

ERGEBNISSE DES RINGVERSUCHS FÜR DIE MESSUNG DER SCHALLEMISSION

•

Ergebnisse des Ringversuchs für die Messung der Schallemission

BE-117

Wien, Februar 1998

Bundesministerium für Umwelt, Jugend und Familie

Autor:

Dr. Judith Lang

ImpressumMedieninhaber und Herausgeber: Umweltbundesamt, Spittelauer Lände 5, A-1090 Wien Druck: Eigenvervielfältigung

© Umweltbundesamt, Wien, 1998 Alle Rechte vorbehalten (all rights reserved) ISBN 3-85457-433-9

Zusammenfassung

Im Rahmen der Arbeitsgruppe "Qualitätssicherung schalltechnischer Messungen" im Umweltbundesamt wurde ein Ringversuch "Messung der Schallemission" durchgeführt.

Es nahmen insgesamt 22 Prüfstellen daran teil, 13 Mitarbeiter der Arbeitsgruppe (aus den Ämtern der Landesregierungen und den Magistraten der Landeshauptstädte) und zusätzlich 8 autorisierte bzw. akkreditierte österreichische Prüfstellen und die Physikalisch-Technische Bundesanstalt Braunschweig.

Als Prüfobjekt diente eine Referenzschallquelle, deren Schallemission ein gleichmäßiges Frequenzspektrum ohne Tonkomponenten und keine Richtcharakteristik aufweist. Die Messung sollte nach einem oder mehreren genormten Meßverfahren durchgeführt werden, die Wahl des Verfahrens war jeder Prüfstelle (je nach personellen, instrumentellen und räumlichen Gegebenheiten) freigestellt. Die Messungen erfolgten nach 7 in österreichischen oder internationalen Normen festgelegten Verfahren, insgesamt wurden 211 Einzelmessungen durchgeführt.

Aus den Ergebnissen wurde die Standardabweichung s_R nach ISO 5725 für die verschiedenen Verfahren ermittelt. Die Ergebnisse der Messungen nach den verschiedenen Verfahren konnten auch verglichen werden mit den Ergebnissen der genormten Präzisionsmessung für die Kalibrierung von Bezugsschallquellen. Alle Meßverfahren lieferten gut übereinstimmende Ergebnisse, die Standardabweichung ergab sich für die untersuchte Schallquelle in allen Fälle deutlich kleiner als in der jeweiligen Norm angegeben. Die Messungen erbrachten damit ein für die Praxis der Arbeiten zum Lärmschutz befriedigendes Ergebnis und zeigten insbesondere, daß auch mit einfachen Meßverfahren auf einem immer zur Verfügung stehenden Meßplatz im Freien ausreichend genaue Angaben für den Abewerteten Schalleistungspegel erzielt werden.

.

1. Einleitung

Im Rahmen der Arbeiten der Arbeitsgruppe "Schalltechnische Messungen" des Arbeitskreises "Qualitätssicherung von Umweltmeßdaten" im Umweltbundesamt wurde ein Ringversuch für die Messung der Schallemission einer Schallquelle durchgeführt. Von den in der Arbeitsgruppe mitarbeitenden schalltechnischen Prüfstellen der Landesregierungen und Magistrate nahmen daran die folgenden Dienststellen teil:

Amt der Burgenländischen Landesregierung, Abt. XIII/4 - Maschinenbau

Amt der Kärntner Landesregierung, Abt. 15 – Umweltschutz und Technik

Amt der Oberösterreichischen Landesregierung, Lärm und Strahlenschutz

Amt der Salzburger Landesregierung, Abt. 16 Umweltschutz

Amt der Steiermärkischen Landesregierung, Fachabteilung la

Amt der Tiroler Landesregierung, Landesbaudirektion Abt. VI e 1

Amt der Vorarlberger Landesregierung, Abt. VIC – Maschinenwesen

Magistrat der Stadt Wien, MA 22 - Umweltschutz

Magistrat Graz, Amt für Umweltschutz

Magistrat Innsbruck, Bau- und Feuerpolizei

Magistrat Innsbruck, Mag.Abt. VI Umweltschutz und Abfallbeseitigung

Magistrat Klagenfurt, Abt. Umweltschutz

Magistrat Linz, Amt für Natur- und Umweltschutz.

Da für einen Ringversuch eine möglichst große Zahl von teilnehmenden Prüfstellen erforderlich ist und Messungen möglichst nach allen genormten Verfahren durchgeführt werden sollten, wurden auch die autorisierten bzw. akkreditierten Versuchsanstalten eingeladen, an dem Ringversuch teilzunehmen. Folgende Versuchsanstalten beteiligten sich daraufhin an dem Ringversuch:

Allgemeine Unfallversicherungsanstalt, Abt. für Unfallverhütung und Berufskrankheitenbekämpfung, Wien

Bautechnische Versuchs- und Forschungsanstalt Salzburg

CEF Austria Prüfanstalt für Umwelttechnik GMBH, Althofen

NÖ Umweltschutzanstalt. Maria Enzersdorf

Österreichisches Forschungs- und Prüfzentrum Arsenal Ges.m.b.H., Wien

Schreiner Consulting, Linz

TÜV Österreich, Prüfzentrum Wels

Versuchsanstalt für Wärme- und Schalltechnik am Technologischen Gewerbemuseum Wien.

Weiters nahm die Physikalisch-Technische Bundesanstalt Braunschweig an dem Ringversuch teil.

2. Prüfobjekt

Als Prüfobjekt wurde die Referenzschallquelle, Type E.D.F.Airap (hergestellt von der Electricité de France) von der Versuchsanstalt für Wärme- und Schalltechnik am TGM zur Verfügung gestellt. Die Schallquelle besteht im wesentlichen aus einem Gebläse, angetrieben von einem Asynchronmotor Type MFK 80A2, Nenndrehzahl 2840 U/min, umhüllt von einem Lochblechzylinder.

3. Durchführung der Messungen

Die Messung sollte nach einem oder mehreren der genormten Meßverfahren durchgeführt werden, die Wahl des Verfahrens war jeder Prüfstelle (je nach personellen, instrumentellen und räumlichen Gegebenheiten) freigestellt. Es sollten jeweils möglichst fünf gleichartige Messungen durchgeführt werden.

Damit ergab sich die folgende Anzahl von teilnehmenden Prüfstellen und durchgeführten Einzelmessungen:

Messung nach Norm	Prüfstellen	Einzel- messungen
ÖNORM S 5038 Bestimmung der Schalleistung von Schallquellen; kleine in allen Richtungen strahlende Schallquellen im Freifeld über einer reflektierenden Ebene	9	39
ÖNORM EN ISO 3746 Akustik – Bestimmung der Schalleistungspegel von Geräuschquellen aus Schalldruckmessungen; Hüllflächenverfahren der Genauigkeitsklasse 3 über einer reflektierenden Ebene (ISO 3746:1995)	6	48
ÖNORM EN ISO 3744 Akustik – Bestimmung der Schalleistungspegel von Geräuschquellen aus Schalldruckmessungen; Hüllflächenverfahren der Genauigkeitsklasse 2 für ein im wesentlichen freies Schallfeld über einer reflektierenden Ebene (ISO 3744:1994)	14	66
ÖNORM EN ISO 3741 (Entwurf) Akustik – Bestimmung der Schalleistungspegel von Geräuschquellen; Rahmenmeßverfahren der Genauigkeitsklasse 1 in Hallräumen (ISO/DIS 3741:1996) und	3	20
ISO/DIS 6926 Acoustics – Determination of sound power levels of noise sources – Requirements for the performance and calibration of reference sound sources	1	3
ISO 3745:1977 Acoustics – Determination of sound power levels of noise sources – Precisions methods for anechoic and semit-anechoic rooms 'und	2	11
ISO/DIS 6926	1	9
ÖNORM EN ISO 9614-1 Akustik – Bestimmung der Schalleistungspegel von Schallquellen aus Schallintensitätsmessungen; Teil 1: Messungen an diskreten Punkten (ISO 9614-1: 1993)	2	10
ÖNORM EN ISO 9614-2 Akustik – Bestimmung der Schalleistungspegel von Geräuschquellen aus Schallintensitätsmessungen; Teil 2: Messung mit kontinuierlicher Abtastung	1	5

Mit allen Prüfverfahren wurde der A-bewertete Schalleistungspegel bestimmt; mit dem Verfahren nach ISO 3744 auch die Oktavband- oder Terzband-Schalleistungspegel, mit den Verfahren nach ISO 3741, ISO 3745 und ISO 9614 auch die Terzband-Schalleistungspegel.

