

UNTERSUCHUNGEN VON STRASSENSTAUB AUF PAH IM GROSSRAUM WIEN

Untersuchungen von Straßenstaub auf PAH im Großraum Wien

BE-090

Wien, Juli 1997

Bundesministerium für Umwelt, Jugend und Familie

Autoren:

Peter Seif Thomas Remesch

Impressum

Medieninhaber und Herausgeber: Umweltbundesamt, Spittelauer Lände 5, A-1090 Wien

Druck: Eigenvervielfältigung

© Umweltbundesamt, Wien, 1997 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-381-2

ZUSAMMENFASSUNG

polycylischen aromatischen mit Straßenstaub Um die Belastung von Kohlenwasserstoffen (PAH) zu erfassen, wurde im Großraum Wien eine orientierende Untersuchung durchgeführt. Dabei wurden an neun Probenahmeorten, denen fünf an stark befahrenen Straßen (Donauuferautobahn, A23-Südosttangente, Hadikgasse, Neubaugürtel, Spittelauer Lände), drei an stärker frequentierten Orten (Westbahnhof, Flughafen Wien-Schwechat und Shopping City Süd) und einer am Radweg Donaukanal lagen, Straßenstäube gesammelt und ihre PAH-Gehalte bestimmt. Es wurden 17 PAH (15 EPA-PAH ohne Naphthalin + Benzo(e)pyren + Coronen) erfaßt. Um auch die saisonalen Unterschiede zu erfassen, wurde im Frühjahr und Sommer 1996 je eine Probenahme durchgeführt.

In Abhängigkeit vom Ort und von der Zeit der Probenahme wurden PAH-Konzentrationen (Summe der 17 PAH) von 1.8 bis 15.5 mg/kg Straßenstaub gefunden. Im Vergleich mit von YANG & BAUMANN (1995) in deutschen Städten untersuchten Straßenstäuben waren die Straßenstäube im Großraum Wien größtenteils weitaus weniger belastet.

Die PAH-Belastungen waren zumeist in den im Frühjahr gezogenen Straßenstäuben um das 1.4 - 2.7 fache höher als in den im Sommer genommenen Proben. Dies ist einerseits darauf zurückzuführen , daß im März und April noch geheizt wurde, andererseits ist das Verkehrsaufkommen im Ferienmonat August weitaus geringer.

Im Frühjahr waren die Straßenstäube, die an den stark befahrenen Straßen wie der Donauuferautobahn, der Hadikgasse, des Neubaugürtels, der A23 und der Spittelauer Lände sowie beim Westbahnhof genommen wurden, am stärksten belastet. Im Sommer konnten in den Straßenstäuben beim Westbahnhof, an der Donauuferautobahn und an der Spittelauer Lände die höchsten PAH-Konzentrationen nachgewiesen werden. Die relativ geringen PAH-Belastungen der Straßenstäube bei der Hadikgasse, beim Neubaugürtel und bei der A23 können mit dem im Sommer verringerten Verkehrsaufkommen erklärt werden.

Bei der PAH-Verteilung konnten keine relevanten Unterschiede zwischen den einzelnen Standorten festgestellt werden. Die höchsten Gehalte konnten beim Fluoranthen und Pyren (und bei den meisten Proben auch beim Phenanthren) nachgewiesen werden.

Es wurde festgestellt, daß die PAH-Konzentrationen umso höher sind, je kleiner die Straßenstaubpartikel sind. Die PAH lagern sich also besser an Teilchen mit kleinerer Korngröße an. Betrachtet man die prozentuellen PAH-Verteilungen in den einzelnen Fraktionen, sieht man, daß sich die Hauptmenge der PAH in den Partikelfraktionen mit kleinerer Korngröße (< 500 µm) befindet. TAKADA, ONDA, HARADA und OGURA (1991) weisen in ihrer Publikation darauf hin, daß diese feinen Partikel mit effizient mit einer konventionellen den höchsten PAH-Gehalten nicht Straßenreinigung entfernt werden können und so zu einem großen Teil in die Gewässer abgespült werden.

INHALTSVERZEICHNIS

EINLEITUNG	2
UNTERSUCHUNGEN	10
ANHANG	
ANALYSENERGEBNISSE1	5
ANALYSENMETHODEN 3	31
LITERATUR	Ю

1 EINLEITUNG

Zu den polycylischen aromatischen Kohlenwasserstoffen (PAH) gehören einige hundert verschiedene Verbindungen, die aus einer unterschiedlichen Anzahl an kondensierten Benzolringen (manchmal mit zusätzlichen Fünferringen) aufgebaut sind und nur Kohlenstoff und Wasserstoff enthalten. Sie sind ubiquitär nachzuweisen und haben unterschiedliche chemische und toxikologische Eigenschaften.

Aufgrund der großen Anzahl der PAH werden zur Analyse gewisse von verschiedenen Institutionen als umweltrelevant angesehene Leitsubstanzen herangezogen. So empfiehlt die Weltgesundheitsorganisation WHO die Bestimmung von 6 Leit-PAH, die amerikanische Umweltbehörde EPA in ihrer Liste gefährlicher Umweltschadstoffe, der "priority pollutants list", den Nachweis von 16 PAH-Leitsubstanzen (in Tabelle 1 mit [WHO] bzw. [EPA] gekennzeichnet).

Die 6 Leit-PAH der WHO werden in der Literatur auch öfters als DIN-PAH bezeichnet (nach DIN 38409 Teil 13). Die Bestimmung dieser 6 Leitsubstanzen in der Umwelt ist auch in europäischen Regelwerken wie der RICHTLINIE DES RATES 80/778/EWG über die Qualität von Wasser für den menschlichen Gebrauch, der RICHTLINIE DES RATES 79/869/EWG über die Meßmethoden sowie über die Häufigkeit der Oberflächenwassers für Analysen des und der Probenahmen Trinkwassergewinnung in den Mitgliedsstaaten und der RICHTLINIE DES RATES 75/440/EWG über die Qualitätsanforderungen an Oberflächenwasser für die Trinkwassergewinnung in den Mitgliedsstaaten vorgesehen. In den österreichischen Regelwerken wie der WASSERGÜTE-ERHEBUNGSVERORDNUNG - WGEV (1991), der GRUNDWASSERSCHWELLENWERTVERORDNUNG - GSwV (1991), OBERFLÄCHEN-TRINKWASSERVERORDNUNG (1995)ENTWURFES der IMMISSIONSVERORDNUNG FLIESSGEWÄSSER - ImVF (1993) ist ebenfalls die Erfassung dieser 6 Leit-PAH vorgeschrieben.

In den 16 PAH-Leitsubstanzen der EPA sind die 6 Leit-PAH der WHO enthalten. Aufgrund der Fortschritte im Bereich der Gerätetechnik und der Trennsäulentechnologie ist man in den letzten Jahren dazu übergegangen, vermehrt die EPA-PAH nachzuweisen.

Im Umweltbundesamt wird eine Methode angewandt, mit der 15 EPA-PAH (ohne das Naphthalin) und zusätzlich die PAH Benzo(e)pyren und Coronen bestimmt werden (siehe Tabelle 1). Das Naphthalin, das keine karzinogene Wirkung hat, wird mit dieser Methode nicht erfaßt.

Bei einem Teil der PAH besteht aufgrund von Tierversuchen der Verdacht, daß sie kazinogen und mutagen wirken. Sicher krebserregend sind von den untersuchten PAH Benzo(a)pyren, Benzo(b)fluoranthen, Benzo(k)fluoranthen, Benzo(a)anthracen, Dibenzo(a,h)anthracen und Indeno(1,2,3-c,d)pyren (IARC-MONOGRAPHIEN, 1988). Da es keine vergleichbaren Daten für Menschen gibt, empfehlen die Autoren, diese karzinogenen PAH so zu beurteilen, als ob sie für den Menschen auch krebserregend wären.

Die PAH entstehen vor allem bei der unvollständigen Verbrennung und bei Pyrolyseprozessen von organischem Material. Im Rahmen der österreichischen Luftschadstoff-Inventur hat das Umweltbundesamt erhoben, daß im Jahr 1994 in Österreich etwa 458 Tonnen an PAH emittiert wurden. Der Sektor der Kleinverbraucher (Haushalte, Gewerbe und Verwaltung) ist für mehr als 97 % der Gesamtemissionen verantwortlich, wobei der Hausbrand mit 350 Tonnen der größte PAH-Emittent in Österreich ist. 97 % (oder 340 Tonnen) der aus dem Hausbrand emittierten PAH stammen von der Verfeuerung von Holzbrennstoffen, die im Haushaltsbereich ca. 35 % des Energiebedarfs decken. Vom Straßenverkehr werden ca. 7.5 Tonnen PAH (1.6 % der Gesamtemissionen) und vom sonstigen Verkehr (Schiffahrt, Flugverkehr, etc.) etwa 3.8 Tonnen PAH (0.8 % der Gesamtemissionen) emittiert. Ca. 1.3 Tonnen PAH (0.3 % der Gesamtemissionen) stammt von anderen Emittentengruppen, vor allem von industriellen Prozeßemissionen (KÖNIG, RADUNSKY und RITTER, 1997).

Bei den unvollständigen Verbrennungsvorgängen werden die PAH in die Luft abgegeben und zum größten Teil an Staub- und Rußpartikel gebunden, mit denen sie ubiquitär verbreitet werden. Sie sind daher in hohen Konzentrationen im Straßenstaub vorhanden. YANG und BAUMANN (1995) fanden in deutschen Städten wie Mainz, Hannover, Mannheim, Wiesbaden, Frankfurt und Berlin PAH-Gehalte von 1.4 bis 216 mg/kg Straßenstaub. In Tokyo, Japan, wurden von TAKADA, ONDA, HARADA und OGURA (1991) PAH-Konzentrationen von 1.4 bis 26.2 mg/kg Straßenstaub nachgewiesen. Von SMITH, EDELHAUSER und HARRISON (1995) wurden in Birmingham, Großbritannien, PAH-Gehalte von 14.6 bis 99.6 mg/kg Straßenstaub festgestellt.

