164	8.1	3.0	18.1	7.6	3.7	0.9	0.20	31	22	18	318.068

v: Verfügbarkeit nicht ausreichend

k: keine Probenahme / kein Wert

Tabelle 18: Klöch – Juli 2015.

Datum	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW μg/m³	NO TMW μg/m³	PM ₁₀ TMW µg/m³
1.07.	17.3	5.9	2.4	0.5	20
2.07.	16.2	5.2	2.2	0.4	19
3.07.	7.3	4.1	0.9	0.3	20
4.07.	5.7	3.3	0.7	0.2	18
5.07.	6.4	3.5	0.5	0.2	19
6.07.	9.0	5.7	0.6	0.3	28
7.07.	18.3	5.9	4.9	0.6	33
8.07.	10.3	4.8	2.3	0.4	24
9.07.	5.6	3.0	0.7	0.3	6
10.07.	10.5	4.4	28.1	1.0	8
11.07.	8.1	5.3	0.5	0.3	15
12.07.	6.1	4.7	1.2	0.3	16
13.07.	10.5	5.3	0.8	0.3	19
14.07.	8.3	4.4	0.8	0.3	12
15.07.	6.9	4.2	2.2	0.4	16
16.07.	13.3	4.9	0.9	0.3	23
17.07.	11.6	5.4	1.5	0.4	31
18.07.	7.2	3.6	3.1	0.3	14
19.07.	6.9	3.7	0.6	0.3	23
20.07.	8.3	3.4	1.4	0.3	11
21.07.	9.9	4.7	1.4	0.3	32
22.07.	10.1	3.8	1.6	0.4	23
23.07.	7.9	4.8	0.7	0.3	23
24.07.	9.3	4.1	1.2	0.3	18
25.07.	7.9	3.6	0.8	0.3	16
26.07.	8.4	3.9	0.7	0.4	7
27.07.	13.3	6.2	2.1	0.5	12
28.07.	11.2	5.2	2.7	0.6	8
29.07.	9.1	4.6	0.7	0.3	6
30.07.	9.9	5.0	0.8	0.3	7
31.07.	8.8	6.5	1.3	0.3	8
Max.	18.3	6.5	28.1	1.0	33

Tabelle 19: Pillersdorf – Juli 2015.

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW μg/m³	NO ₂ TMW μg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m³	PM Anzahl TMW Teilchen/m³
1.07.	138	135	2.6	1.6	12.0	6.4	1.3	0.4	15	10	166.913
2.07.	139	134	5.0	2.7	15.5	6.7	1.2	0.4	15	8	137.485
3.07.	137	132	5.0	2.1	13.0	6.1	1.0	0.3	19	8	145.046
4.07.	145	139	1.9	1.4	12.1	5.7	1.1	0.3	19	10	191.959
5.07.	129	126	2.1	1.3	10.9	4.6	0.6	0.2	15	8	158.988
6.07.	132	122	2.4	1.2	11.6	5.3	0.6	0.3	18	11	233.657
7.07.	196	142	1.9	1.0	11.0	6.2	1.0	0.4	23	13	295.835
8.07.	112	115	0.5	0.3	8.6	5.1	8.0	0.4	13	8	118.835
9.07.	87	79	0.6	0.4	6.6	4.8	1.3	0.5	9	4	30.410
10.07.	99	97	1.8	0.7	8.1	4.7	8.0	0.4	6	3	30.383
11.07.	110	107	1.5	1.0	10.4	5.3	0.6	0.3	8	3	32.672
12.07.	162	155	2.5	1.1	8.0	5.5	8.0	0.3	10	5	86.602
13.07.	125	137	2.5	0.7	7.4	4.5	8.0	0.3	9	7	98.917
14.07.	77	78	0.5	0.4	7.2	4.4	1.1	0.3	7	5	77.801
15.07.	82	81	0.8	0.5	10.0	3.8	0.7	0.3	6	4	68.711
16.07.	144	135	1.6	1.0	11.7	5.7	1.0	0.3	15	7	122.432
17.07.	154	145	1.2	8.0	10.9	6.0	0.7	0.3	18	8	154.462
18.07.	150	139	1.3	8.0	9.9	5.7	1.9	0.4	15	7	120.177
19.07.	128	121	0.9	0.4	14.4	7.0	1.1	0.6	18	10	177.005
20.07.	99	103	0.5	0.4	11.4	4.6	0.6	0.4	9	5	82.885
21.07.	112	104	1.1	0.5	12.0	6.7	2.1	0.5	15	6	103.006
22.07.	172	146	1.3	0.7	11.3	6.5	1.4	0.5	16	6	115.520
23.07.	121	118	0.6	0.4	9.0	5.5	0.5	0.4	13	6	115.843
24.07.	169	147	2.7	0.9	9.9	6.2	1.1	0.4	20	10	178.202
25.07.	113	118	1.1	0.5	10.6	5.6	1.2	0.4	16	10	168.365
26.07.	110	105	0.5	0.4	7.4	4.3	8.0	0.3	4	2	26.513
27.07.	85	92	8.0	0.5	11.1	7.3	1.9	0.7	5	4	48.772
28.07.	93	90	1.0	0.5	10.0	6.0	2.3	0.7	6	3	30.290
29.07.	97	89	0.5	0.4	10.4	4.9	1.5	0.4	5	3	39.300
30.07.	109	103	0.5	0.4	6.2	3.9	0.9	0.3	5	3	28.383
31.07.	120	116	2.6	0.9	12.5	5.9	1.0	0.3	8	3	34.563
Max.	196	155	5.0	2.7	15.5	7.3	2.3	0.7	23	13	295.835