4. Ergebnisse der Messungen

Die Ergebnisse für den **A-bewerteten Schalleistungspegel** sind in nachfolgender Tabelle zusammengestellt.

Teiln. Nr.	Betrieb der Schallquelle	Meßgeräte (Mikrofon, Meß- gerät, Kalibrator)	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
ÖNORM S 5038						
1		B & K 4165 B & K 2236 B & K 4230	im Freien	Quader d = 1m	95,8 95,6 95,7 95,68 95,6 95,7	0,084
5		B & K 4155 B & K 2230 B & K 4230 B & K 2231	im Freien 23ºC 30 % 942 hPa	Quader d = 1m	96,0 96,0 96,0 96,4	
7		B & K 4165 NOR 830 B & K 4230	im Freien 25°C 35 % windstill	Quader d = 1m	96,5 96,5 96,6 96,54 96,5 96,6	0,055
8 -		B & K 4155 B & K 2231 B & K 4230	im Freien 25°C 43 % 23°C 53 % windstill	Quader d = 1m	96,9 96,3 96,2 96,18 95,9 95,6	0,49
10		B & K 2236 B & K 4231	im Freien 18ºC, leichter Wind	Quader d = 1m	97,0	
11		B & K 2231	im Freien 23°C 30 % Wind < 5 m/s	Quader d = 1m	94,8 95,0 94,9 94,94 95,0 95,0	0,089
12	220 Volt 2700 U/min	LD 2541 Larson- Davis 2900 NOR 1251	im Freien	Quader d = 1m	95,9 95,8 95,5 95,78 95,8 95,9	0,16
16	223-224 Volt 2680-2690 U/min	B & K 4165 CEL 393 B B & K 4230 CEL 192/2F	im Freien 15-18ºC 45 % windstill bis max.1,4 m/s	Quader d = 1m	97,0 96,9 96,9 96,90 96,8 96,5	0,082
L		CEL 593 C1			30,5	

Teiln. Nr.	Betrieb der Schallquelle	Meßgerät	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
20	228-230 Volt 2690-2740 U/min	B & K 4165 NOR 830 B & K 4230	im Freien 11,3º C 38 % 1000 hPa leichter Wind	Quader d = 1m	97,7 97,7 98,2 97,46 97,0 96,7	0,60
ÖNO	ORM EN ISO 3	746				
9	9 LD 3810 Larson- Davis 2900 B & K 4230		im Freien warm, windstill	Quader d = 1m	97,1 96,9 96,6 96,76 96,6 96,6	0,23
12	220 Volt 2700 U/min	LD 2541 Larson- Davis 2900 NOR 1251	im Freien	Quader d = 2m	96,8 97,0 96,8 96,90 97,0 96,9	0,10
				Quader d = 1m	96,7 96,8 96,5 96,70 96,9 96,6	0,16
				Halbkugel r ≃ 2m	94,6 94,5 94,7 94,76 94,7 95,3	0,31
13	205-208 V 2650-2670 U/min	B & K 4165 NOR 840 B & K 4230	im Freien 18,4-22,6°C 85-68 % Wind 0-1 m/s 15,8-20,0°C 90-85% Wind 0,5-1,7 m/s	Halbkugel r = 2m	94,4 94,4 94,2 94,3 94,3 94,43 94,6 94,6 94,5 94,5	0,13
	203-207 V 2670-2710 U/min		21,2-23,2°C 83-62 % Wind 1,8-2,2 m/s	Quader d = 1m	94,5 94,1 94,1 94,1	
14		NOR 840	Halle V = 12000m ³	Halbkugel r = 2m	96,4 95,8 96,2 96,15 96,2	0,25
			im Freien	Halbkugel r = 2m	95,6	

Teiln. Nr.	Betrieb der Schallquelle	Meßgerät	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
15	222,4 Volt	B & K 4165 NOR 840 NOR 1251	lm Freien 18-21⁰C 999 hPa Wind <2 m/s	Halbkugel r = 2m	95,1 95,1 95,0 95,06 95,0 95,1	0,055
16	223-224 Volt 2680-2690 U/min	B & K 4165 CEL 393 B B & K 4230	im Freien 15-18°C 45 % windstill bis	18°C 45 %		
			max.1,4 m/s	Halbkugel r = 1m Halbkugel	95,0 96,0 95,5 96,0	
				r = 2m	96,4 96,2	
ÖNO	ORM EN ISO 3	744				
2		NOR 1220 NOR 110 B & K 4230	im Freien	Halbkugel r = 1m	96,1 96,0 96,03 96,0	0,058
4	219 Volt	LD 2541 Larson- Davis 2900 B & K 4230	im Freien 23ºC 66 % 962,6 hPa	Quader d = 1m	95,4	
6	2800 U/min	NOR 1220 NOR 110 CEL 177	im Freien 20ºC 76 % 960 hPa	Quader d = 1m	95,2 95,1 95,2 95,30 95,4 95,6	0,20
8		B & K 4155 B & K 2231 B & K 4230	im Freien 25°C 43 % 23°C 53 % windstill	Quader d = 1m	96,5 96,8 95,8 95,96 95,4 95,3	0,67
9		LD 3810 Larson- Davis 2900 B & K 4230	im Freien warm, windstill	Quader d = 1m	95,7 95,6 95,1 95,36 95,2 95,2	0,27
12		LD 2541 Larson- Davis 2900 NOR 1251	Im Freien	Quader d = 1m	95,3 95,4 95,0 95,22 95,3 95,1	0,16
				Quader d = 2m	95,3 95,5 95,4 95,46 95,6 95,5	0,11

Teiln. Nr.	Betrieb der Schallquelle	Meßgerät	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
				Halbkugel r = 2m	94,8 94,7 95,0 94,92 94,8 95,3	0,24
13	205-208 Volt 2650-2670 U/min	B & K 4165 NOR 840 B & K 4230	im Freien 15,8-20,0°C 90-85 % Wind 0,5-1,7 m/s	Halbkugel r = 2m	94,6 94,5 94,5 94,48 94,4 94,4	0,084
	203-207 Volt 2670-2710 U/min		21,2-23,2 °C 83-62 % Wind 1,8-2,2 m/s	Quader d = 1m	95,2 95,2 95,2	
14		NOR 1220 NOR 840 B & K 4231	Halle V = 12000 m ³	Halbkugel r = 2m	96,1 96,0 96,1 96,08 96,1	0.050
i i			im Freien	Halbkugel r = 2m	95,6	
15	222,4 Volt	B & K 4165 NOR 840 NOR 1251	im Freien 18-21 ^o C 999 hPa Wind < 2 m/s	Halbkugel r = 2m	95,0 95,0 95,0 95,00 95,0 95,0	0
16	223-224 Volt	B & K 4165 CEL 393 B & K 4230	Im Freien	Quader d = 1m	96,7	
	2680-2690 U/min	CEL 192/2F CEL 593.C1	15-18°C 45 %		96,2	
		CEL 393	Windstill bis max. 1,4 m/s	Halbkugel r = 1m	95,3	
ļ		CEL 593 C1		•	95,7	
		CEL 393. C1		Halbkugel r = 2m	96,1	
		CEL 593			96,0	
17		NOR 1220 NOR 830 B & K 4230	im Freien 8ºC 40 % Wind 0,5-1 m/s 1000 hPa	Quader d = 1m	95,5	
18	200-208 Volt	NOR 1220 NOR 110 NOR 1251	im Freien 9-11°C 38-42 %	Quader d = 1m	95,7 95,80 95,9	0,10
			windstill bis 3m/s	Quader d = 2m	96,0	