Im Straßenstaub sind verschiedene Schadstoffe vorhanden, die von verwitterten Straßenoberfläche, Autoabgasen, Motorölen, Benzin-Materialien der Dieselkraftstoffen, Reifenabriebteilchen sowie von Staub und Ruß aus der Luft stammen. Der Straßenstaub wird einerseits vom Wind verblasen und belastet die Luft, andererseits wird er durch Regenfälle von den Straßen in Flüsse und Seen abgespült und verunreinigt die Gewässer. Er ist daher eine wichtige Schadstoffquelle für die Belastung der aquatischen und atmosphärischen Umwelt (TAKADA, ONDA, HARADA und OGURA,1991). Die PAH werden überwiegend in partikulär gebundener Form von der Straße abgespült (KERN, WÜST, DAUB, STRIEBEL und HERRMANN, 1992). GIGER und SCHAFFNER (1978) glauben, daß die PAH im Sediment des Greifensees, eines kleinen Sees in einer dicht bevölkerten Gegend in der Schweiz, hauptsächlich vom Straßenstaub, der in den See abgespült wird, stammen. WAKEHAM, SCHAFFNER und GIGER (1980) verglichen die PAH-Verteilungen in den oberen Sedimentschichten des Luzerner Sees, des Züricher Sees und des Greifensees in der Schweiz und des Lake Washington in den USA mit den PAH-Verteilungsmuster von Straßenstaub, verwittertem und frischem Asphalt, Autoabgasen und Kraftstoffen, von denen die PAH in den Sedimenten stammen könnten. Sie nehmen an, daß der PAH-Eintrag in die Sedimente zum größten Teil vom Straßenabfluß des Straßenstaubes verursacht werden könnte.

In internationalen Untersuchungen wurden hohe PAH-Gehalte in Straßenstaub festgestellt. Da uns keine Daten über die PAH-Belastung von Straßenstaub in Österreich bekannt sind, wurde eine orientierende Untersuchung im Großraum Wien durchgeführt. Um auch die saisonalen Unterschiede zu erfassen, wurde im Frühjahr und Sommer 1996 je eine Straßenstaubprobe an neun verschiedenen Stellen

gesammelt und ihre PAH-Gehalte bestimmt. Es wurden 17 PAH (15 EPA-PAH ohne Naphthalin + Benzo(e)pyren + Coronen) an neun Probeorten erfaßt.

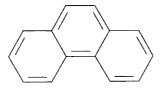
In der nachfolgenden Tabelle sind die im Straßenstaub bestimmten PAH angeführt :

Tabelle 1: Bezeichnung, Kurzbezeichnung, EPA- bzw. WHO-Leitsubstanz, Struktur- und Summenformel, molare Masse und CAS-Nr. der untersuchten PAH

Bezeichnung (Kurzbezeichnung) [EPA] bzw. [WHO]
Strukturformel
Summenformel
molare Masse (M)
CAS-Nr. (Chemical Abstracts System)

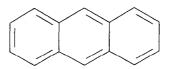
ACENAPHTHEN (Ane) [EPA]

$$C_{12}H_{10}$$


$$M = 154,2 \text{ g/mol}$$

$$83-32-9$$

FLUOREN (Flu) [EPA]


 $C_{13}H_{10}$ M = 166,2 g/mol 86-73-7

PHENANTHREN (Phe) [EPA]

 $C_{14}H_{10}$ M = 178,2 g/mol 85-01-8

ANTHRACEN (Ant) [EPA]

 $C_{14}H_{10}$ M = 178,2 g/mol 120-12-7

FLUORANTHEN (Fan) [EPA, WHO]

 $C_{16}H_{10}$ M = 202,3 g/mol 206-44-0

PYREN (Pyr) [EPA] C₁₆H₁₀ M = 202,3 g/mol 129-00-0

BENZO(A)ANTHRACEN (BaA) [EPA]
$$C_{18}H_{12}$$

$$M = 228,3 \text{ g/mol}$$

$$56-55-3$$

BENZO(E)PYREN (BeP)

 $C_{20}H_{12}$ M = 252,3 g/mol 192-97-2

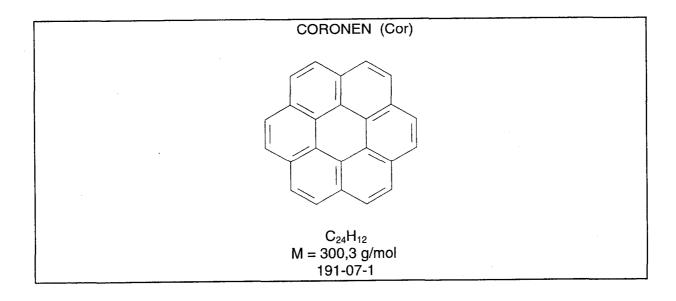
BENZO(B)FLUORANTHEN (BbF) [EPA, WHO]

 $C_{20}H_{12}$ M = 252,3 g/mol 205-99-2

BENZO(K)FLUORANTHEN (BkF) [EPA, WHO]

 $C_{20}H_{12}$ M = 252,3 g/mol 207-08-9

BENZO(A)PYREN (BaP) [EPA, WHO] $C_{20}H_{12}$ M = 252,3 g/mol50-32-8


DIBENZO(A,H)ANTHRACEN (Dah) [EPA]
$$C_{22}H_{14}$$

$$M = 278,4 \text{ g/mol}$$

$$53-70-3$$

BENZO(G,H,I)PERYLEN (Ghi) [EPA, WHO]
$$C_{22}H_{12}$$

$$M = 276,3 \text{ g/mol}$$

$$191-24-2$$

INDENO(1,2,3-C,D)PYREN (Ind) [EPA, WHO] $C_{22}H_{12}$ M = 276,3 g/mol 193-39-5

2 UNTERSUCHUNGEN

Probenahme

Ein wichtiges Kriterium bei der Auswahl der Probenahmestellen war das Verkehrsaufkommen. So wurden Proben an stark befahrenen Straßen wie der Donauuferautobahn, der Südosttangente (A23), der Hadikgasse, des Neubaugürtels und der Spittelauer Lände genommen. Außerdem wurden Straßenstäube an stärker frequentierten Orten wie dem Westbahnhof, dem Flughafen Wien-Schwechat und der Shopping City Süd gesammelt. Ein Probenahmeort war am Radweg Donaukanal, wo nur mit einer geringen Belastung durch den Straßenverkehr zu rechnen war.

Um auch die saisonalen Unterschiede zu erfassen, wurde im Frühjahr 1996 und im Sommer 1996 je eine Straßenstaubprobe an den neun verschiedenen Probenahmeorten gesammelt. Die Frühjahrsprobenahme wurde von 21.3. bis 10.4.1996, die Sommerprobenahme am 7.8.1996 durchgeführt.

Eine genaue Beschreibung der Probenahmestellen ist in Tabelle 2 zu finden:

Tabelle 2: Probenahmestellen im Großraum Wien

	Donauuferautobahn: Pannenstreifen Kaisermühlentunnel; ca. 100 m nach Telefon
Staub 2:	A23 (Südosttangente): Gehweg Praterbrücke über A23; bei Fußgängerstiege Handelskai
Staub 3:	Flughafen Wien-Schwechat: Straßenrand bei Kreuzung Schleifenstraße-Ankunftstraße
Staub 4:	Shopping City Süd: Parkplatz vor Eingang 7; rund um Baum bei LKW-Abstellplatz
Staub 5:	Hadikgasse: Gehweg bei Wienfluß neben Hadikgasse: gegenüber Nr. 114
Staub 6:	Westbahnhof: LKW-Ladezone rechts
Staub 7:	Neubaugürtel: Gehsteig neben Straße; vor Nr.54
Staub 8:	Spittelauer Lände: Ecke Ingen-Houszgasse; Straßenrand
Staub 9:	Radweg Donaukanal neben U-Bahnstation Friedensbrücke

Die Straßenstäube wurden mit einer reinen Bürste von der Straße auf eine gereinigte Schaufel gekehrt und in braunen Glasschlifflaschen gesammelt.

Die Proben wurden im Kühlraum bei ca. 4 °C in den braunen Glasschlifflaschen aufbewahrt.

Analytik

Die trockenen Proben wurden mit einem Kunststoffsieb < 100 µm gesiebt. Von drei Proben (Staub 2 - Südosttangente, Staub 4 - Shopping City Süd und Staub 7 - Neubaugürtel) wurden zur Ermittlung der Größenverteilung bei beiden Probenahmen vier Fraktionen (< 60 µm, 60 - 100 µm, 100 - 500 µm und > 500 µm) hergestellt. Zusätzlich wurden bei der Frühjahrsprobenahme die PAH-Gehalte in diesen Fraktionen bestimmt.

Die 17 PAH (15 EPA-PAH ohne Naphthalin + Benzo(e)pyren + Coronen) wurden nach der im Anhang angeführten Analysenmethode mit der HPLC bestimmt.

Ergebnisse und Beurteilung

In Tabelle 3 sind die Untersuchungsergebnisse zusammengefaßt. Es ist die Summe der 17 bestimmten PAH angeführt, die in den Proben der neun verschiedenen Probenahmestellen im Frühjahr und Sommer 1996 nachgewiesen wurden. Die detaillierten Analysenergebnisse sind im Anhang zu finden.

Tabelle 3: Zusammenfassung der Untersuchungsergebnisse

	Summe der 17 PAH in mg/ kg Sta			
	Frühjahr 1996	Sommer 1996		
Staub 1 : Donauuferautobahn/	15.5	9.5		
Pannenstreifen Kaisermühlentunnel				
Staub 2 : A23 (Südosttangente)/	10.6	4.2		
Gehweg Praterbrücke über A23				
Staub 3 : Flughafen Wien-Schwechat/ Straßenrand bei	4.7	1.8		
Kreuzung Schleifenstraße - Ankunftstraße				
Staub 4 : Shopping City Süd/ Parkplatz vor Eingang 7	5.0	3.5		
Staub 5 : Hadikgasse/ Gehweg bei Wienfluß;	11.7	4.3		
gegenüber Nr. 114				
Staub 6 : Westbahnhof/ LKW-Ladezone	8.8	10.0		
Staub 7 : Neubaugürtel/ Gehsteig neben Straße; vor Nr. 54	. 10.6	3.9		
Staub 8 : Spittelauer Lände/	10.4	5.7		
Ecke Ingen-Houszgasse; Straßenrand		5. .		
Staub 9 : Radweg Donaukanal neben	3.2	3.8		
U-Bahnstation Friedensbrücke				

In Abhängigkeit vom Ort und von der Zeit der Probenahme wurden PAH-Konzentrationen (Summe der 17 PAH) von 1.8 bis 15.5 mg/kg Straßenstaub gefunden

Da TAKADA, ONDA, HARADA und OGURA (1991) die PAH in Straßenstaub, der < 2 mm gesiebt wurde, und SMITH, EDELHAUSER und HARRISON (1995) die PAH in ungesiebtem Straßenstaub erfaßten, konnten die Ergebnisse nur mit den von YANG und BAUMANN (1995) festgestellten Gehalten verglichen werden, da sie die Proben auch < 100 µm siebten. Obwohl sie 19 PAH bestimmten, können die Ergebnisse ganz gut miteinander verglichen werden, da 10 Substanzen (darunter Hauptkomponenten wie Fluoranthen, Pyren, Phenanthren, Chrysen, etc.) auch von uns analysiert wurden. Sie wiesen in Straßenstäuben deutscher Städte (wie Mainz, Hannover, Mannheim, Frankfurt, Wiesbaden und Berlin) PAH-Konzentrationen von 1.4 bis 216 mg/kg Straßenstaub nach. Im Vergleich dazu waren die Straßenstäube im Großraum Wien größtenteils weitaus weniger belastet.