Tabelle 20: Sonnblick – Juli 2015.

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	CO ₂ TMW ppm	CH₄ TMW ppm	NO _y Max. HMW ppb	NO _y TMW ppb
1.07.	118	124	0.6	0.3	0.1	0.1	0.15	398	1.9	1.65	1.00
2.07.	141	137	0.9	0.4	0.2	0.1	0.15	399	1.9	2.23	1.34
3.07.	135	132	0.6	0.3	0.1	0.1	0.15	400	1.9	1.99	1.26
4.07.	132	125	0.6	0.4	0.1	0.1	0.14	400	1.9	1.60	1.06
5.07.	142	138	0.7	0.3	0.1	0.1	0.15	399	1.9	1.52	1.15
6.07.	120	117	1.3	0.5	0.2	0.1	0.16	399	1.9	1.98	1.40
7.07.	123	119	0.6	0.4	0.1	0.1	0.17	396	1.9	1.64	1.47
8.07.	140	135	2.0	V	0.4	V	0.17	٧	٧	2.49	V
9.07.	102	99	1.3	٧	0.2	V	0.14	V	V	1.60	V
10.07.	126	118	1.3	0.5	0.1	0.1	0.15	395	1.9	1.49	0.85
11.07.	136	133	0.7	0.4	0.1	0.1	0.17	396	1.9	1.85	0.94
12.07.	148	138	0.8	0.5	0.1	0.1	0.18	394	1.9	2.15	1.71
13.07.	153	148	1.0	0.5	0.1	0.1	0.18	395	1.9	1.85	1.20
14.07.	128	119	0.6	0.4	0.1	0.1	0.17	395	1.9	1.35	1.11
15.07.	144	139	0.5	0.4	0.1	0.1	0.18	393	1.9	2.11	٧
16.07.	160	149	0.7	0.5	0.1	0.1	0.19	392	1.9	2.41	1.74
17.07.	159	157	2.5	0.6	0.1	0.1	0.17	395	1.9	2.39	1.65
18.07.	164	149	8.0	0.5	0.1	0.1	0.15	397	1.9	2.71	1.39
19.07.	154	146	1.0	0.5	0.1	0.1	0.16	397	1.9	1.82	1.54
20.07.	139	137	0.6	0.4	0.1	0.1	0.16	397	1.9	1.36	1.18
21.07.	139	134	0.7	0.4	0.1	0.1	0.17	396	1.9	1.96	1.29
22.07.	139	130	0.7	0.4	0.1	0.1	0.16	396	1.9	1.79	1.32
23.07.	161	152	1.0	0.5	0.1	0.1	0.16	399	1.9	1.63	1.27
24.07.	164	159	0.7	0.5	0.1	0.1	0.16	398	1.9	1.58	1.45
25.07.	153	152	1.1	0.6	0.2	0.1	0.15	398	1.9	1.52	1.18
26.07.	116	108	1.0	0.5	0.2	0.1	0.15	393	1.9	1.07	0.94
27.07.	110	106	0.7	0.5	0.2	0.1	0.15	395	1.9	1.14	0.90
28.07.	112	107	0.9	0.5	0.1	0.1	0.16	394	1.9	1.50	1.31
29.07.	109	105	1.0	0.7	0.3	0.1	0.16	395	1.9	1.46	1.20
30.07.	94	87	2.5	1.0	0.2	0.1	0.15	394	1.9	1.94	1.18
31.07.	118	111	0.6	0.4	0.1	0.1	0.15	390	1.9	1.33	0.91
Max.	164	159	2.5	1.0	0.4	0.1	0.19	400	1.9	2.71	1.74