Teiln. Nr.	Betrieb der Schallquelle	Meßgerät	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
19	207,5 Volt	G.R.A.S.40AF NOR 110 B & K 4231	im Freien 28ºC 48 % 967 hPa	Quader d = 1m	94,7 94,5 94,6	
21	200-208 Volt	B & K 4165 NOR 830 B & K 4230	im Freien 9-14 ^o C 55-50 % Wind 0-3 m/s	Quader d = 1m Quader d = 2m	95,8 95,8	
ÖNO	ORM EN ISO 3	741				
3	2740 U/min 2745 U/min 2720 U/min 2745 U/min 2740 U/min	B & K 4166 NOR 840 CEL 177	Hallraum V = 206 m³ S = 215 m² 10 Diffusoren, je 1,5 m²	Mikrofonpfad	96,6 96,6 96,8 96,76 97,0 96,8	0,17
	2740 U/min 2745 U/min 2720 U/min 2745 U/min 2740 U/min		gekrümmt 16,2-16,4 °C 990 hPa (Werte korrig. auf 20° und 1000 hPa)	3 Meßpunkte	96,5 96,5 96,8 96,64 96,7 96,7	0,13
15	219,8 Volt	B & K 4165 NOR 840 NOR 1251	Hallraum V = 189 m³ S = 176 m² 10 Diffusoren je 1m² bzw. 2m², regellos gekrümmt 20°C 69 % 999 hPa	4 Mikrofon- pfade	95,0 94,8 94,9 94,78 94,9 94,3	0,28
20	223-225 Volt 2700-2760 U/min	B & K 4165 NOR 830 B & K 4220	Hallraum V = 196 m³ S = 213 m² 14 Diffusoren, je 2m² regellos gekrümmt 19,7-21,3°C 51,6-58% 999-1001 hPa	3 Quellen- positionen, jeweils 1 Mikrofon- Kreisbahn r = 1 m	95,8 95,8 95,7 95,70 95,6 95,6	0,10
22	2720 U/min	B & K 4134 NOR 830 B & K 4221	rechtwinkeliger Hallraum V = 237m³ S = 240m² rotier. Diffusor S = 30 m² 17,8-19,9°C 55% 1000 hPa	4 Quellen- positionen, jeweils 6 Meßpunkte	96,0 96,0 95,97 95,9 Auswertung mit Diffusfeld- korrektur *)	0,058

Teiln. Nr.	Betrieb der Schallquelle	Meßgerät	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungs -pegel (dB)	Standard- abweichung
ISO 3	3745					
15	217,1 Volt	B & K 4165 NOR 840 B & K 4228	reflexions- armer Halbraum 20 ^o C 995 hPa	Halbkugel r = 2m 10 Meßpunkte	95,3 95,3 95,4 95,34 95,4 95,3	0,055
20	218-225 Volt 2680-2725 U/min	B & K 4165 NOR 830 B & K 4220	reflexions- armer Halbraum 19,5-19,9°C 55,5-58,7 % 995—997 hPa	Halbkugel 5 Kreisbahnen r = 1m r = 2m	95,5 95,7 95,4 95,62 95,5 96,0 95,6	0,24
22	2710 U/min 2718 U/min	B & K 4133 NOR 830 B & K 4228	reflexions- armer Halbraum V = 190 m ³	Halbkugel r = 2m spiralförmiger Meßpfad	95,7 95,7 95,7 95.8	
	2718 U/min		19-20°C 1007-1017hPa (Werte korrig. auf 20°C und 1000 hPA)		95,8 95,77 95,8 95,8 95,8 95,8	0.05
ÖNO	ORM EN ISO 9	614-1				
14		NOR 840 + GRAS 50 AI GRAS 51 AB **)	Halle V = 12000 m³ Genauigkeits- klasse 2	Zylinder r = 0,6m h = 0,8m	94,5 94,4 95,0 94,76 95,3 **) 94,6	0,38
15	221 Volt	NOR 840 + GRAS 50 AI	möblierter Raum mit Keramikboden V = 92 m³ Genauigkeits- klasse 2 22°C 988 hPA	Zylinder 10 Teilflächen d = 1,4m h = 1,0m	93,7 93,8 93,4 93,64 93,5 93,8	0,18
ÖN	ORM EN ISO 9	614-2				
14		NOR 840 + GRAS 50 AI GRAS 51 AB **)	Halle V = 12000 m ³	Würfel Kantenlänge 0,8m	94,3 94,0 94,1 94,12 94,1 **) 94,1	0,11

^{*)} Vorländer M.: Revised relation between the sound power and the average sound pressure level in rooms.

Acustica Vol.81 (1995), S 332-343

**) Die Messungen erfolgten nur mit dem 12,5 mm Spacer für 250 Hz bis 6,3 kHz; eine Abschätzung zeigte, daß der A-bewertete Schallpegel durch den nicht voll erfaßten Frequenzbereich um 0,4 dB zu gering sein dürfte.

Aus den Meßergebnissen wurde der Gesamtmittelwert aller Prüfungen mit jeweils einem Verfahren berechnet; weiters können, sofem eine genügende Anzahl von Prüfstellen eine genügende Anzahl von Messungen durchführte, auch die Werte für die repeatability r (Wiederholgrenze) und die reproducibility R (Vergleichsgrenze) und die reproducibility standard deviation s_R berechnet werden. Für die Messungen nach ÖNORM S 5038, ÖNORM EN ISO 3746 und ÖNORM EN ISO 3744 ist keine Umrechnung des Meßergebnisses auf Normbedingungen vorgeschrieben. Die Meßwerte können daher unmittelbar zur Berechnung der vorgenannten Werte herangezogen werden; die Ergebnisse dieser Auswertung sind in nachstehender Tabelle zusammengestellt. Da die Ergebnisse bei Messung nach ÖNORM EN ISO 3746 je nach Messung auf der Halbkugelfläche oder auf der Quaderfläche sich deutlich unterschieden, erfolgte auch eine Auswertung für die beiden Meßflächen getrennt (allerdings ist dann die Zahl der durchgeführten Messungen vergleichsweise klein).

ÖNORM	Teiln. (getrennte Messungen)	Einzel- messungen	n	Gesamt -mittel dB	S _r ²	S _L ²	S _R	r	R
S 5038	11	39	3,46	96,2	0,093	0,59	0,83	0,85	2,3
ISO 3746	12	48	3,88	95,7	0,050	1,28	1,16	0,63	3,2
wie vor, nur Quader	5	19	3,66	96,6	0,034	1,07	1,05	0,52	2,9
wie vor, nur Halbkugel	7	29	3,83	95,1	0,061	0,53	0,77	0,69	2,1
ISO 3744	25	66	2,55	95,4	0,067	0,24	0,56	0,73	1,6

Die Standardabweichung s_R und die Werte für r und R enthalten auch den Einfluß der etwas unterschiedlichen Betriebsspannung und Drehzahl der Schallquelle und den Einfluß von Temperatur und Luftdruck.

Die Betriebsspannung und die Drehzahl der Schallquelle wurde nicht von allen Prüfstellen gemessen; die angegebenen Meßwerte liegen für die Spannung zwischen 200 und 230 Volt und für die Drehzahl zwischen 2680 und 2760 U/min (weit unter der Nenndrehzahl von 2840 U/min). Die Drehzahl schwankte damit um \pm 1,5 %; daraus resultiert nach der Literatur¹⁾ eine Änderung des Schalleistungspegels von \pm 0,35 dB. Eine Umrechnung kann, da nicht bei allen Messungen die Drehzahl bestimmt wurde, nicht erfolgen; die durch die Schwankung der Drehzahl gegebene Schwankung des Schalleistungspegels ist damit in der aus den Messungen ermittelten Standardabweichung mit enthalten.

Die aus der Schalldruckmessung ermittelte Schalleistung hängt von der Lufttemperatur und vom Luftdruck (die die Schallkennimpedanz der Luft und die Schallabgabe der Schallquelle bestimmen) ab. Für den Vergleich der Meßergebnisse kann es daher zweckmäßig sein, diese auf Normbedingungen umzurechnen. In der Literatur¹⁾ wird dazu die Korrektur

$$K_{00,N} = 10.\kappa. \lg \left[\left(\frac{304,8K}{273 + \Theta} \right)^{0.5} \cdot \frac{p_s}{1000hPa} \right]$$

angegeben.²⁾ Die Korrektur berücksichtigt die gesamte Abhängigkeit von den meteorologischen Bedingungen mit Lufttemperatur Θ und Luftdruck p_s ; κ hat gemäß Literaturangabe für eine aerodynamische Schallquelle bei tiefen Frequenzen den Wert 2,0, bei hohen Frequenzen 3,0; es wird daher mit dem mittleren Wert von κ = 2,5 gerechnet.