Die PAH-Belastungen waren außer beim Westbahnhof und am Radweg Donaukanal in den im Frühjahr gezogenen Straßenstäuben um das 1.4 - 2.7 fache höher als in den im Sommer genommenen Proben. Dies ist einerseits darauf zurückzuführen , daß im März und April noch geheizt wurde, andererseits ist das Verkehrsaufkommen im Ferienmonat August weitaus geringer. Die Straßenstäube vom Radweg Donaukanal und Westbahnhof hatten im Sommer geringfügig höhere PAH-Gehalte. Im Vergleich zu den anderen Proben war der Straßenstaub vom Radweg Donaukanal aber gering belastet. Die gleichmäßig hohen PAH-Konzentrationen im Straßenstaub vom Westbahnhof könnten darauf zurückzuführen sein, daß er bei der LKW-Ladezone genommen wurde, wo das ganze Jahr über mit regem Kraftfahrzeugverkehr zu rechnen ist. Auch YANG und BAUMANN (1995) fanden in Straßenstäuben deutscher Städte im Winter höhere PAH-Gehalte als im Sommer, was sie mit vermehrter Heiztätigkeit erklären.

Im Frühjahr waren die Straßenstäube, die an den stark befahrenen Straßen wie der Donauuferautobahn, der Hadikgasse, des Neubaugürtels, der A23 und der Spittelauer Lände sowie beim Westbahnhof genommen wurden, am stärksten belastet.

Im Sommer konnten in den Straßenstäuben beim Westbahnhof, an der Donauuferautobahn und an der Spittelauer Lände die höchsten PAH-Konzentrationen nachgewiesen werden. Die relativ geringen PAH-Belastungen der Straßenstäube bei der Hadikgasse, beim Neubaugürtel und bei der A23 können mit dem im Sommer verringerten Verkehrsaufkommen erklärt werden. Auch YANG und BAUMANN (1995) fanden in Straßenstäuben von einigen Probenahmestellen mit starkem Kfz-Verkehr relativ kleine PAH-Gehalte. Sie weisen in diesem Zusammenhang darauf hin, daß auch die Verweilzeit des Straßenstaubes an der jeweiligen Probenahmestelle von großer Bedeutung sein könnte.

Bei der PAH-Verteilung konnten keine relevanten Unterschiede zwischen den einzelnen Standorten festgestellt werden (PAH-Verteilungsmuster siehe Anhang). Die höchsten Gehalte konnten beim Fluoranthen und Pyren (und bei den meisten Proben auch beim Phenanthren) nachgewiesen werden. Dies haben auch YANG

und BAUMANN (1995) bei ihrer Untersuchung von Straßenstäuben deutscher Städte festgestellt.

Die Ergebnisse der Bestimmung der Korngrößenverteilung bei den Straßenstäuben, die bei der A23 (Staub 2), bei der Shopping City Süd (Staub 4) und beim Neubaugürtel (Staub 7) genommen wurden, sind in Tabelle 4 dargestellt.

Frühjahr 1996				
	< 60 µm	60 - 100 μm	100 - 500 μm	> 500 µm
Staub 2 : A23 (Südosttangente)	1.2	12.2	30.5	56.1
Staub 4 : Shopping City Süd	11.3	18.1	24.0	46.6
Staub 7 : Neubaugürtel	0.6	4.5	6.4	88.5
Sommer 1996				
	< 60 µm	60 - 100 µm	100 - 500 μm	> 500 µm
Staub 2 : A23 (Südosttangente)	2.9	10.9	74.1	12.2
Staub 4 : Shopping City Süd	6.2	14.2	25.7	53.9
Staub 7 : Neubaugürtel	4.1	15.4	43.3	37.2

Tabelle 4: Korngrößenverteilung von drei Straßenstäuben in %

Bei den Straßenstäuben von der A23 und vom Neubaugürtel sieht man im Frühjahr einen deutlich höheren Anteil an größeren Teilchen (> 500 μ m), was darauf zurückzuführen ist, daß sich zum Zeitpunkt der Probenahme noch Straßenstreumittel (wie Rollsplit) auf diesen stark befahrenen Verkehrswegen befanden. Der Straßenstaub, der bei der Shopping City Süd genommen wurde, hatte bei beiden Probenahmen ein ähnliches Verteilungsmuster; allerdings war der Anteil der sehr kleinen Teilchen (< 60 μ m) im Frühjahr ca. doppelt so hoch wie im Sommer. Im Vergleich zu den beiden anderen Straßenstäuben hatte er vor allem im Frühjahr einen deutlich höheren Anteil an sehr kleinen Partikeln, was damit erklärt werden könnte, daß die A23 und der Neubaugürtel mehr dem Wind ausgesetzt sind als der Parkplatz bei der Shopping City Süd. Außerdem könnte es sein, daß die sehr feinen Teilchen auch durch den Kfz-Verkehr auf diesen sehr stark befahrenen Straßen leichter verweht werden.

Um festzustellen, in welcher Korngrößenfraktion die höchsten PAH-Konzentrationen zu finden sind, wurden sie bei der Frühjahrsprobenahme in den Straßenstäuben von der A23, von der Shopping City Süd und vom Neubaugürtel in den 4 Fraktionen zusätzlich bestimmt. Die Ergebnisse dieser Untersuchungen sind in Tabelle 5 zusammengefaßt. Es ist die Summe der 17 bestimmten PAH angeführt, die in den 12 Fraktionen der drei Standorte im Frühjahr 1996 nachgewiesen wurden. Einerseits sind die Gehalte in mg/ kg Straßenstaub angeführt; andererseits sind die prozentuellen PAH-Verteilungen in den einzelnen Fraktionen angegeben. Die detaillierten Analysenergebnisse sind im Anhang zu finden.

Frühjahr 1996	Sur	mme der 17 PA	∖H in mg/ kg Sta	aub
,	< 60 µm	60 - 100 µm	100 - 500 µm	> 500 µm
Staub 2 : A23 (Südosttangente)	16.4	10.6	7.7	1.9
Staub 4 : Shopping City Süd	6.8	5.0	3.2	0.7
Staub 7 : Neubaugürtel	13.2	10.6	8.3	0.9
Frühjahr 1996		Summe der	17 PAH in %	
Ť	< 60 µm	60 - 100 µm	100 - 500 µm	> 500 µm
Staub 2 : A23 (Südosttangente)	3.4	27.0	48.3	21.3
Staub 4 : Shopping City Süd	27.3	31.8	27.3	13.6
Staub 7 : Neubaugürtel	4.3	26.1	28.3	41.3

Tabelle 5: PAH-Gehalte in den vier Korngrößenfraktionen von drei Straßenstäuben

Bei allen drei Straßenstäuben zeigt sich, daß die PAH-Konzentrationen umso höher sind, je kleiner die Partikel sind. Die PAH lagern sich also besser an Teilchen mit kleinerer Korngröße an. Betrachtet man die prozentuellen PAH-Verteilungen, sieht man, daß sich die Hauptmenge der PAH in den Partikelfraktionen mit kleinerer Korngröße (< 500 µm) befindet. Bei ihrer Untersuchung von Straßenstäuben in Tokyo, Japan, sind TAKADA, ONDA, HARADA und OGURA (1991) zu ähnlichen Ergebnissen gekommen.

Für die Bewertung der Straßenstaubbelastung mit PAH existieren keine Richt- oder Grenzwerte; für Böden gibt es allerdings internationale Orientierungswerte. Unter Anlehnung an deutsche und niederländische Orientierungswerte wird im Umweltbundesamt die Belastung der Böden mit den 16 EPA-PAH folgendermaßen beurteilt: > 50 mg/kg Boden = stark verunreinigt, > 10 mg/kg Boden = verunreinigt, > 1 mg/kg Boden = Verunreinigungsverdacht, < 1 mg/kg Boden = keine Verunreinigung (MÜLLER und WEISS, 1995). Bezieht man sich auf diese allerdings für Boden geltenden Orientierungswerte, waren 6 Proben unter "verunreinigt" und 12 Proben unter "Verunreinigungsverdacht" einzustufen. Daher ist es wichtig, daß - wie in Wien - der Straßenstaub in regelmäßigen Abständen entfernt und deponiert wird. TAKADA, ONDA, HARADA und OGURA (1991) weisen in ihrer Publikation über die Erfassung der PAH-Belastung von Straßenstäuben in Tokyo, Japan, aber darauf hin, daß die feinen Partikel (< 500 μm) mit dem höchsten PAH-Gehalt nicht effizient mit einer konventionellen Straßenreinigung entfernt werden können und so zu einem großen Teil in die Gewässer abgespült werden.

ANHANG

ANALYSENERGEBNISSE

Auf den folgenden Seiten sind die Analysenergebnisse der Straßenstäube beider Probenahmen, der Vergleich zwischen den beiden Probenahmen, die PAH-Verteilungsmuster, die Korngrößenverteilungen mit den Staubmengen sowie die PAH-Gehalte in den Korngrößenfraktionen angegeben.