v: Verfügbarkeit nicht ausreichend

Tabelle 21: Vorhegg – Juli 2015.

Datum	O ₃ Max. MW μg/m³	O₃ 1 Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW μg/m³	NO TMW µg/m³	CO Max. MW8g mg/m³	PM ₁₀ TMW µg/m³
1.07.	123	118	0.5	0.3	3.2	٧	0.5	٧	0.16	٧
2.07.	109	114	0.3	0.1	3.3	2.2	1.0	0.3	0.16	٧
3.07.	109	97	0.4	0.1	3.3	1.7	2.2	0.3	0.13	V
4.07.	113	100	0.3	0.1	2.8	1.8	0.8	0.3	0.17	٧
5.07.	120	111	0.3	0.2	2.4	1.7	0.6	0.3	0.17	٧
6.07.	107	109	0.3	0.2	3.6	1.8	0.6	0.3	0.17	٧
7.07.	144	133	0.5	0.2	3.2	1.9	0.7	0.3	0.19	٧
8.07.	115	126	0.2	0.1	3.2	2.2	0.7	0.3	0.19	V
9.07.	85	81	0.3	0.1	3.2	2.1	0.6	0.3	0.15	٧
10.07.	99	93	0.4	0.2	4.2	2.3	0.9	0.3	0.13	٧
11.07.	113	103	0.5	0.2	3.8	2.2	2.4	0.3	0.15	٧
12.07.	141	133	0.9	0.4	3.6	1.8	0.4	0.2	0.15	٧
13.07.	95	122	0.3	0.1	4.7	2.4	1.2	0.3	0.16	٧
14.07.	116	108	0.4	0.2	4.7	2.3	8.0	0.3	0.16	٧
15.07.	149	139	1.0	0.3	5.6	2.2	0.7	0.2	0.17	٧
16.07.	151	147	1.2	0.4	5.7	2.6	0.9	0.4	0.20	٧
17.07.	146	136	0.6	0.2	5.1	2.1	0.9	0.3	0.20	٧
18.07.	146	126	1.3	0.2	2.8	1.7	0.7	0.2	0.15	٧
19.07.	142	136	0.7	0.3	2.7	1.8	0.6	0.2	0.18	٧
20.07.	113	112	0.6	0.2	4.8	2.1	1.6	0.3	0.17	V
21.07.	119	106	0.6	0.2	3.1	1.9	0.5	0.3	0.16	٧
22.07.	133	116	1.1	0.4	5.0	1.8	1.3	0.2	0.16	٧
23.07.	121	115	0.8	0.3	3.1	2.0	1.1	0.3	0.15	٧
24.07.	109	106	0.2	0.1	3.0	2.0	0.5	0.3	0.14	٧
25.07.	93	87	0.2	0.1	3.7	1.9	1.3	0.4	0.15	V
26.07.	74	74	0.1	<0.1	3.7	1.9	0.5	0.2	0.14	٧
27.07.	59	60	0.3	<0.1	7.2	2.8	5.2	0.6	0.14	٧
28.07.	64	59	0.1	<0.1	4.4	3.0	0.9	0.4	0.15	٧
29.07.	48	50	0.1	<0.1	4.5	3.3	0.4	0.3	0.15	٧
30.07.	61	54	0.1	<0.1	4.0	2.8	0.6	0.3	0.14	٧
31.07.	91	88	0.2	0.1	2.4	1.7	3.2	0.2	0.13	٧
Max.	151	147	1.3	0.4	7.2	3.3	5.2	0.6	0.20	V

v: Verfügbarkeit nicht ausreichend

Tabelle 22: Zöbelboden – Juli 2015.