¹⁾ G.Hübner, J.Wu, J.Messner: Ringversuch zur Bestimmung des Schalleistungspegels. Schriftenreihe der Bundesanstalt für Arbeitsschutz – Forschung Fb 736, Dortmund 1996

²) Der Bezug auf die Lufttemperatur von 31,8°C (304,8 K) ergibt sich aus der Schallkennimpedanz der Luft von 400 Ns/m³ entsprechend dem Bezugswert des Schalleistungspegels von 10⁻¹² Watt (und dem Bezugswert für den Schalldruckpegel von 20 μPa und für die Fläche von 1 m²).

Um den Einfluß der meteorologischen Bedingungen auszuschließen, erfolgte eine zweite Auswertung der Meßergebnisse mit Bezug auf die Bedingungen 20°C und 1000 hPa, für die ein Bezug in ISO 3745 vorgeschrieben ist³) und die bei den Messungen im Labor (Hallraum und reflexionsarmer Halbraum) und bei der Intensitätsmessung etwa gegeben waren. Sofern die meteorologischen Bedingungen von den Prüfstellen nicht angegeben worden waren, wurden sie von der Zentralanstalt für Meteorologie und Geodynamik in Wien für den jeweiligen Ort und Zeitraum der Messung erfragt. Die Umrechnung auf 20°C wird hier gewählt, weil diese Temperatur etwa bei den genauen Messungen nach ISO 3741 und ISO 3745 gegeben war und daher eine Umrechnung für die Schallabgabe der Schallquelle für diese Messungen nicht erforderlich ist. Um den Schalleistungspegel für die Schallkennimpedanz 400 Ns/m³ zu erhalten, ist eine Korrektur von –0,21 dB (die auch die Schallabstrahlung der Quelle berücksichtigt) anzubringen. Die für die Bedingungen 20°C und 1000 hPa ermittelten Meßergebnisse für den Schalleistungspegel sind in der nachfolgenden Tabelle zusammengestellt.

Teiln.Nr.	Betrieb der Schallquelle	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungspegel (dB) Mittelwert
ÖNORM	1 S 5038			
1		im Freien	Quader d = 1m	96,00
5		im Freien	Quader d = 1m	96,70
				97,10
7		im Freien	Quader d = 1m	96,87
8		im Freien	Quader d = 1m	96,42
10	- <u></u>	im Freien	Quader d = 1m	97,02
11		im Freien	Quader d = 1m	95,46
12	220 Volt, 2700 U/min	im Freien	Quader d = 1m	95,98
16	223-224 Volt, 2680-2690 U/min	im Freien	Quader d = 1m	97,11
20	228-230 Volt 2690-2740 U/min	im Freien	Quader d = 1m	97,30
ÖNORM	I EN ISO 3746			
9		im Freien	Quader d = 1m	97,00
12	220 Volt, 2700 U/min	im Freien	Quader d = 2m	97,10
			Quader d = 1m	96,90
			Halbkugel r = 2m	94,96
13		im Freien	Halbkugel r = 2m	94,73
			Quader d = 1m	94,50
14	-	Halle V = 12000 m ³	Halbkugel r = 2m	96,45
		im Freien	Halbkugel r = 2m	95,90
15	222,4 Volt	im Freien	Halbkugel r = 2m	95,06

 $^{^3}$) Gemäß ISO 3745 sind die Ergebnisse auf 20^{0} C und 1000 hPa zu beziehen (dies entspricht einer Schallkennimpedanz von 408 Ns/m 3), wobei die Umrechnung nicht den Faktor κ enthält, d.h. nicht den Einfluß der meteorologischen Bedingungen auf die Schallabstrahlung der Schallquelle berücksichtigt.

Teiln.Nr.	Betrieb der Schallquelle	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungspegel (dB) Mittelwert
16	223-224 Volt	im Freien	Quader d = 1m	97,96
	2680-2690 U/min		Halbkugel r = 1m	95,71
			Halbkugel r = 2m	96,41
ÖNORM	I EN ISO 3744			
2		im Freien	Halbkugel r = 1m	96,72
4	219 Volt	im Freien	Quader d = 1m	95,87
6		im Freien	Quader d = 1m	95,74
8		im Freien	Quader d = 1m	96,20
9		im Freien	Quader d = 1m	95,60
12	220 Volt, 2700 U/min	im Freien	Quader d = 1m	95,42
	·		Quader d = 2m	95,66
		_	Halbkugel r = 2m	95,12
13		im Freien	Halbkugel r = 2m	94,80
			Quader d = 1m	95,60
14		Halle V = 12000 m ³	Halbkugel r = 2m	96,38
_		im Freien	Halbkugei r = 2m	95,90
15	222,4 Volt	im Freien	Quader d = 1m	95,00
16	223-224 Volt	im Freien	Quader d = 1m	96,9
	2680-2690 U/min			96,4
			Halbkugel r = 1m	95,5
				95,9
			Halbkugel r = 2m	96,3
				96,2
17	<u></u>	im Freien	Quader d = 1m	95,27
18	200-208 Volt	im Freien	Quader d = 1m	95,98
19	207,5 Volt	im Freien	Quader d = 1m	95,11
21	200-208 Volt	im Freien	Quader d = 1m	95,98
			Quader d = 2m	95,98

Teiln.Nr.	Betrieb der Schallquelle	Meßumgebung	Meßfläche Meßlinie	A-bewerteter Schalleistungspegel (dB) Mittelwert
ÖNORM	EN ISO 3741			
3	2720-2745 U/min	Hallraum V = 206 m ³	Mikrofonpfad	96,76
		V = 206 m	3 Meßpunkte	96,64
15	219,8 Volt	Hallraum V = 189 m³	4 Mikrofonpfade	94,78
20	223-225 Volt 2700-2760 U/min	Hallraum V = 196 m³	3 Quellen- positionen, jeweils 1 Mikrofonbahn	95,70
22	2720 U/min	Hallraum V = 237 m ³	4 Quellen- positionen, 6 Meßpunkte	95,97
ISO 374	5			
15	217,1 Volt	reflexionsarmer Halbraum	Halbkugel r = 2m 10 Meßpunkte	95,48
20	218-225 Volt 2680-2725 U/min	reflexionsarmer Halbraum	Halbkugel r = 1m 5 Kreisbahnen Halbkugel r = 2m	95,62
22	2710-2718 U/min	reflexionsarmer Halbraum	Halbkugel r = 2m spiralförmiger Meßpfad	95,77
ÖNORM	EN ISO 9614-1			
14		Halle V = 12000 m ³	Zylinder, r = 0,6m h = 0,8 m	95,0 (+ 0,4)
15	221 Volt	möbl. Raum, V = 92 m³	Zylinder, 10 Teilfl. d = 1,4m h = 1m	94,04
ÖNORM	EN ISO 9614-2			
14		Halle V = 12000 m ³	Würfel, Kanten- länge 0,8m	94,4 (+ 0,4)

Aus den auf die Bedingungen 20° C und 1000 hPa bezogenen Werten für den A-bewerteten Schalleistungspegel wurde erneut jeweils das Gesamtmittel aus allen Meßergebnissen, die nach der gleichen Norm ermittelt wurden, gebildet und die Werte für die Standardabweichung s_R und r^{40} und R berechnet. Sie sind in der nachfolgenden Tabelle zusammengestellt. Für die Messungen nach ISO 3741 und ISO 3745 kann eine Berechnung von s_R , r und R nicht erfolgen, da nur wenige Prüfstellen Messungen durchführten; es ist daher nur der Bereich der Meßergebnisse angeführt.

⁴) Die Werte für r bleiben unverändert oder ändern sich nur geringfügig, da sie sich nur aus den Standardabweichungen der Messungen der einzelnen Prüfstellen ergeben, für die in den meisten Fällen für alle Messungen gleiche Werte für Temperatur und Luftdruck gegeben waren.