Tabelle 6: PAH-Ergebnisse (µg/kg Staub) - Frühjahr 1996

	1.Probenahme:	Staub 1/1	Staub 2/ 1	Staub 3/ 1	Staub 4/ 1	Staub 5/ 1
	Frühjahr 1996	Donauufer-	Gehweg A23	Flughafen	Shopping	Gehweg
	-	autobahn		Wien	City Süd	Hadikgasse
		S96 04 1018	S96 04 1019	S96 04 1020	S96 04 1021	S96 04 1022
EPA	Acenaphthylen	73,0	n.n.	n.n.	. n.n.	n.n.
EPA	Acenaphthen	149	79,5			< 61,3
EPA	Fluoren	235	101	55,5	42,9	76,3
EPA	Phenanthren	2087	1413	646		1352
EPA	Anthracen	261	84,9	24,5	22,9	59,2
EPA, WHO	Fluoranthen	3081	2329	1024	1055	2733
EPA	Pyren	2510	1494	655	623	1972
EPA	Benzo(a)anthracen	835	482	179	193	504
EPA	Chrysen	1042	818	334	443	877
	Benzo(e)pyren	751	628	254	317	599
EPA, WHO	Benzo(b)fluoranthen	997	735	335	420	781
EPA, WHO	Benzo(k)fluoranthen	429	358	127	163	368
EPA, WHO	Benzo(a)pyren	1017	658	267	329	700
EPA	Dibenzo(a,h)anthracen	118	76,1	38,2	34,6	80,1
EPA, WHO	Benzo(g,h,i)perylen	1049	705	395	379	829
EPA, WHO	Indeno(1,2,3-c,d)pyren	624	509	198	268	551
	Coronen	193	150	119	132	194
	Summe 17 PAH	15451	10620	4652	5041	11673
	Summe 15 EPA-PAH	14507	9843	4279	4592	10880
	Summe 6 WHO-PAH	7197	5294	2346	2614	5961

	1.Probenahme:	Staub 6/ 1	Staub 7/ 1	Staub 8/ 1	Staub 9/ 1
	Frühjahr 1996	Westbahn-	Neubau-	Spittelauer	Radweg
	·	hof	gürtel	Lände	Donaukanal
		S96 04 1023	S96 04 1024	S96 04 1025	S96 04 1026
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	< 61,3	77,0	n.n.
EPA	Fluoren	123	134	289	36,2
EPA	Phenanthren	1136	1611	2018	522
EPA	Anthracen	78,6	81,2	70,0	13,3
EPA, WHO	Fluoranthen	1771	2387	2134	684
EPA	Pyren	1241	1771	1584	354
EPA	Benzo(a)anthracen	455	512	553	119
EPA	Chrysen	660	761	781	230
	Benzo(e)pyren	581	540	415	185
EPA, WHO	Benzo(b)fluoranthen	539	604	571	253
EPA, WHO	Benzo(k)fluoranthen	300	308	279	93,1
EPA, WHO	Benzo(a)pyren	624	554	529	212
EPA	Dibenzo(a,h)anthracen	65,9	73,2	57,7	32,0
EPA, WHO	Benzo(g,h,i)perylen	646	670	602	276
EPA, WHO	Indeno(1,2,3-c,d)pyren	426	453	370	141
	Coronen	132	181	109	42,2
	Summe 17 PAH	8778	10641	10439	3192
	Summe 15 EPA-PAH	8064	9920	9915	2964
	Summe 6 WHO-PAH	4306	4976	4485	1658

Tabelle 7: PAH-Ergebnisse (µg/kg Staub) - Sommer 1996

	2.Probenahme:	Staub 1/2	Staub 2/2	Staub 3/2	Staub 4/ 2	Staub 5/ 2
	Sommer 1996	Donauufer-	Gehweg A23	Flughafen	Shopping	Gehweg
,		autobahn		Wien	City Süd	Hadikgasse
		S96 08 1694	S96 08 1695	S96 08 1696	S96 08 1697	S96 08 1698
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	n.n.	n.n.	n.n.	n.n.
EPA	Fluoren	121	33,9		< 26,3	< 26,3
EPA	Phenanthren	931	345		182	256
EPA	Anthracen	160	43,6			19,9
EPA, WHO	Fluoranthen	1941	825		731	916
EPA	Pyren	1522	534		439	496
EPA	Benzo(a)anthracen	467	208	59,5	115	189
EPA	Chrysen	804	371	143	351	380
	Benzo(e)pyren	381	236	96,8	227	280
EPA, WHO	Benzo(b)fluoranthen	804	397	169		
EPA, WHO	Benzo(k)fluoranthen	351	167	62,9		196
EPA, WHO	Benzo(a)pyren	677	364			
EPA	Dibenzo(a,h)anthracen	102	63,9	24,5		
EPA, WHO	Benzo(g,h,i)perylen	552	320	166		<u></u>
EPA, WHO	Indeno(1,2,3-c,d)pyren	466	239	103		
	Coronen	238	99,3	100		
	Summe 17 PAH	9514	4245	1776	3536	
	Summe 15 EPA-PAH	8895	3909	1579	3139	L
	Summe 6 WHO-PAH	4790	2311	966	1996	2448

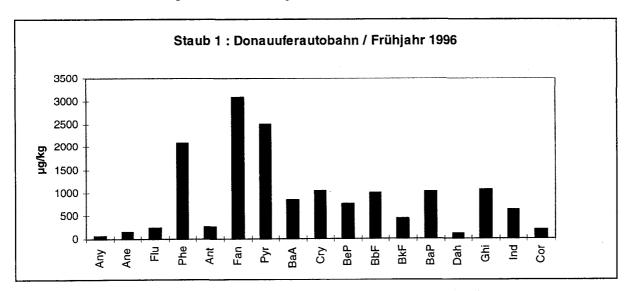
	2.Probenahme:	Staub 6/2	Staub 7/2	Staub 8/2	Staub 9/ 2
	Sommer 1996	Westbahn-	Neubau-	Spittelauer	Radweg
		hof	gürtel	Lände	Donaukanal
		S96 08 1699	S96 08 1700	S96 08 1701	S96 08 1702
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	n.n.	n.n.	n.n.
EPA	Fluoren	65,2	44,2	39,9	32,0
EPA	Phenanthren	543	385	478	350
EPA	Anthracen	86,2	38,5	40,7	21,2
EPA, WHO	Fluoranthen	1622	841	1067	790
EPA	Pyren	1155	520	890	476
EPA	Benzo(a)anthracen	580	190	215	
EPA	Chrysen	911	334	560	
	Benzo(e)pyren	489	166	395	1
EPA, WHO	Benzo(b)fluoranthen	1039	339	485	
EPA, WHO	Benzo(k)fluoranthen	538	163		
EPA, WHO	Benzo(a)pyren	1060	292	J	
EPA	Dibenzo(a,h)anthracen	141	45,6	58,0	
EPA, WHO	Benzo(g,h,i)perylen	676	210	299	
EPA, WHO	Indeno(1,2,3-c,d)pyren	824	225	374	
	Coronen	323	123	137	89,8
	Summe 17 PAH	10053	3915	5690	3809
	Summe 15 EPA-PAH	9240	3627	5157	3500
	Summe 6 WHO-PAH	5759	2070	2875	2078

Tabelle 8: PAH-Ergebnisse (μg/kg Staub) - Vergleich Frühjahr : Sommer 1996 - Stäube 1-4

		Staub 1 : Dona	uuferautobahn	Staub 2 : G	ehweg A23
:	i	Frühjahr 1996	Sommer 1996	Frühjahr 1996	Sommer 1996
		S96 04 1018	S96 08 1694	S96 04 1019	S96 08 1695
EPA	Acenaphthylen	73,0	n.n.	n.n.	n.n.
EPA	Acenaphthen	149	< 61,3	79,5	n.n.
EPA	Fluoren	235	121	101	33,9
EPA	Phenanthren	2087	931	1413	345
EPA	Anthracen	261	160	84,9	43,6
EPA, WHO	Fluoranthen	3081	1941	2329	825
EPA	Pyren	2510	1522	1494	
EPA	Benzo(a)anthracen	835	467	482	208
EPA	Chrysen	1042	804	818	371
	Benzo(e)pyren	751	381	628	236
EPA, WHO	Benzo(b)fluoranthen	997	804	735	397
EPA, WHO	Benzo(k)fluoranthen	429	351	358	167
EPA, WHO	Benzo(a)pyren	1017	677	658	364
EPA	Dibenzo(a,h)anthracen	118	102	76,1	63,9
EPA, WHO	Benzo(g,h,i)perylen	1049	552	705	320
	Indeno(1,2,3-c,d)pyren	624	466	509	239
	Coronen	193	238	150	99,3
	Summe 17 PAH	15451	9514	10620	4245
	Summe 15 EPA-PAH	14507	8895	9843	3909
	Summe 6 WHO-PAH	7197	4790	5294	2311

		Staub 3 : Flu	ghafen Wien	Staub 4 : Shop	pping City Süd
		Frühjahr 1996	Sommer 1996	Frühjahr 1996	Sommer 1996
		S96 04 1020	S96 08 1696	S96 04 1021	S96 08 1697
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	n.n.	< 61,3	n.n.
EPA	Fluoren	55,5	< 26,3	42,9	< 26,3
EPA	Phenanthren	646	152	618	182
EPA	Anthracen	24,5	9,8	22,9	14,3
EPA, WHO	Fluoranthen	1024	339	1055	731
EPA	Pyren	655	225	623	439
EPA	Benzo(a)anthracen	179	59,5	193	115
EPA	Chrysen	334	143	443	351
	Benzo(e)pyren	254	96,8	317	227
EPA, WHO	Benzo(b)fluoranthen	335	169	420	396
EPA, WHO	Benzo(k)fluoranthen	127	62,9	163	
EPA, WHO	Benzo(a)pyren	267	126	329	
EPA	Dibenzo(a,h)anthracen	38,2	24,5	34,6	
EPA, WHO	Benzo(g,h,i)perylen	395	166	379	245
EPA, WHO	Indeno(1,2,3-c,d)pyren	198	103	268	235
	Coronen	119	100	132	
	Summe 17 PAH	4652	1776	5041	
	Summe 15 EPA-PAH	4279	1579	4592	3139
	Summe 6 WHO-PAH	2346	966	2614	1996

Tabelle 9: PAH-Ergebnisse (µg/kg Staub) - Vergleich Frühjahr : Sommer 1996 - Stäube 5-8


		Staub 5 : Gehw	eg Hadikgasse	Staub 6 : W	estbahnhof
		Frühjahr 1996	Sommer 1996	Frühjahr 1996	Sommer 1996
		S96 04 1022	S96 08 1698	S96 04 1023	S96 08 1699
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	n.n.	< 61,3	< 61,3
EPA	Fluoren	76,3	< 26,3	123	65,2
EPA	Phenanthren	1352	256	1136	543
EPA	Anthracen	59,2	19,9	78,6	86,2
EPA, WHO	Fluoranthen	2733	916	1771	1622
EPA	Pyren	1972	496	1241	1155
EPA	Benzo(a)anthracen	504	189	455	580
EPA	Chrysen	877	380	660	911
	Benzo(e)pyren	599	280	581	489
EPA, WHO	Benzo(b)fluoranthen	781	460	539	1039
EPA, WHO	Benzo(k)fluoranthen	368	196	300	538
EPA, WHO	Benzo(a)pyren	700	325	624	1060
EPA	Dibenzo(a,h)anthracen	80,1	56,4	65,9	141
EPA, WHO	Benzo(g,h,i)perylen	829	244	646	676
EPA, WHO	Indeno(1,2,3-c,d)pyren	551	308	426	824
	Coronen	194	146	132	323
	Summe 17 PAH	11673	4272	8778	10053
	Summe 15 EPA-PAH	10880	3846	8064	9240
	Summe 6 WHO-PAH	5961	2448	4306	5759