Datum	O₃ Max. MW1 µg/m³	O₃ Max. MW8 µg/m³	SO ₂ Max. HMW µg/m³	SO ₂ TMW µg/m³	NO ₂ Max. HMW µg/m³	NO ₂ TMW µg/m³	NO Max. HMW µg/m³	NO TMW µg/m³	PM ₁₀ TMW µg/m³	PM _{2,5} TMW µg/m³	PM Anzahl TMW Teilchen/m³
1.07.	140	132	0.4	٧	4.8	3.1	0.3	0.2	14	10	168.353
2.07.	151	147	0.9	0.5	5.5	3.9	0.3	0.2	23	17	295.511
3.07.	141	148	0.9	0.4	5.0	3.5	0.4	0.2	24	18	321.810
4.07.	121	128	0.5	0.3	2.9	2.4	0.2	0.2	16	12	221.694
5.07.	133	129	0.5	0.2	2.7	2.1	0.2	0.2	19	12	234.056
6.07.	146	142	0.8	0.3	6.0	3.5	0.4	0.2	20	13	225.009
7.07.	136	142	0.4	0.2	5.0	2.9	0.4	0.2	24	16	304.617
8.07.	126	114	0.4	0.1	5.1	3.7	0.3	0.2	10	7	87.386
9.07.	86	78	0.6	0.1	4.5	3.6	0.5	0.2	6	4	41.845
10.07.	121	118	1.3	0.5	4.8	4.2	0.5	0.2	10	7	85.025
11.07.	145	143	1.2	0.4	4.8	3.6	0.2	0.2	11	7	100.600
12.07.	161	155	1.0	0.6	5.1	3.6	0.2	0.1	16	9	124.746
13.07.	130	151	0.8	0.3	6.8	4.2	0.6	0.2	8	6	70.151
14.07.	101	85	0.3	0.1	4.2	3.3	0.3	0.2	10	7	90.380
15.07.	112	107	1.3	0.5	8.3	4.2	0.8	0.3	14	9	145.602
16.07.	120	113	0.2	0.2	3.5	2.3	0.2	0.2	12	8	156.557
17.07.	167	162	0.3	0.2	3.4	2.4	0.2	0.2	12	8	159.106
18.07.	148	145	1.2	0.2	4.2	2.5	0.2	0.2	11	7	105.635
19.07.	138	135	1.5	0.3	4.0	2.4	0.2	0.2	13	9	155.521
20.07.	110	114	0.5	0.2	3.9	2.6	0.3	0.2	12	9	129.531
21.07.	130	123	0.6	0.2	3.1	2.3	0.2	0.2	11	8	136.085
22.07.	134	121	0.5	0.2	3.5	2.1	0.3	0.2	11	7	153.198
23.07.	135	129	0.5	0.2	5.2	3.7	0.3	0.2	11	8	116.028
24.07.	122	116	0.6	0.1	5.0	2.7	0.3	0.2	12	9	166.776
25.07.	120	118	1.0	0.2	4.9	2.8	0.2	0.2	8	6	81.807
26.07.	104	102	0.5	0.2	3.9	2.7	0.3	0.2	5	3	35.555
27.07.	88	83	0.4	0.1	4.9	3.1	0.4	0.2	5	4	42.217
28.07.	83	79	0.3	0.1	4.4	2.6	0.2	0.2	5	3	26.795
29.07.	104	92	0.3	0.1	5.1	2.3	0.4	0.2	3	2	19.671
30.07.	85	79	0.2	0.1	4.0	3.0	0.4	0.2	7	5	52.185
31.07.	113	108	0.4	0.2	3.6	2.8	0.4	0.2	7	5	49.825
Max.	167	162	1.5	0.6	8.3	4.2	8.0	0.3	24	18	321.810