ÖNORM	Teiln. (getrennte Messungen)	Einzel- messung	n	Gesamt -mittel dB	S _r ²	S _L ²	S _R	r	R
S 5038	11	39	3,46	96,5	0,092	0,38	0,69	0,85	1,9
ISO 3746	12	48	3,88	95,9	0,052	1,26	1,14	0,64	3,2
wie vor, nur Quader	5	19	3,66	96,8	0,034	0,94	0,99	0,52	2,8
wie vor, nur Halbkugel	7	29	3,83	95,3	0,063	0,53	0,77	0,70	2,2
ISO 3744	25	66	2,55	95,7	0,067	0,28	0,59	0,72	1,7
ISO 3741	5	23		96,0		Berei	ch 94,8 b	is 96,8	
ISO 3745	4	20		95,6	Bereich 95,5 bis 95,8				
ISO 9614	2	10		94,7	Bereich 94,0 bis 95,4				
Teil 2	1	5		94,8					

Die Ergebnisse für den Oktav- und Terzband-Schalleistungspegel sind in den Beilagen 1 bis 9 zusammengestellt. Die Frequenzanalysen nach ÖNORM EN ISO 3744 wurden von 5 Teilnehmern in Terzen und von 8 Teilnehmern in Oktaven angegeben. Die Frequenzanalysen nach ÖNORM EN ISO 3741 und nach ISO 3745 und ÖNORM EN ISO 9614 erfolgten in Terzen.

In den Tabellen in Beilage 1a und 1b sind die Terz- und Oktavband-Schalleistungspegel für die Messungen nach ÖNORM EN ISO 3744 zusammengestellt. In der Tabelle für die Oktavbandanalysen wurden auch die aus den Terzbandanalysen umgerechneten Werte aufgenommen. In Beilage 2 sind die Oktavband-Schalleistungspegel als Mittelwerte aus jeweils 5 Einzelmessungen und die zugehörige Standardabweichung in Abhängigkeit von der Frequenz dargestellt.⁵⁾

In Beilage 3 sind die für die Oktavbandanalysen ermittelten Werte für die repeatability r, die reproducibility R und die Standardabweichung s_R in Abhängigkeit von der Frequenz in Diagrammen und in Tabellenform dargestellt; dazu sind auch die Werte von s_R nach ÖNORM EN ISO 3744 angegeben.

In der Tabelle in Beilage 4 sind die Terzband-Schalleistungspegel gemessen nach ÖNORM EN ISO 3741 im Hallraum zusammengestellt. In den Diagrammen in Beilage 5 sind die Mittelwerte und die Standardabweichung der einzelnen Prüfstellen in Abhängigkeit von der Frequenz dargestellt.

In der Tabelle in Beilage 6 sind die Terzband-Schalleistungspegel gemessen nach ISO 3745 im reflexionsarmen Halbraum zusammengestellt. In den Diagrammen in Beilage 7 sind die Mittelwerte und die Standardabweichung der einzelnen Prüfstellen in Abhängigkeit von der Frequenz dargestellt.

Die Angaben in den Tabellen gestatten auch den Vergleich der Ergebnisse der Messungen nach verschiedenen Verfahren. Zur Übersicht sind die Gesamtmittelwerte der Oktavbandpegel und der Terzbandpegel, die nach den verschiedenen Verfahren gemessen wurden, in den Diagrammen in Beilage 8 zusammengestellt. In dieser Beilage sind auch die Meßergebnisse nach der Norm für die Kalibrierung von Bezugsschallquellen (ISO/DIS 6926) für die beiden Verfahren im Hallraum und im reflexionsarmen Halbraum vergleichend zusammengestellt.

⁵) Da in der Norm eine Umrechnung auf Normbedingungen nicht vorgeschrieben ist, sind hier die Meßwerte (ohne Korrektur) zugrunde gelegt.

5. Schlußfolgerungen

Die Messungen erbrachten im wesentlichen ein für die Praxis der Arbeiten zum Lärmschutz befriedigendes Ergebnis und zeigten insbesondere, daß auch mit einfachen Meßverfahren auf einem immer zur Verfügung stehenden Meßplatz im Freien ausreichend genaue Angaben für den A-bewerteten Schalleistungspegel erzielt werden.

Allerdings ist zu beachten, daß die verwendete Vergleichsschallquelle ein "einfach zu messendes" Prüfobjekt ist, da sie keine ausgeprägte Richtcharakteristik und keine Tonkomponenten aufweist und ihre Geometrie die Zuordnung einer eindeutigen quaderförmigen Meßfläche gestattet.

Die Standardabweichung der Ergebnisse der einzelnen Prüfstellen bei fünfmaliger Durchführung der Messungen war in allen Fällen sehr gering; dies auch dadurch bedingt, daß auf fast allen Meßplätzen der Schalldruckpegel des Umgebungsgeräusches weit unter dem zu messenden Schalldruckpegel der Vergleichsschallquelle lag.

Die Standardabweichung s_R ergab sich bei der Messung nach ÖNORM S 5038 mit 0,83 dB sehr gering; dies dadurch bedingt, daß eine einheitliche Meßfläche (Quader) vorgeschrieben ist. Der Mittelwert von 96,2 dB (der Norm entsprechend ohne Umrechnung für die meteorologischen Bedingungen) entspricht auch sehr gut dem unter den genauen Bedingungen nach ISO 6926 gemessenen Werten von 96,0 im Hallraum und 95,8 dB im reflexionsarmen Halbraum. Die Einzelwerte (ohne Korrektur) lagen im Bereich von 94,94 bis 97,46 dB, auf ganze dB gerundet mit 95 bis 97 dB nur im Bereich von \pm 1 dB. Die Standardabweichung \pm beträgt 0,83 dB.

Mit der Umrechnung auf einheitliche meteorologische Bedingungen 20°C und 1000 hPa wird die Standardabweichung s_R mit 0,69 dB noch etwas geringer, der Mittelwert beträgt 96,5 dB und weicht damit mehr vom unter genauen Bedingungen gemessenen Wert von 96,0 und 95,8 dB ab.

Die Meßergebnisse nach ÖNORM EN ISO 3746 wiesen, bedingt durch die gemäß Norm möglichen Varianten der Meßfläche (Quader oder Halbkugel) eine etwas größere Standardabweichung von $s_R = 1,16$ dB auf.⁷⁾ Die Standardabweichung verringert sich, wenn die Meßergebnisse auf der quaderförmigen Meßfläche ($s_R = 1,07$ dB) und auf der Halbkugel-Meßfläche ($s_R = 0,53$ dB) getrennt betrachtet werden. Der Mittelwert über alle Messungen beträgt 95,7 dB und stimmt damit sehr gut mit dem nach der genauen Meßmethode bestimmten Wert überein; allerdings unterscheiden sich die Mittelwerte der Messung auf der quaderförmigen Meßfläche mit 96,6 dB und auf der Halbkugel-Meßfläche mit 95,1 dB deutlich. Eine weitere Prüfung im Hinblick auf die Wahlmöglichkeit der beiden Meßflächen mit der vergleichsweise geringen Anzahl von Meßpunkten nach einer Norm erscheint erforderlich.

Diese Ergebnisse zur Meßgenauigkeit ändern sich nur geringfügig, wenn die Werte auf einheitliche meteorologische Bedingungen umgerechnet werden.

Die Meßergebnisse nach ÖNORM EN ISO 3744 wiesen eine vergleichsweise kleine Standardabweichung von $s_R = 0,56$ dB auf; auch der Wert für die reproducibility R ist mit 1,6 dB günstig klein und deutlich kleiner als für das vorbesprochene Verfahren. Der Mittelwert liegt allerdings mit 95,4 dB deutlich unter dem Mittelwert der Meßergebnisse nach ÖNORM S 5038 und auch etwas unter den Werten 96,0 und 95,8 dB, die nach ISO 6926 bestimmt wurden. Ein Unterschied der Ergebnisse, bestimmt auf der Meßfläche Quader oder auf der Meßfläche Halbkugel ist hier nicht gegeben.