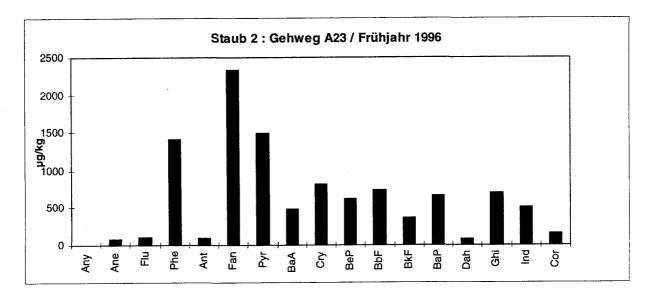

		Staub 7 : No	eubaugürtel	Staub 8 : Spitt	elauer Lände
		Frühjahr 1996	Sommer 1996	Frühjahr 1996	Sommer 1996
		S96 04 1024	S96 08 1700	S96 04 1025	S96 08 1701
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	n.n.	77,0	n.n.
EPA	Fluoren	134	44,2	289	39,9
EPA	Phenanthren	1611	385	2018	478
EPA	Anthracen	81,2	38,5		40,7
EPA, WHO	Fluoranthen	2387	841	2134	1067
EPA	Pyren	1771	520	1584	890
EPA	Benzo(a)anthracen	512	190	553	215
EPA	Chrysen	761	334	781	560
	Benzo(e)pyren	540	166	415	395
EPA, WHO	Benzo(b)fluoranthen	604	339	571	485
EPA, WHO	Benzo(k)fluoranthen	308	163	279	234
EPA, WHO	Benzo(a)pyren	554	292	529	417
EPA	Dibenzo(a,h)anthracen	73,2	45,6	57,7	58,0
EPA, WHO	Benzo(g,h,i)perylen	670	210	602	299
EPA, WHO	Indeno(1,2,3-c,d)pyren	453	225	370	374
	Coronen	181	123		
	Summe 17 PAH	10641	3915	10439	5690
	Summe 15 EPA-PAH	9920	3627	9915	
	Summe 6 WHO-PAH	4976	2070	4485	2875

Tabelle 10: PAH-Ergebnisse (µg/kg Staub) - Vergleich Frühjahr : Sommer 1996 - Staub 9

		Staub 9 : Radweg Donaukanal		
		Frühjahr 1996 S96 04 1026	Sommer 1996 S96 08 1702	
EPA	Acenaphthylen	n.n.	n.n.	
EPA	Acenaphthen	n.n.	n.n.	
EPA	Fluoren	36,2	32,0	
EPA	Phenanthren	522	350	
EPA	Anthracen	13,3		
EPA, WHO	Fluoranthen	684		
EPA	Pyren	354	1	
EPA	Benzo(a)anthracen	119		
EPA	Chrysen	230		
	Benzo(e)pyren	185	219	
EPA, WHO	Benzo(b)fluoranthen	253	386	
EPA, WHO	Benzo(k)fluoranthen	93,1		
EPA, WHO	Benzo(a)pyren	212		
EPA	Dibenzo(a,h)anthracen	32,0	43,1	
EPA, WHO	Benzo(g,h,i)perylen	276	188	
EPA, WHO	Indeno(1,2,3-c,d)pyren	141	252	
	Coronen	42,2	89,8	
	Summe 17 PAH	3192		
	Summe 15 EPA-PAH	2964	3500	
	Summe 6 WHO-PAH	1658	2078	

Abbildung 1: PAH-Verteilungsmuster - Frühjahr 1996 - Stäube 1-3

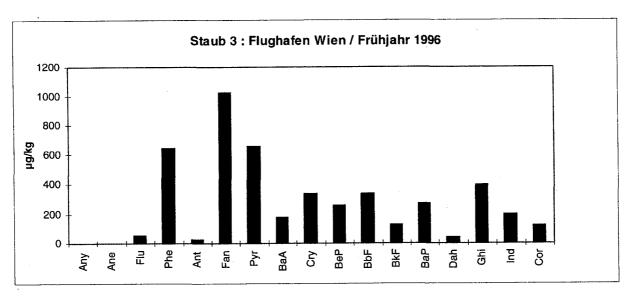
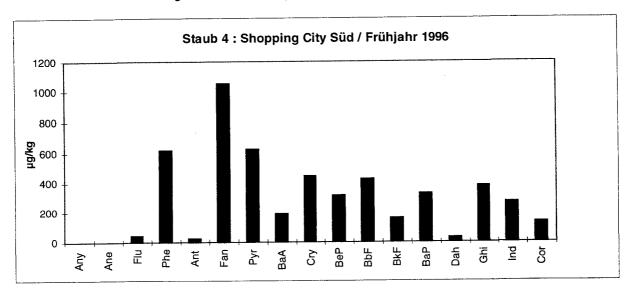
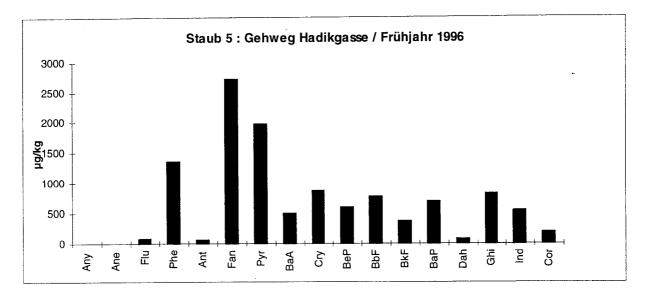




Abbildung 2: PAH-Verteilungsmuster - Frühjahr 1996 - Stäube 4-6

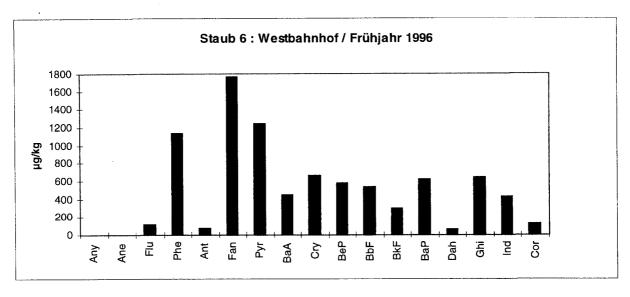
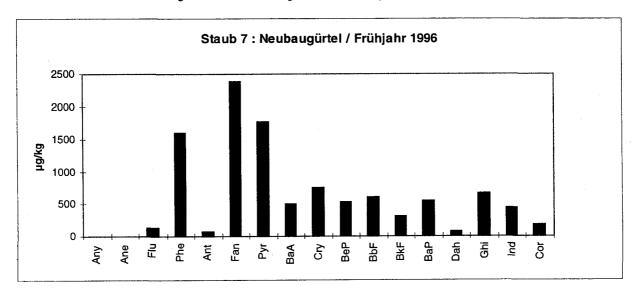
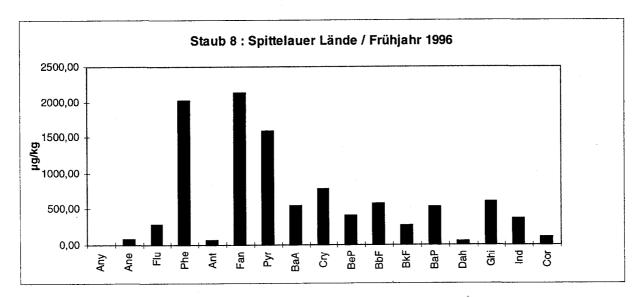




Abbildung 3: PAH-Verteilungsmuster - Frühjahr 1996 - Stäube 7-9

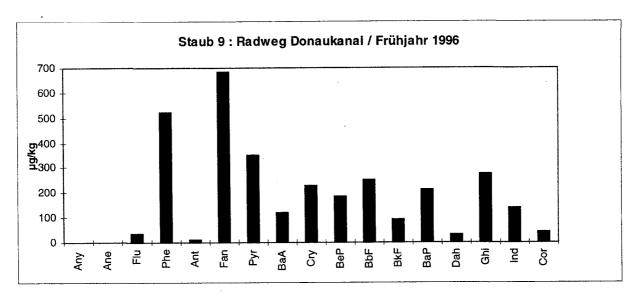
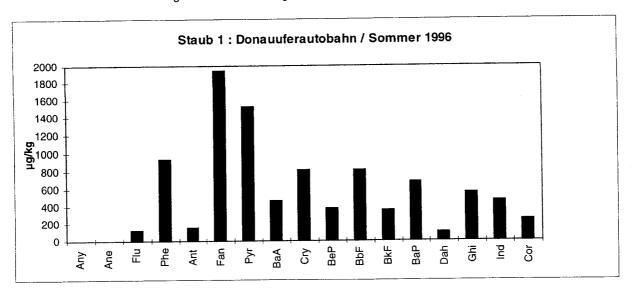
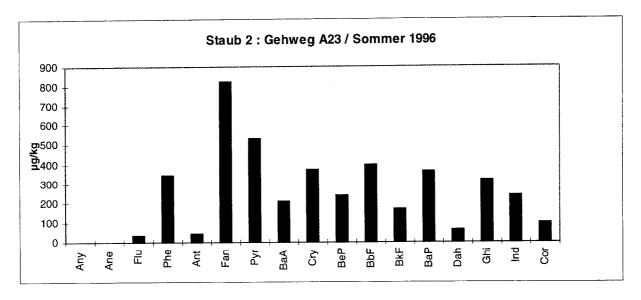




Abbildung 4: PAH-Verteilungsmuster - Sommer 1996 - Stäube 1-3

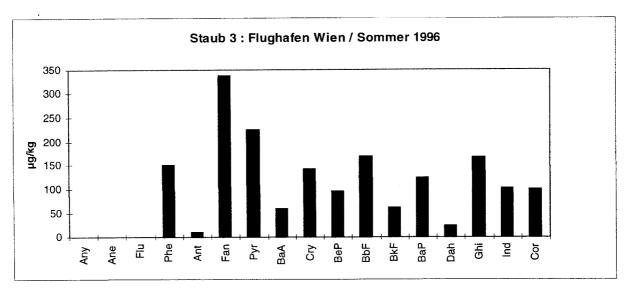
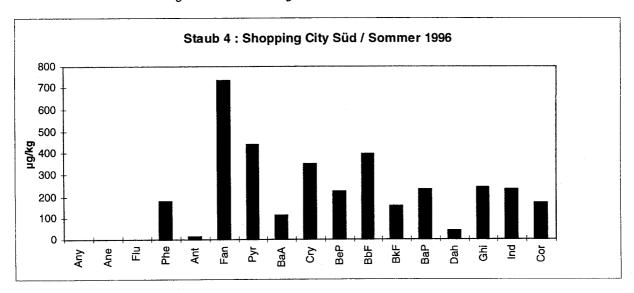
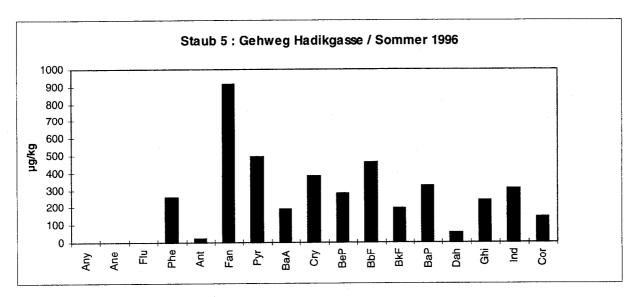