v: Verfügbarkeit nicht ausreichend

9 GRAPHISCHE DARSTELLUNG VON TAGESMITTELWERTEN UND TÄGLICHEN MAXIMALWERTEN

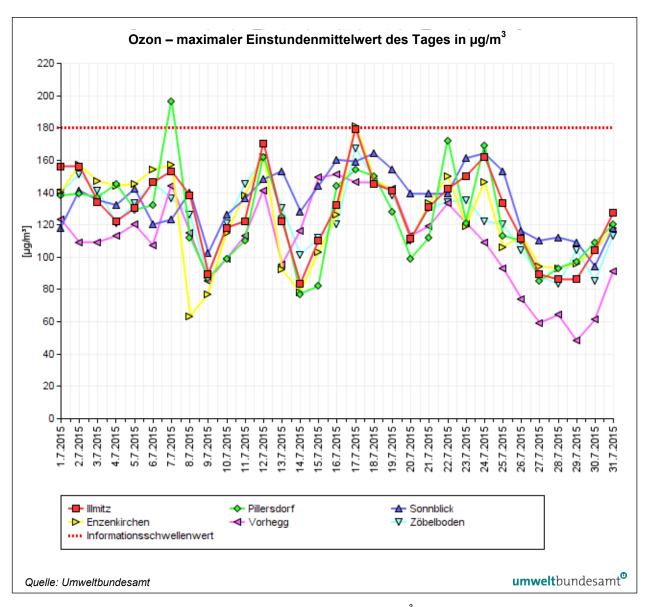


Abbildung 2: Ozon – maximaler Einstundenmittelwert des Tages in μg/m³.

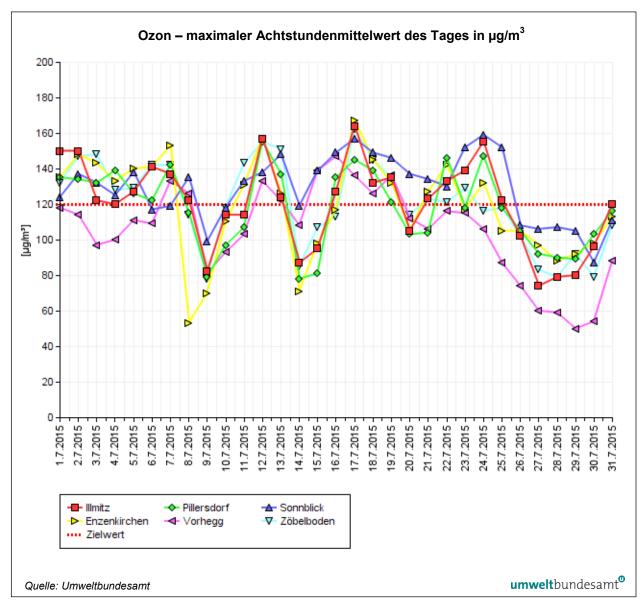


Abbildung 3: Ozon – maximaler Achtstundenmittelwert des Tages in $\mu g/m^3$.

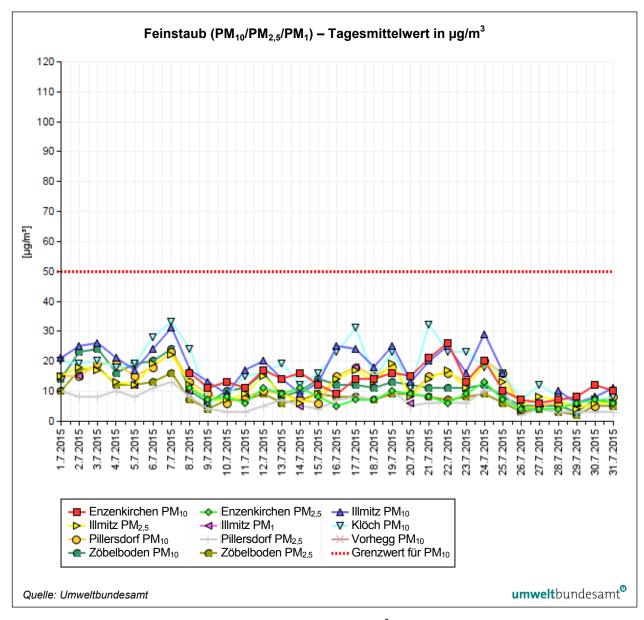


Abbildung 4: Feinstaub ($PM_{10}/PM_{2,5}/PM_1$) – Tagesmittelwert in $\mu g/m^3$.