Die Werte für die statistischen Kenngrößen ändern sich nicht oder nahezu nicht, wenn die Meßergebnisse auf einheitliche meteorologische Bedingungen umgerechnet werden. Der Mittelwert stimmt mit 95,7 dB nahezu überein mit den nach ISO 6926 bestimmten Werten.

Die Frequenzanalysen zeigen im Oktavbereich 500 Hz deutlich größere Differenzen als in den anderen Oktavbereichen; dies dürfte durch den Einfluß des Bodens bedingt sein. Dies kann jedoch kaum Einfluß auf den A-bewerteten Schalleistungspegel haben. Die Standardabweichung se liegt

⁶) In ÖNORM S 5038 wird eine Standardabweichung von σ_R = 2 dB angegeben.

⁷⁾ In ÖNORM EN ISO 3746 wird eine Standardabweichung von $\sigma_R \leq 3$ dB angegeben für die bei den Messungen gegebenen günstigen Umgebungsbedingungen.

in allen Oktavbereichen deutlich unter den in ÖNORM EN ISO 3744 angegebenen Werten; dies ist insbesondere bedingt durch die Eigenschaften der Schallquelle und die günstigen Umgebungsbedingungen (im Freien, geringes Umgebungsgeräusch).

Messungen nach ÖNORM EN ISO 3741 im Hallraum wurden nur von 4 Prüfstellen durchgeführt. Der Mittelwert aller Meßergebnisse für den A-bewerteten Schalleistungspegel beträgt 96,0 dB, der Bereich der Ergebnisse ist mit 94,8 bis 96,8 dB vergleichsweise groß. Ein Vergleich der Terzband-Schalleistungspegel in Beilage 4 und 5 zeigt, daß die großen Unterschiede durch Abweichungen im obersten Frequenzbereich verursacht sind. Diese Unterschiede im Frequenzbereich ab Terz 4000 Hz sind durch den Frequenzgang der unterschiedlichen verwendeten Mikrofone bedingt. Das Mikrofon B & K 4165 zeigt (als Freifeldmikrofon) einen Abfall bei den hohen Frequenzen bei diffusem Schalleinfall; die Mikrofone 4166 und 4134 hingegen nicht. In Beilage 10 ist der Frequenzgang der Mikrofone 4165 und 4166 zum Vergleich dargestellt. Für Messungen im diffusen Schallfeld des Hallraums sollten daher Freifeldmikrofone nicht verwendet werden (oder entsprechende Korrekturen angebracht werden).

Messungen nach ISO 3745 im reflexionsarmen Halbraum wurden nur von 3 Prüfstellen durchgeführt. Die Meßergebnisse für den A-bewerteten Schalleistungspegel weisen mit 95,5 bis 95,8 dB nur sehr kleine Unterschiede auf. Auch die Terzband-Schalleistungspegel (Beilage 6 und 7) zeigen nur kleine Unterschiede. Dies entspricht auch den Angaben in ISO 3745 mit einer Standardabweichung im reflexionsarmen Halbraum von 1,5 dB für die Terzbereiche 100 bis 630 und 6300 bis 10000 Hz und von 1,0 dB für die Terzbereiche 800 bis 5000 Hz.

Messungen mit dem Intensitätsmeßverfahren nach ÖNORM EN ISO 9614 wurden nur von 2 Prüfstellen durchgeführt. Die Meßergebnisse für den A-bewerteten Schalleistungspegel liegen mit 94,8 + 0,4 dB und 93,6 dB bzw. korrigiert 95,0+0,4 und 94,0 dB etwas unter den Werten, die mit den Verfahren mit der Messung des Schalldruckpegels ermittelt wurden. Die von einer Prüfstelle durchgeführte Messung sowohl nach Teil 1 (Messung an diskreten Punkten) als auch nach Teil 2 (Messung mit kontinuierlicher Abtastung) ergab einen Unterschied von 0,64 dB. Weitere Messungen mit dem Intensitätsmeßverfahren sollten von mehreren Prüfstellen durchgeführt werden um Erfahrungen zu sammeln.

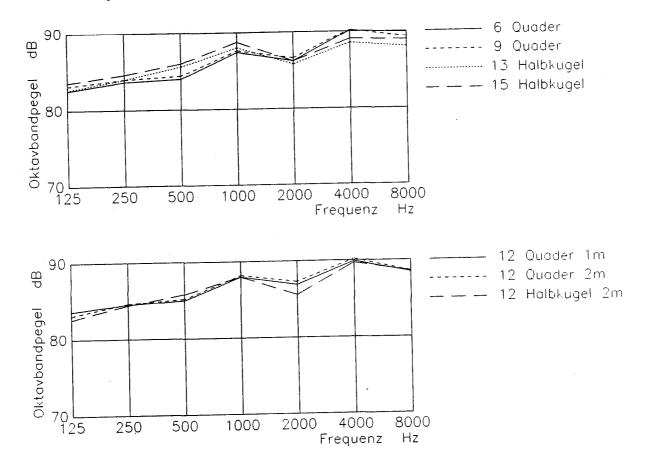
In Beilage 8 sind die Ergebnisse für die Oktavband- und die Terzband-Schalleistungspegel, die mit den 3 genormten Verfahren (mit Schalldruckpegelmessung) ermittelt wurden, zusammengestellt. Sie zeigen im wesentlichen eine gute Übereinstimmung. Die Messungen nach ÖNORM EN ISO 3744 ergaben im Bereich 500 Hz etwas geringere Werte; dies dürfte durch den Einfluß des Bodens bedingt sein, der in der Praxis nicht in allen Fällen so gute Reflexionseigenschaften gehabt haben dürfte wie in den Labors (Hallraum und reflexionsarmer Halbraum). Der Vergleich der Meßergebnisse nach ISO/DIS 6926 (mit der Präzision für die Kalibrierung von Bezugsschallquellen) zeigt eine sehr gute Übereinstimmung der Meßergebnisse im Hallraum und im reflexionsarmen Halbraum mit Ausnahme der Terz 100 Hz.