Abbildung 5: PAH-Verteilungsmuster - Sommer 1996 - Stäube 4-6

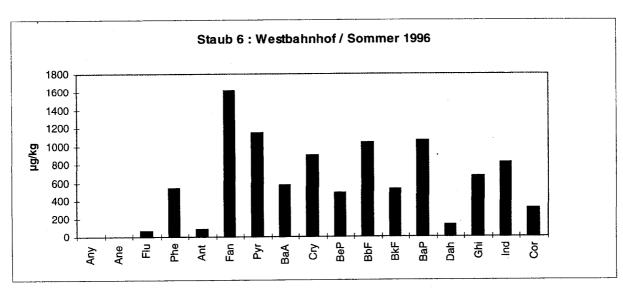
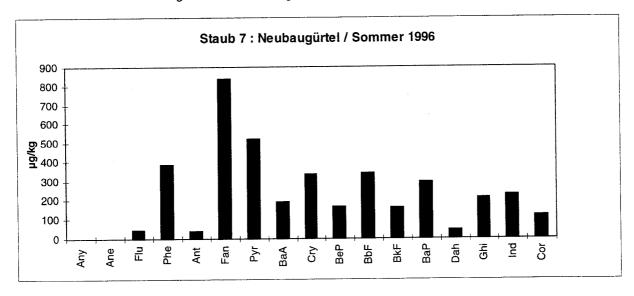
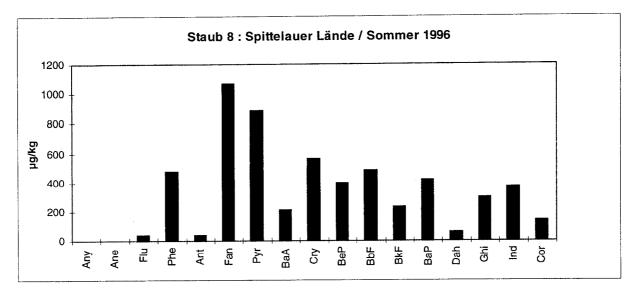




Abbildung 6: PAH-Verteilungsmuster - Sommer 1996 - Stäube 7-9

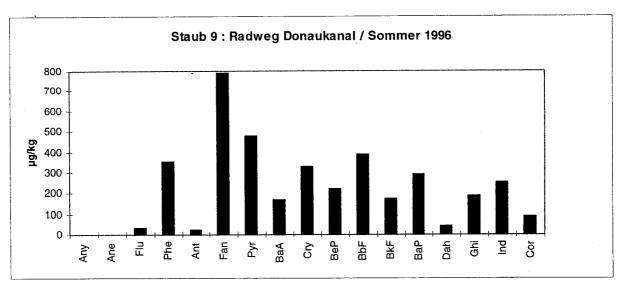


Tabelle 11: Korngrößenverteilungen - Frühjahr und Sommer 1996

1.Probenahm	ahme : Frühjahr 1996 Korngrößenverteilung [in %]				[in %]		
Bezeichnung	Probennummer	< 60 μm	60 - 100 μm	100 - 500 μm	> 500 µm	gesamt	
Staub 2-1	S96 04 1019	1,2	12,2	30,5	56,1	100,0	
Staub 4-1	S96 04 1021	11,3	18,1	24,0	46,6	100,0	
Staub 7-1	S96 04 1024	0,6	4,5	6,4	88,5	100,0	
2.Probenahm	e : Sommer 1996	Korngrößenverteilung [in %]					
	Probennummer	< 60 µm	Korng 60 - 100 µm	100 - 500 µm	լin %] > 500 μm	goognet	
Bezeichnung	Propertitutifities	< 60 pm	00 - 100 μπ	100 - 300 μπ	> 500 μπ	gesamt	
Staub 2-2	S96 08 1695	2,9	10,9	74,1	12,2	100,0	
Staub 4-2	S96 08 1697	6,2	14,2	25,7	53,9	100,0	
Staub 7-2	S96 08 1700	4,1	15,4	43,3	37,2	100,0	

Tabelle 12: PAH-Gehalte in den Korngrößenfraktionen - Frühjahr 1996 - Staub 2

	1.Probenahme:	Staub 2 : Gehweg A23 (S96 04 1019)				
	Frühjahr 1996		PAH (μg/l	kg Staub)		
		< 60 μm	60-100 µm	100-500 μm	> 500 µm	
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.	
EPA	Acenaphthen	78,0	79,5	83,7	n.n.	
EPA	Fluoren	112	101	88,3	28,8	
EPA	Phenanthren	2103	1413	1100	333	
EPA	Anthracen	95,4	84,9	84,3	13,2	
EPA, WHO	Fluoranthen	3646	2329	1691	422	
EPA	Pyren	2465	1494	1139	277	
EPA	Benzo(a)anthracen	704	482	364	83,9	
EPA	Chrysen	1249	818	572	132	
	Benzo(e)pyren	877	628	408	< 87,4	
EPA, WHO	Benzo(b)fluoranthen	1309	735	516	159	
EPA, WHO	Benzo(k)fluoranthen	574	358	234	54,3	
EPA, WHO	Benzo(a)pyren	890	658	427	106	
EPA	Dibenzo(a,h)anthracen	120	76,1	65,9	24,9	
EPA, WHO	Benzo(g,h,i)perylen	1032	705	524	187	
EPA, WHO	Indeno(1,2,3-c,d)pyren	854	509	332	81,5	
* *****	Coronen	317	150	102	< 37,5	
	Summe 17 PAH	16423	10620	7730	1902	
	Summe 15 EPA-PAH	15229	9843	7220	1902	
	Summe 6 WHO-PAH	8303	5294	3724	1010	

Tabelle 13: PAH-Gehalte in den Korngrößenfraktionen - Frühjahr 1996 - Staub 4

	1.Probenahme:	Staub 4 : Shopping City Süd (S96 04 1021)			
	Frühjahr 1996		PAH (µg/l	kg Staub)	
		< 60 μm	60-100 µm	100-500 μm	> 500 µm
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.
EPA	Acenaphthen	< 61,3	< 61,3	n.n.	n.n.
EPA	Fluoren	51,0	42,9	34,1	n.n.
EPA	Phenanthren	912	618	419	98,3
EPA	Anthracen	20,3	22,9	17,0	6,1
EPA, WHO	Fluoranthen	1500	1055	642	162
EPA	Pyren	903	623	404	96,7
EPA	Benzo(a)anthracen	218	193	117	36,7
EPA	Chrysen	582	443	244	62,2
	Benzo(e)pyren	351	317	159	< 87,4
EPA, WHO	Benzo(b)fluoranthen	586	420	264	79,7
EPA, WHO	Benzo(k)fluoranthen	234	163	93,8	23,5
EPA, WHO	Benzo(a)pyren	336	329	185	53,2
EPA	Dibenzo(a,h)anthracen	49,2	34,6	33,1	< 14,7
EPA, WHO	Benzo(g,h,i)perylen	462	379	309	89,4
EPA, WHO	Indeno(1,2,3-c,d)pyren	380	268	152	40,1
	Coronen	224	132	81,8	n.n.
	Summe 17 PAH	6810	5041	3154	748
	Summe 15 EPA-PAH	6235	4592	2913	748
	Summe 6 WHO-PAH	3499	2614	1646	448

Tabelle 14: PAH-Gehalte in den Korngrößenfraktionen - Frühjahr 1996 - Staub 7

	1.Probenahme:	Staub 7 : Neubaugürtel (S96 04 1024) PAH (µg/kg Staub)				
	Frühjahr 1996	< 60 μm	PAH (μg/ł 60-100 μm	(g Staub) 100-500 µm	> 500 µm	
EPA	Acenaphthylen	n.n.	n.n.	n.n.	n.n.	
EPA	Acenaphthen	< 61,3	< 61,3	< 61,3	n.n.	
	Fluoren	113	134	87,6	< 26,3	
EPA	Phenanthren	1948	1611	1156	160	
EPA	Anthracen	80,2	81,2	59,9	5,0	
	Fluoranthen	2967	2387	1827	211	
EPA	Pyren	2329	1771	1412	155	
EPA	Benzo(a)anthracen	582	512	387	45,3	
EPA	Chrysen	906	761	571	59,2	
	Benzo(e)pyren	594	540	412	n.n.	
EPA, WHO	Benzo(b)fluoranthen	872	604	540	69,6	
EPA, WHO	Benzo(k)fluoranthen	384	308	238	22,8	
EPA, WHO	Benzo(a)pyren	607	554	411	40,3	
EPA	Dibenzo(a,h)anthracen	86,4	73,2		< 14,7	
EPA, WHO	Benzo(g,h,i)perylen	820	670	579		
EPA, WHO	Indeno(1,2,3-c,d)pyren	595	453	357	37,4	
	Coronen	273	181	171	< 37,5	
	Summe 17 PAH	13156	10641	8274	906	
	Summe 15 EPA-PAH	12289	9920	7692	906	
	Summe 6 WHO-PAH	6245	4976	3953	482	

ANALYSENMETHODE

Probe

Trockene Straßenstaubprobe

Grundzüge des Verfahrens

Mit dieser Methode können PAH in Straßenstaubproben bestimmt werden (Arbeitsbereiche siehe Tabelle 16):

- Soxhletextraktion der PAH mit n-Hexan
- Einengen des Extraktionsmittels
- Reinigung des n-Hexan-Extraktes über eine PAH-SOIL-Festphase
- Elution mit n-Hexan/Dichlormethan
- Bestimmung mit der Hochleistungsflüssigchromatographie (HPLC) mit Fluoreszenz- und Photodiodearray-Detektion
- Zugabe von Acetonitril und Einengen des Lösemittelgemisches
- Kalibrierung mit externen Standards

Geräte

Reinstwasseraufbereitungssystem Milli-Q-plus (Millipore) Soxhlet-Extraktionsapparatur (30 ml) Festphasenextraktionssystem Baker-Spe 10 (Baker) Stickstoffkonzentrator TurboVap II (Zymark)

HPLC-System (Waters):

- 2 Pumpen 510
- Autosampler WISP 717+
- Säulenofen CHM und Temperaturkontrollsystem TCM
- Fluoreszenz-Detektor 474
- Photodiodearray-Detektor 996
- Pump Control Module (PCM) und SAT/IN Module
- Gerätesteuer- und Auswertesoftware Millennium 2010

Chemikalien und Materialien

Anstatt der angegebenen Chemikalien können auch andere Produkte gleicher oder besserer Qualität verwendet werden.