10 ABKÜRZUNGEN UND ERLÄUTERUNGEN

Luftschadstoffe

AOT40..... Accumulated Ozone exposure over a Threshold of 40 ppb

CH4..... Methan

CO..... Kohlenstoffmonoxid

CO₂ Kohlenstoffdioxid

EMEP......Co-operative programme for monitoring and evaluation of the long-range transmissions of air pollutants in Europe (http://www.emep.int/)

GAW Global Atmospheric Watch (www.wmo.int/gaw)

NO..... Stickstoffmonoxid

NO₂ Stickstoffdioxid

NO_x Summe aus NO und NO₂

NO_v oxidierte Stickstoffverbindungen

NWG Nachweisgrenze

O₃.....Ozon

 $PM_{10}.....$ Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 10 μ m eine Abscheidewirksamkeit von 50 % aufweist

 $PM_{2,5}$Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 2,5 μm eine Abscheidewirksamkeit von 50 % aufweist

PM₁ Partikel, die einen größenselektierenden Lufteinlass passieren, der für einen aerodynamischen Durchmesser von 1 μm eine Abscheidewirksamkeit von 50 % aufweist

SO₂......Schwefeldioxid

WMO...... World Meteorological Organization (www.wmo.int)

Einheiten

mg/m³..... Milligramm pro Kubikmeter

μg/m³...... Mikrogramm pro Kubikmeter

ppb parts per billion

ppm parts per million

 $1 \text{ mg/m}^3 = 1.000 \mu \text{g/m}^3$

1 ppm = 1.000 ppb

Umrechnungsfaktoren zwischen Mischungsverhältnis, angegeben in ppb bzw. ppm, und Konzentration in $\mu g/m^3$ bzw. mg/m^3 bei 1.013 hPa und 20 °C (Normbedingungen).

Mittelwerte

Die entsprechende Zeitangabe bezieht sich stets auf das Ende des jeweiligen Mittelungszeitraumes. Alle Zeitangaben erfolgen in Mitteleuropäischer Zeit (MEZ).

	Definition	Mindestzahl der HMW, um einen gültigen Mittelwert zu bilden (gemäß ÖNORM M 5866, April 2000)		
HMW	Halbstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)			
MW1	Einstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	2		
MW3	gleitender Dreistundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	4		
MW8g	halbstündlich gleitender Achtstundenmittelwert (48 Werte pro Tag zu jeder halben Stunde)	12		
MW8	Achtstundenmittelwert mit stündlicher Fortschreitung (24 Werte pro Tag zu jeder vollen Stunde)	12		
TMW	Tagesmittelwert	40		
MMW	Monatsmittelwert	75 %		
JMW	Jahresmittelwert	75 % im Sommer und im Winter		
WMW	Wintermittelwert	75 % in jeder Hälfte der Beurteilungsperiode		

11 LITERATURVERZEICHNIS

- UMWELTBUNDESAMT (2014): Spangl, W. & Nagl, C.: Luftgütemessungen und meteorologische Messungen. Jahresbericht Hintergrundmessnetz Umweltbundesamt 2013. Reports, Bd. REP-0470. Umweltbundesamt, Wien.
- UMWELTBUNDESAMT (2014a): Spangl, W.: Jahresbericht der Luftgütemessungen in Österreich 2013. Reports, Bd. REP-0469. Umweltbundesamt, Wien.
- UMWELTBUNDESAMT (2015): Spangl, W.: Luftgütemessstellen in Österreich. Stand Jänner 2015. Reports, Bd. REP-0522. Umweltbundesamt, Wien.