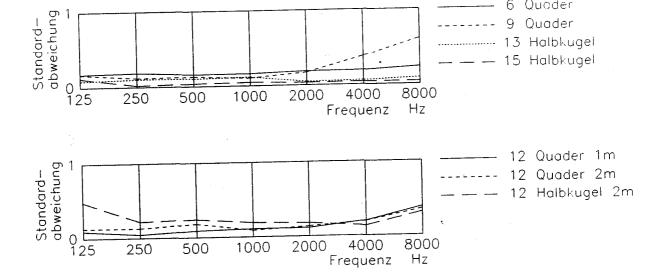
Teiln.Nr.			Terzbandpegel (dB	pegel (a	<u> </u>																
	N	125 Hz		200 Hz	250 Hz	315 Hz	400 Hz	500 Hz	N		N	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	ટ	6300 Hz	8000 Hz	10000 Hz
9		77.7	77.9	78.1	78.7	79.4	78.9	1.67		_	82.8	84.1	81.5	80.5	81.8 8.	82.4	85.6	86.7	86.5	84.9	82.8
	77.5	77.6	77.9	78.2	78.7	79.4	79.0	79.2	-	<u> </u>	83.1	4.1	81.5	80.5	81.8	82.4	85.5	86.7	86.4	84.9	82.7
	77.5	7.77	77.9	78.1	78.7	79.3	78.9	79.2	79.4	1	82.7	84.0	81.4	80.5	81.8	82.2	85.6	86.6	86.5	84.9	82.8
	9.77	78.0	78.1	78.4	79.0	7.6.7	9.87	79.5			83.1	84.3	81.8	80.8	82.0	82.6	85.9	86.9	86.7	85.1	83.0
	7.77	78.1	78.3	78.5	79.0	7.67	79.2	79.5		79.8	83.1	84.5	81.9	80.9	82.1	82.7	86.0	87.1	87.0	85.5	83.3
Mittel	77.56	77.82	78.02	78.26	78.82	79.50	78.92	-			82.96	84.20	81.62	80.64	81.90	82.46	85.72	86.80	86.62	85.06	82.92
S	0.089	0.217	0.179	0.182	0.164	0.187	0.217	0.187			0.195	0.200	0.217	0.195	0.141	0.195	0.217	0.200	0.239	0.261	0.239
									-												
12	78.5	79.1	79.1	79.2	79.5		79.9	80.5	90.6	90.6	83.3	84.6	82.6	81.6	82.2	83.6	85.4	86.2	85.7	83.8	81.1
Quader 1m	78.2	78.9	79.2	79.4	79.5	-	7.67		_	80.3	83.6	84.8	82.3	81.4	82.7	83.4	85.6	86.4	85.6	84.3	81.7
	78.2	78.9	79.0	79.4	79.5	80.3	79.8			80.3	83.5	84.9	82.7	81.2	82.0	83.3	85.2	85.7	85.0	83.0	80.3
	78.3	78.9	79.1	79.3	79.5		7.67	-		80.3	83.5	84.9	82.7	81.5	82.4	83.6	85.5	86.3	85.4	84.0	81.2
	78.2	78.8	79.0	79.2	79.4	80.2	9.62			80.3	83.4	84.7	82.5	81.4	82.3	83.4	85.3	86.0	85.3	83.7	80.9
Mittel	78.3	78.9	79.1	79.3	79.5		79.7			80.4	83.5	84.8	82.6	81.4	82.3	83.5	85.4	86.1	85.4	83.7	81.0
S	0.124	0.113	0.084	0.092	0.064	0.111	0.104	\vdash		0.133	0.084	0.105	0.182	0.168	0.240	0.107	0.166	0.267	0.252	0.452	0.527
									+	\dashv											
12	77.4	78.4	78.9	79.2	79.6	80.5	80.0	80.5			83.7	84.8	83.1	81.7	82.4	83.7	85.5	86.1	85.2	83.3	80.3
Quader 2m	7.77	78.7	79.1	79.4	79.7	80.7	80.2	80.8	-	-	83.7	85.0	83.4	81.9	82.4	83.9	85.8	86.4	85.4	83.5	80.4
	77.5	78.5	78.8	79.1	79.4	80.3	79.8	80.3	80.5		83.8	85.1	82.7	81.6	82.7	83.5	85.7	86.3	85.5	83.9	81.1
	9.77	78.6	79.0	79.4	79.7	80.6	80.0	90.6			83.7	85.0	83.1	81.9	82.7	83.8	86.0	86.8	85.9	84.3	81.6
	77.3	78.4	78.8	79.2	79.5	80.5	80.0				83.6	84.9	83.0	81.8	82.6	83.6	85.9	86.5	82.8	84.2	81.4
Mittel	77.52	78.52	78.94	79.26	79.58	80.53	79.97	80.53	80.77	80.71	83.68	84.97	83.06	81.79	82.57	83.70	85.78	86.41	85.56	83.85	80.96
S	0.151	0.114	0.126	0.136	0.148	0.177	0.147				0.074	0.114	0.243	0.145	0.146	0.156	0.182	0.248	0.270	0.431	0.590
									-												
12	72.7	78.0	78.4	78.3	79.2	80.2	80.2	81.0	\dashv	82.2	83.8	83.1	80.8	9.62	81.4	82.7	84.6	86.5	85.6	83.3	80.7
Halbkugel	77.3	78.1	78.6	78.9	79.2	80.4	80.5	91.1	-	82.3	83.8	83.0	80.8	9.62	81.3	82.6	84.6	86.4	85.4	83.2	90.6
	77.4	78.5	78.8	79.5	79.5	80.7	90.6	81.3	81.7	82.6	84.0	83.1	81.3	80.1	81.3	82.8	84.9	9.98	85.9	83.4	80.7
	75.5	78.2	78.5	78.9	79.3	80.3	80.4	81.2	-+	82.6	84.1	83.0	81.7	80.1	80.4	83.0	84.6	86.1	85.9	83.2	80.4
	76.8	78.4	78.7	78.9	79.4	80.5	80.5	-+	-+	82.9	84.3	83.4	81.6	80.2	81.3	83.0	85.0	86.5	86.4	83.9	81.2
Mittel	75.94	78.26	78.59	78.90	79.32	80.42	80.43	81.20	81.66	82.51	84.01	83.11	81.25	79.92	81.12	82.80	84.74	86.41	85.85	83.39	80.72
S	1.953	0.190	0.137	0.424	0.139	0.194	0.161	-+	-+	0.258	0.220	0.149	0.440	0.288	0.432	0.191	0.169	0.200	0.374	0.271	0.295
								-+													
14	78.4	78.7	79.1	79.3	80.3	81.1	81.6	+	\dashv	84.3	82.8	85.1	83.1	81.5	82.1	84.2	85.4	87.6	86.2	84.8	82.0
in Halle	78.2	78.6	79.2	79.5	80.3	0.0	81.4	\dashv	-+	84.1	85.8	85.0	83.0	81.5	82.0	84.1	85.3	87.6	86.1	84.7	82.0
	78.9	78.9	79.2	79.9	80.3	81.2	81.5	-	-	84.5	98	85.1	83.3	9. 9.	82.2	84.3	85.5	87.5	86.0	84.4	81.8
	79.0	78.7	78.9	79.9	90.6	81.1	81.4	82.2	83.3	84.3	98	85.1	83.2	81.9	82.2	84.3	85.4	87.6	86.1	84.5	81.7
Mittel	78.63	78.73	79.10	79.65	80.38	81.10	81.48	-		84.30	85.90	85.08	83.15	81.70	82.13	84.23	85.40	87.58	86.10	84.60	81.88
S	0.386	0.126	0.141	0.300	0.150	0.082	960.0		-+	0.163	0.115	0.050	0.129	0.231	960.0	960.0	0.082	0.050	0.082	0.183	0.150
					,																
14	78.4	78.7	78.7	79.2	79.6	80.4	90.6	81.2	82.3	83.6	85.3	84.4	82.4	81.0	80.7	82.6	85	87.1	86.3	84.3	81.4
ım Freien										1											

		_					 - 1	
81.7	81.6	81.6	81.6	81.7	81.61	0.045	81.4	81.50
84.3	84.2	84.2	84.2	84.3	84.23	0.052	84.2	84.14
85.8	85.7	85.7	85.7	85.7	85.72	0.025	85.7	85.87
85.9	82.8	85.7	85.7	85.8	85.78	0.055	9.98	86.50
83.9	83.9	83.9	83.8	83.9	83.86	0.023	84.8	85.13
82.5	82.5	82.5	82.5	82.5	82.52	0.015	84.0	83.17
80.9	80.8	80.8	80.8	80.9	80.82	0.041	82.9	81.80
81.1	81.0	81.1	81.1	81.1	81.07	0.028	81.8	81.09
82.4	82.3	82.3	82.3	82.4	82.33	0.034	83.8	82.35
83.8	83.8	83.8	83.8	83.9	83.81	0.028	86.0	84.36
84.6	84.5	84.6	84.6	84.7	84.61	0.055	84.7	84.10
83.4	83.3	83.3	83.4	83.4	83.35	0.068	80.9	81.77
82.1	81.9	81.9	82.1	82.0	82.01	0.090	81.3	81.25
81.2	81.1	81.1	81.2	81.1	81.13	0.028	81.1	80.77
80.5	80.6	90.6	80.5	80.5	80.55	0.030	90.8	80.16
80.5	80.5	80.5	80.5	80.5	80.49	0.018	80.8	80.38
79.7	79.7	79.7	79.7	9.62	79.69	0.026	80.2	79.54
79.1	79.2	79.1	79.1	79.2	79.13	0.044	79.8	79.10
78.8	78.7	78.9	78.8	78.8	78.82	0.066	79.4	78.77
78.8	78.8	78.8	78.6	78.7	78.73	0.061	79.2	78.52
79.0	79.5	78.8	78.7	78.8	78.98	0.328	79.1	77.85
15					Mittel	S	17	Gesamtmittel

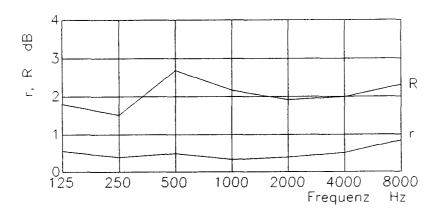
Beilage 1b

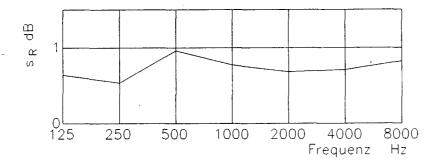
Messung nach ÖNORM EN ISO 3744 Oktavbandpegel