Referenzsubstanzen (Promochem):

Deletelizannaratizett (i Tolliootti	om,
- Acenaphthylen	RAH 064
- Acenaphthen	RAH 001
- Fluoren	RAH 032
- Phenanthren	RAH 051
- Anthracen	RAH 002
- Fluoranthen	CRM 160 ¹
- Pyren	CRM 177 ¹
- Benzo(a)anthracen	CRM 271 ¹
- Chrysen	CRM 269 ¹
- Benzo(e)pyren	CRM 050 ¹
- Benzo(b)fluoranthen	CRM 047 ¹
- Benzo(k)fluoranthen	CRM 048 ¹
- Benzo(a)pyren	CRM 051R ¹
- Dibenzo(a,h)anthracen	CRM 138 ¹
- Benzo(g,h,i)perylen	CRM 052 ¹
- Indeno(1,2,3-c,d)pyren	CRM 053 ¹
- Coronen	CRM 272 ¹
Acetonitril, gradient grade	Merck 30
Dichlormethan, LiChrosolv	Merck 6044
n-Hexan, LiChrosolv	Merck 4391
Reinstwasser	hergestellt mit Milli-Q-plus
(1 CRM = zertifiziert)	_

Soxhlet-Extraktionshülsen 22 x 80 mm (Schleicher & Schuell 350211) Festphasenextraktionssäule PAH SOIL, 1.5 g (Baker 7518-08)

HPLC-Vorsäule: Bakerbond PAH 16-Plus, 20 mm x 3.0 mm ID (Baker 7505-00)

HPLC-Trennsäule: Bakerbond PAH 16-Plus, 250 mm x 3.0 mm ID (Baker 7504-00)

Herstellen der Stamm- und Kalibrierlösungen

- Stammlösung

Die Referenzsubstanzen werden in einen 50 ml Meßkolben eingewogen und mit Acetonitril aufgefüllt. Diese Stammlösung enthält die in Tabelle 15 angeführten µg Referenzsubstanzen pro I Acetonitril.

- Kalibrierlösungen

Die Stammlösung wird 1:5, 1:10, 1:20, 1:25, 1:40, 1:80, 1:100 und 1:160 mit Acetonitril verdünnt. Diese Kalibrierlösungen (Mix /8, Mix /7, Mix /6, Mix /5, Mix /4, Mix /3, Mix /2 und Mix /1) enthalten die in Tabelle 15 angegebenen Mengen der Referenzsubstanzen je I Acetonitril.

Tabelle 15: Stamm- und Kalibrierlösungen (µg/ l Acetonitril)

	Stammlösung		Kalibrier	lösungen	
	J	Mix /1		Mix /3	Mix /4
Acenaphthylen	14865	92.906	148.650	185.813	371.625
Acenaphthen	10379	64.869	103.790	129.738	259.475
Fluoren	6505	40.656	65.050	81.313	162.625
Phenanthren	3902	24.388	39.020	48.775	97.550
Anthracen	1223	7.644	12.230	15.288	30.575
Fluoranthen	13294	83.088	132.940	166.175	332.350
Pyren	9291	58.069	92.910	116.138	232.275
Benzo(a)anthracen	8485	53.031	84.850	106.063	212.125
Chrysen	3140	19.625	31.400	39.250	78.500
Benzo(e)pyren	28646	179.038	286.460	358.075	716.150
Benzo(b)fluoranthen	5598	34.988	55.980	69.975	139.950
Benzo(k)fluoranthen	2931	18.319	29.310	36.638	73.275
Benzo(a)pyren	2896	18.100	28.960	36.200	72.400
Dibenzo(a,h)anthracen	5156	32.225	51.560	64.450	128.900
Benzo(g,h,i)perylen	5781	36.131	57.810	72.263	144.525
Indeno(1,2,3-c,d)pyren	5047	31.544	50.470	63.088	126.175
Coronen	9510	59.438	95.100	118.875	237.750
Verdünnung		1 zu 160	1 zu 100	1 zu 80	1 zu 40

	,,		 	
			lösungen	1
	Mix /5	Mix /6	Mix /7	Mix /8
Acenaphthylen	594.600	743.250	1486.500	2973.000
Acenaphthen	415.160	518.950	1037.900	2075.800
Fluoren	260.200	325.250	650.500	1301.000
Phenanthren	156.080	195.100	390.200	780.400
Anthracen	48.920	61.150	122.300	244.600
Fluoranthen	531.760	664.700	1329.400	2658.800
Pyren	371.640	464.550	929.100	1858.200
Benzo(a)anthracen	339.400	424.250	848.500	1697.000
Chrysen	125.600	157.000	314.000	628.000
Benzo(e)pyren	1145.840	1432.300	2864.600	5729.200
Benzo(b)fluoranthen	223.920	279.900	559.800	1119.600
Benzo(k)fluoranthen	117.240	146.550	293.100	586.200
Benzo(a)pyren	115.840	144.800	289.600	579.200
Dibenzo(a,h)anthracen	206.240	257.800	515.600	1031.200
Benzo(g,h,i)perylen	231.240	289.050	578.100	1156.200
Indeno(1,2,3-c,d)pyren	201.880	252.350	504.700	1009.400
Coronen	380.400	475.500	951.000	1902.000
Verdünnung	1 zu 25	1 zu 20	1 zu 10	1 zu 5

Durchführung

- Probenvorbereitung

Soxhletextraktion

1 g der Straßenstaubprobe wird im Soxhlet-Extraktor (30 ml) mit 150 ml n-Hexan 8 Stunden extrahiert.

Das Lösemittel wird mit Hilfe des Stickstoffkonzentrators auf 1 ml eingeengt (ca. 35 min., Druck: 1 bar, Temperatur: 35°C) und der untere Teil des Konzentratorgefäßes mit 1 ml n-Hexan nachgespült (=Soxhletextrakt).

Vorreinigung über Festphasen

Der Soxhletextrakt wird über die Festphasenextraktionssäule PAH SOIL (1.5 g Säulenfüllung) vorgereinigt. Die gesamte Festphasenextraktion (außer der Reinigung und Aktivierung der Säule) wird ohne Vakuum, also nur "mit Schwerkraft" durchgeführt. Während des gesamten Vorgangs darf die Säule nicht trockenlaufen. Die Säule wird mit 5 ml Dichlormethan und 2 x mit je 5 ml n-Hexan gereinigt, konditioniert und aktiviert.

Der Soxhletextrakt wird auf die Säule aufgebracht. Nach dem Durchfließen des Extraktes wird die Säule mit 3.5 ml n-Hexan nachgespült.

Die PAH werden 3 x mit je 2.5 ml n-Hexan/Dichlormethan (50/50 V/V) eluiert. Das Eluat wird mit Hilfe des Stickstoffkonzentrators (Druck: 1 bar, Temperatur: 28 °C) auf 500 μ l eingeengt. Nach Zugabe von 1 ml Acetonitril wird das Eluat wieder auf 500 μ l eingeengt (= Probenextrakt).

- HPLC-Analyse

Vorsäule: Vorsäulenkartusche Bakerbond PAH 16-Plus, 20 mm x 3.0 mm ID

(Baker 7505-00)

Trennsäule: Bakerbond PAH 16-Plus, 250 mm x 3.0 mm ID (Baker 7504-00)

Säulentemperatur: 30 °C

Gradientenelution: Linearer Gradient

Zeit [min.]	Acetonitril [%]	Wasser [%]
0.0	50	50
5.0	50	50
37.0	100	0
60.0	100	0
66.0	50	50
82.0	50	50

Flußrate: 0.5 ml/min.

Injektionsvolumen: 10 µl Probenextrakt

Detektion:

1) Fluoreszenzdetektion mit selektivem Anregungs (Excitation)- und Emissionswellenlängenprogramm (Schaltung siehe unten):

Excitation- Slit: 18 nm; Emission-Slit: 18 nm - Messung aller PAH außer Acenaphthylen

2) Photodiodearray-Detektion:

Flow Cell Path Length: 10 mm; Bandbreite: 1.4 nm

- Messung von Acenaphthylen: bei 229 nm

- Absicherung durch Spektrenvergleich mit Referenzsubstanzen

Schaltung Fluoreszenzdetektor:

Zeit	Excitation	Emission	Verstärkung
[min.]	[nm]	[nm]	
0.0	273	337	10
7.0	273	337	
13.5	290	320	
18.2	251	365	
21.1	252	378	
23.5	286	461	
25.6	334	373	
27.3	258	353	
30.9	268	384	
35.5	278	421	
39.2	297	405	
43.5	299	406	
46.0	297	499	100
51.5	302	444	10
60.0	Programmende		

Da es im Laufe der Analysen (z.B. durch Veränderungen der Vor- und Trennsäulen) zu Verschiebungen der Retentionszeiten kommen kann, handelt es sich beim oben angeführten Programm um ein mögliches Schaltprogramm für den Fluoreszenzdetektor.

Auswertung und Angabe der Ergebnisse

Die Kalibrierung wird mit externen Standards auf der Gerätesoftware durchgeführt. Die Ergebnisse werden mit dem Anreicherungsschritt von 1:2 und mit der mittleren Wiederfindungsrate korrigiert.

- Arbeitsbereiche: siehe Tabelle 16

Kalibierpunkte: 8Bezugsfunktion: linearMeßwert: Peakfläche

Die Ergebnisse werden in $\mu g/kg$ oder in mg/kg Straßenstaub Trockensubstanz angegeben.

Kenndaten

- Bestimmungs- und Nachweisgrenzen, Arbeitsbereiche

Die Bestimmungs- und Nachweisgrenzen sowie die Arbeitsbereiche der einzelnen PAH sind in Tabelle 16 angegeben.

Tabelle 16: Arbeitsbereiche, Bestimmungs- und Nachweisgrenzen (µg/kg Straßenstaub)

	Arbeitsbereich	Bestimmungsgrenze	Nachweisgrenze
Acenaphthylen	62.4 - 1995	62.4	31.2
Acenaphthen	61.3 - 1961	61.3	30.6
Fluoren	26.3 - 843	26.3	13.2
Phenanthren	12.9 - 414	12.9	6.47
Anthracen	3.11 - 100	3.11	1.55
Fluoranthen	54.7 - 1749	54.7	27.3
Pyren	32.3 - 1032	32.3	16.1
Benzo(a)anthracen	29.9 - 957	29.9	15.0
Chrysen	11.0 - 353	11.0	5.52
Benzo(e)pyren	87.4 - 2798	87.4	43.7
Benzo(b)fluoranthen	21.4 - 684	21.4	10.7
Benzo(k)fluoranthen	11.3 - 362	11.3	5.66
Benzo(a)pyren	9.42 - 301	9.42	4.71
Dibenzo(a,h)anthracen	14.7 - 470	14.7	7.35
Benzo(g,h,i)perylen	11.7 - 374	11.7	5.85
Indeno(1,2,3-c,d)pyren	14.3 - 458	14.3	7.16
Coronen	37.5 - 1199	37.5	18.7

- Wiederfindungsraten

Für die Ermittlung der Wiederfindungsraten werden je 1 g Straßenstaub mit einer Lösung der Referenzsubstanzen versetzt (Dotierkonzentration siehe Tabelle 17), nach der Arbeitsvorschrift analysiert und die Gehalte an PAH bestimmt. Die Blindwerte werden abgezogen.