Rechtsnormen und Leitlinien

- Tochterrichtlinie (RL 2004/107/EG): Richtlinie des Europäischen Parlaments und des Rates vom 15. Dezember 2004 über Arsen, Kadmium, Quecksilber, Nickel und polyzyklische aromatische Kohlenwasserstoffe in der Luft. ABI. Nr. L 23/3.
- Ec Wg European Commission Working Group on Guidance for the Demonstration of Equivalence (2010): Guide to the demonstration of equivalence of ambient air monitoring methods.
- Immissionsschutzgesetz-Luft (IG-L; BGBI. I 115/1997 i. d. g. F.): Bundesgesetz zum Schutz vor Immissionen durch Luftschadstoffe, mit dem die Gewerbeordnung 1994, das Luftreinhaltegesetz für Kesselanlagen, das Berggesetz 1975, das Abfallwirtschaftsgesetz und das Ozongesetz geändert werden.
- Luftqualitätsrichtlinie (RL 2008/50/EG): Richtlinie des europäischen Parlaments und des Rates vom 21. Mai 2008 über Luftqualität und saubere Luft für Europa. ABI. Nr. L 152/1.
- Messkonzept-Verordnung zum IG-L (MKV; BGBI. II 358/1998 i. d. g. F.): Verordnung des Bundesministers für Umwelt, Jugend und Familie über das Messkonzept zum Immissionsschutzgesetz-Luft.
- ÖNORM EN 12341 (1999): Außenluft Gravimetrisches Standardmessverfahren für die Bestimmung der PM₁₀- oder PM_{2,5}-Massenkonzentration des Schwebstaubes.
- ÖNORM EN 14211 (2005): Luftqualität Messverfahren zur Bestimmung der Konzentration von Stickstoffdioxid und Stickstoffmonoxid mit Chemilumineszenz.
- ÖNORM EN 14212 (2005): Luftqualität Messverfahren zur Bestimmung der Konzentration von Schwefeldioxid mit Ultraviolett-Fluoreszenz.
- ÖNORM EN 14625 (2005): Luftqualität Messverfahren zur Bestimmung der Konzentration von Ozon mit Ultraviolett-Photometrie.
- ÖNORM EN 14626 (2005): Luftqualität Messverfahren zur Bestimmung der Konzentration von Kohlenmonoxid mit nicht-dispersiver Infrarot-Photometrie.
- ÖNORM EN 14907 (2005): Luftbeschaffenheit Gravimetrisches Standardmessverfahren für die Bestimmung der PM_{2,5}-Massenfraktion des Schwebstaubes.
- ÖNORM M 5866 (2000): Luftreinhaltung Bildung von Immissionsmessdaten und daraus abgeleiteten Immissionskennwerten.

- Ozongesetz (BGBI. Nr. 210/1992 i.d.g.F.): Bundesgesetz über Maßnahmen zur Abwehr der Ozonbelastung und die Information der Bevölkerung über hohe Ozonbelastungen, mit dem das Smogalarmgesetz (BGBI. Nr. 38/1989) geändert wird.
- Ozon-Messkonzeptverordnung (BGBI. Nr. II 99/2004): Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über das Messkonzept und das Berichtswesen zum Ozongesetz.
- VO BGBI. II 298/2001: Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über Immissionsgrenzwerte und Immissionszielwerte zum Schutz der Ökosysteme und der Vegetation.

Umweltbundesamt GmbH

Spittelauer Lände 5 1090 Wien/Österreich

Tel.: +43-(0)1-313 04 Fax: +43-(0)1-313 04/5400

office@umweltbundesamt.at www.umweltbundesamt.at

Gemäß Immissionsschutzgesetz Luft und Ozongesetz erhebt das Umweltbundesamt die großräumige Luftschadstoffbelastung in Österreich. Dazu betreibt das Umweltbundesamt insgesamt sieben Luftgütemessstellen.

Der Juli 2015 war der wärmste seit Beginn meteorologischer Messungen in Österreich. Der Norden und Westen waren extrem trocken; im Süden lagen die Niederschlagsmengen über dem Durchschnitt.

An allen Messstellen außer Vorhegg wurde eine deutlich überdurchschnittliche Ozonbelastung gemessen, in Enzenkirchen, in Pillersdorf, auf dem Sonnblick und auf dem Zöbelboden wurde der höchste Monatsmittelwert seit Juli 2006 registriert. Die Informationsschwelle wurde in Enzenkirchen und Illmitz an jeweils einem Tag überschritten. Die Feinstaub-Belastung (PM_{10}) und die Stickoxid-Belastung (NO_2) waren an den meisten Messstellen durchschnittlich, in Pillersdorf wurde eine hohe NO_2 -Belastung registriert.