Die mittlere Wiederfindungsrate (MWFR) für die einzelnen PAH wird aus den Wiederfindungsraten der 7 Zumischungen bestimmt (siehe Tabelle 17).

Tabelle 17: Mittlere Wiederfindungsraten (MWFR)

	Dotierte Konzentration (µg/kg Straßenstaub)	MWFR	(+/- s)
Acenaphthylen	264	74.5	(9.0)
Acenaphthen	184	52.9	(6.1)
Fluoren	115	77.2	(2.4)
Phenanthren	69.3	94.3	(30.0)
Anthracen	21.7	123	(15.5)
Fluoranthen	236	76.0	(10.6)
Pyren	165	90.0	(10.3)
Benzo(a)anthracen	151	88.7	(5.8)
Chrysen	55.7	89.0	(21.5)
Benzo(e)pyren	509	102	(5.2)
Benzo(b)fluoranthen	99.4	81.8	(9.5)
Benzo(k)fluoranthen	52.0	81.0	(8.8)
Benzo(a)pyren	51.4	96.1	(11.2)
Dibenzo(a,h)anthracen	91.5	110	(4.4)
Benzo(g,h,i)perylen	103	155	(16.9)
Indeno(1,2,3-c,d)pyren	89.6	110	(14.6)
Coronen	169	79.3	(5.3)
MWFR = mittlere Wiederfindungsrate aus 7 Zumischproben in %			

+/- s = Standardabweichung in %

Abbildung 7: HPLC-Chromatogramm der PAH-Kalibrierlösung Mix /4 (Fluoreszenzdetektion)

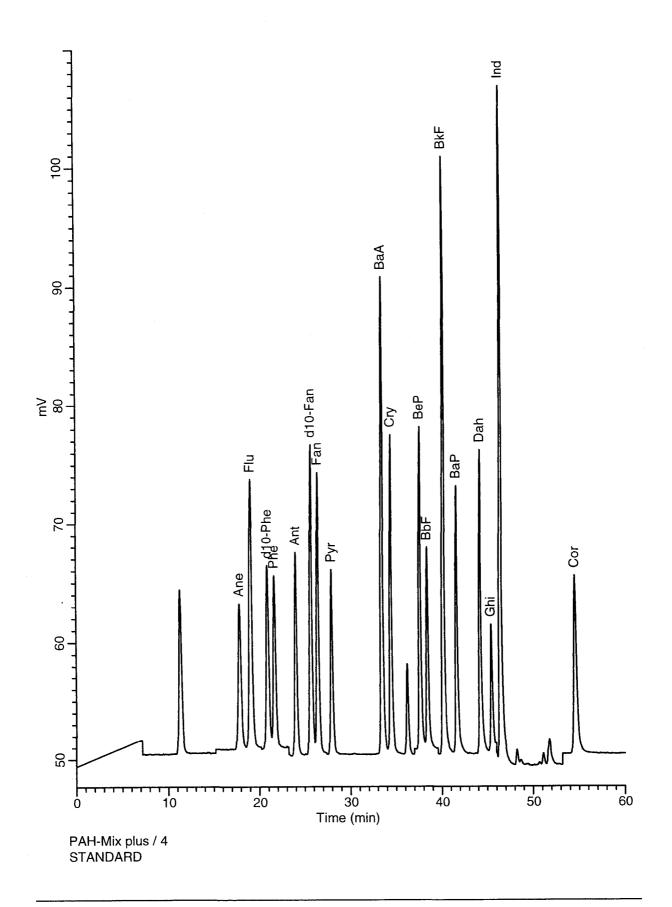
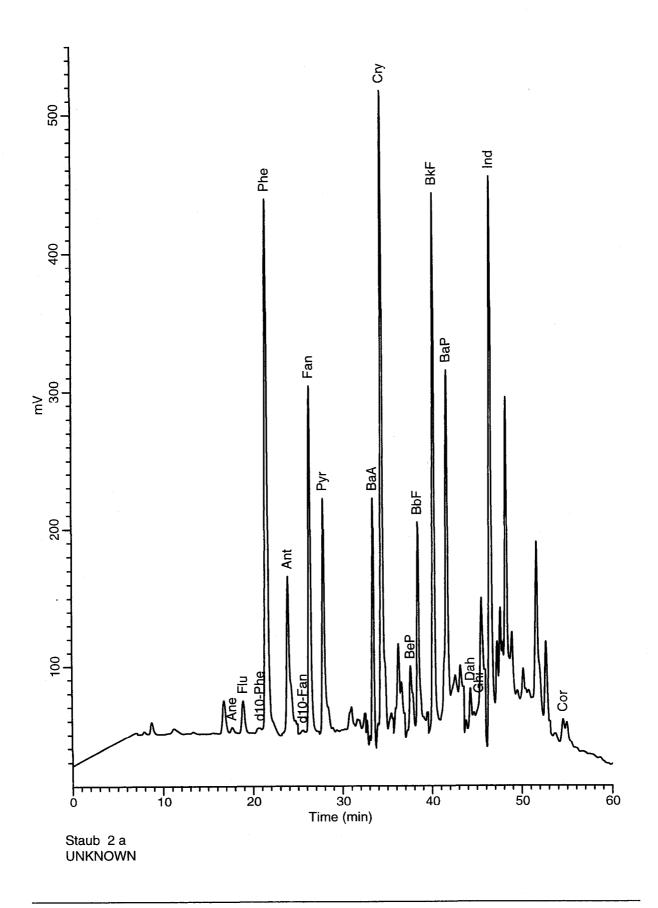



Abbildung 8: HPLC-Chromatogramm der Straßenstaubprobe 2/1 (Fluoreszenzdetektion)

LITERATUR

DIN 38409 Teil 13, Juni 1981: Bestimmung von polyzyklischen aromatischen Kohlenwasserstoffen (PAK) in Trinkwasser (H 13-1 bis 3). Deutsches Institut für Normung.

GIGER, W. & SCHAFFNER, C. (1978): Determination of polycyclic aromatic hydrocarbons in the environment by glass capillary gas chromatography. Analytical Chemistry, Vol. 50, No. 2, February 1978, 243-249.

GRUNDWASSERSCHWELLENWERTVERORDNUNG - GSwV (1991): 502. Verordnung: Verordnung des Bundesministers für Land- und Forstwirtschaft betreffend Schwellenwerte für Grundwasserinhaltsstoffe (Grundwasserschwellenwertverordnung - GSwV).

Bundesgesetzblatt für die Republik Österreich, Jahrgang 1991.

IARC-Monographien (1988): Abschätzung des Krebsrisikos beim Menschen. VALENTIN, H & KENTNER, M. (Hrsg.); Fischer Verlag, Stuttgart, New York.

IMMISSIONSVERORDNUNG FLIESSGEWÄSSER - ImVF, ENTWURF (1993): Entwurf - Verordnung des Bundesministers für Land- und Forstwirtschaft betreffend Immissionsbeschränkungen für Fließgewässer , Wien.

KERN, U.; WÜST, W.; DAUB, J.; STRIEBEL, T. & HERRMANN, R (1992): Abspülverhalten von Schwermetallen und organischen Mikroschadstoffen im Straßenabfluß.

GWF Wasser Abwasser 133 (1992) Nr. 11, 567-574.

KÖNIG, G.; RADUNSKY, K. & RITTER, M. (1997): Österreichische Luftschadstoff-Inventur 1994.

Umweltbundesamt, Report R-139, Wien.

MÜLLER, D. & WEISS, P. (1995): Überprüfung der Bodenbelastungen des Betriebsgeländes der Fa. Kovac-Schrott am Grazer Ostbahnhof. Umweltbundesamt, Bericht UBA-BE-028, Wien.

OBERFLÄCHEN-TRINKWASSERVERORDNUNG (1995): 359. Verordnung: Verordnung des Bundesministers für Gesundheit und Konsumentenschutz über die Qualitätsanforderungen an Oberflächenwasser für die Trinkwassergewinnung (Oberflächen-Trinkwasserverordnung).

Bundesgesetzblatt für die Republik Österreich, Jahrgang 1995.

RICHTLINIE DES RATES 75/440/EWG (1975): Richtlinie des Rates vom 16. Juni 1975 über die Qualitätsanforderungen an Oberflächenwasser für die Trinkwassergewinnung in den Mitgliedsstaaten.

Amtsblatt der Europäischen Gemeinschaften, Nr. L 194/34.

RICHTLINIE DES RATES 79/869/EWG (1979): Richtlinie des Rates vom 9. Oktober 1979 über die Meßmethoden sowie über die Häufigkeit der Probenahmen und der Analysen des Oberflächenwassers für die Trinkwassergewinnung in den Mitgliedsstaaten.

Amtsblatt der Europäischen Gemeinschaften, Nr. L 271/44.

RICHTLINIE DES RATES 80/778/EWG (1980): Richtlinie des Rates vom 15. Juli 1980 über die Qualität von Wasser für den menschlichen Gebrauch. Amtsblatt der Europäischen Gemeinschaften, Nr. L 229/11.

SMITH, D.J.T.; EDELHAUSER, E.C. & HARRISON, R.M. (1995): Polynuclear aromatic hydrocarbon concentrations in road dust and soil samples collected in the United Kingdom and Pakistan.

Environmental Technology, Vol. 16, 45-53 (1995).

TAKADA, H.; ONDA, T.; HARADA, M. & OGURA, N. (1991): Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in street dust from the Tokyo metropolitan area.

The Science of the Total Environment, 107 (1991), 45-69.

WAKEHAM, S.G.; SCHAFFNER, C. & GIGER, W. (1980): Polycyclic aromatic hydrocarbons in recent lake sediments - I. Compounds having anthropogenic origins. Geochimica et Cosmochimica Acta Vol. 44, 403-413, 1980.

WASSERGÜTE-ERHEBUNGSVERORDNUNG - WGEV (1991): 338. Verordnung: Verordnung des Bundesministers für Land- und Forstwirtschaft über die Erhebung der Wassergüte in Österreich (Wassergüte-Erhebungsverordnung - WGEV). Bundesgesetzblatt für die Republik Österreich, Jahrgang 1991.

YANG, Y. & BAUMANN, W. (1995): Seasonal and areal variations of polycyclic aromatic hydrocarbon concentrations in street dust determined by supercritical fluid extraction and gas chromatography-mass spectrometry.

Analyst, February 1995, Vol. 120, 243 - 248.