Teiln.Nr.			Oktavba	ndpegel (dB)		
	125 Hz	250 Hz			2000 Hz	4000 Hz	8000 Hz
2	84.0	85.0	86.7	88.9	86.6	90.6	90.9
	83.9	84.8	86.3	88.8	86.6	90.6	90.9
	84.0	84.9	86.4	88.9	86.6	90.6	90.9
Mittel	83.97	84.90	86.47	88.87	86.60	90.60	90.90
s	0.058	0.100	0.208	0.058	0.000	0.000	0.000
4	83.7	84.7	85.1	88.3	87.2	90.1	89.1
6	82.5	83.5	83.9	87.3	86.1	90.0	89.8
	82.4	83.6	84.0	87.4	86.1	90.0	89.7
	82.5	83.5	84.0	87.2	86.0	90.0	89.8
	82.7	83.8	84.0	87.6	86.3	90.3	90.0
	82.8	83.9	84.3	87.6	86.5	90.4	90.3
Mittel	82.57	83.67	84.05	87.43	86.19	90.11	89.88
S	0.169	0.181	0.154	0.159	0.181	0.188	0.230
9	83.4	84.2	84.6	87.7	86.6	90.7	89.9
	83.2	84.0	84.4	87.5	86.4	90.5	90.0
	83.1	84.1	84.4	87.5	86.7	89.9	88.8
	83.1	84.0	84.3	87.6	86.8	89.9	88.9
	83.0	83.9	84.3	87.7	86.7	90.0	88.8
Mittel	83.16	84.04	84.40	87.60	86.64	90.20	89.28
S	0.152	0.114	0.122	0.100	0.152	0.374	0.614
12	83.7	84.5	85.1	87.9	86.9	90.0	88.7
Quader 1 m	83.5	84.5	84.9	88.1	86.9	90.1	88.9
	83.5	84.5	85.0	88.1	86.8	89.6	87.9
	83.6	84.5	84.9	88.1	87.0	90.0	88.6
	83.5	84.4	84.9	87.9	86.7	89.8	88.4
Mittel	83.56	84.48	84.96	88.02	86.86	89.90	88.50
s	0.089	0.045	0.089	0.110	0.114	0.200	0.381
12	83.0	84.6	85.2	88.2	87.2	90.0	88.2
Quader 2m	83.3	84.7	85.5	88.3	87.4	90.3	88.3
	83.1	84.4	85.0	88.3	87.1	90.1	88.6
	83.2	84.7	85.3	88.3	87.4	90.5	89.0
	83.0	84.5	85.2	88.1	87.2	90.3	88.9
Mittel	83.12	84.58	85.24	88.24	87.26	90.24	.88.60
s	0.130	0.130	0.182	0.089	0.134	0.195	0.354
12	81.8	84.1	85.7	87.9	85.4	89.6	88.4
Halbkugel	82.8	84.3	85.5	87.8	85.4	89.6	88.3
	83.0	84.7	86.0	88.0	85.7	89.8	88.6
	82.4	84.3	85.9	88.1	85.6	89.5	88.5
	82.8	84.4	86.1	88.3	85.8	89.8	89.1
Mittel	82.56	84.36	85.84	88.02	85.58	89.66	88.58
S	0.477	0.219	0.241	0.192	0.179	0.134	0.311

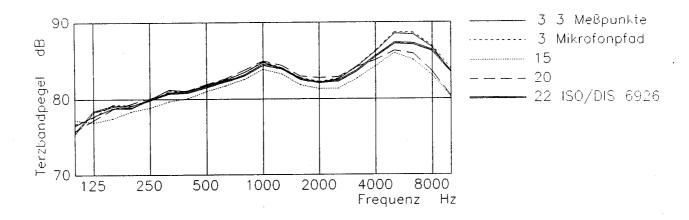

Messung nach ÖNORM EN ISO 3744 Oktavbandpegel

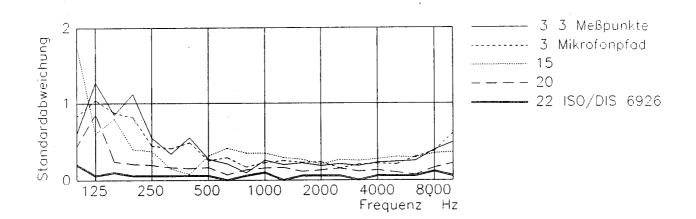
Teiln.Nr.	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz
13	82.8	84.1	85.7	88.2	85.8	88.6	88.1
Halbkugel	82.8	84.0	85.6	88.1	85.8	88.5	87.9
Tidibitagoi	82.7	84.1	85.7	88.0	85.8	88.5	88.0
	82.6	83.9	85.5	88.0	85.7	88.5	87.9
	82.7	83.9	85.5	87.9	85.8	88.6	88.0
Mittel	82.72	84.00	85.60	88.04	85.78	88.54	87.98
S	0.084	0.100	0.100	0.114	0.045	0.055	0.084
3	0.004	0.100	0.100	0.114	0.010	0.000	0.00
13	82.9	83.9	84.4	87.8	86.9	89.8	88.8
Quader	83.2	84.2	84.6	87.9	86.9	89.9	88.8
Mittel	83.1	84.1	84.5	87.9	86.9	89.9	88.8
14	83.5	85.1	87.1	89.9	87.1	90.7	89.4
in Halle	83.5	85.1	87.0	89.8	87.0	90.7	89.3
	83.8	85.3	87.2	90.0	87.3	90.7	89.2
	83.6	85.3	87.1	90.0	87.2	90.8	89.2
Mittel	83.60	85.19	87.11	89.91	87.14	90.73	89.29
S	0.141	0.134	0.107	0.097	0.143	0.032	0.120
		,					
14	83.4	84.5	86.2	89.3	86.2	90.0	89.2
im Freien							
15	83.6	84.6	86.1	88.7	86.3	89.1	89.0
	83.8	84.6	86.0	88.7	86.2	89.0	88.9
	83.6	84.6	86.0	88.7	86.2	89.0	88.9
	83.5	84.6	86.1	88.8	86.2	89.0	88.9
	83.5	84.6	86.0	88.8	86.3	89.0	89.0
- Mittel	83.62	84.58	86.04	88.73	86.23	89.03	88.94
S	0.116	0.018	0.036	0.046	0.034	0.036	0.038
40	047	05.0	00.5	00.4	00.5	04.5	00.7
16	84.7	85.3	86.5	90.1	88.5	91.5	90.7
Einzel-	84.6	85.8	86.1	89.3	88.0	90.9	90.1
messungen	83.5	85.1	85.9	88.4	86.2	90.4	89.8
	84.7	85.7	86.8	89.0	86.7	90.4	89.9
	84.4	85.1	87.6	89.6	87.4	90.8	90.6
	85.0	85.3	87.4	89.7	87.3	90.5	90.8
17	84.0	85.1	85.8	89.1	87.7	90.0	88.9
	01.0	00.1	00.0		-		
18	83.5	84.7	85.4	88.8	87.2	90.6	. 89.5
Quader 1m	83.4	84.5	85.3	88.7	87.3	90.4	89.4
	83.7	84.9	84.6	88.6	87.7	90.8	89.5
Mittel	83.53	84.70	85.10	88.70	87.40	90.60	89.47
S		0.200	0.436	0.100	0.265	0.200	0.058
		ļ <u>.</u>					
18	83.0	84.8	85.7	89.0	87.7	90.9	89.5
Quader 2m		-					
19	82.6	83.8	84.4	87.3	86.5	89.6	88.7
	82.5	83.6	84.2	87.1	86.3	89.4	88.3
Mittel	82.55	83.70	84.30	87.20	86.40	89.50	88.50
21 (Quader 1m)	83.4	84.5	85.2	88.7	86.8	90.7	89.6
(Quader 111)	82.8	84.8	85.5	88.8	87.1	90.7	89.2
(2222. 211)	J=. V		30.0				
Gesamtmittel	83.14	84.30	85.83	88.50	86.29	89.32	88.64


6 Quader


Messung nach ÖNORM EN ISO 3744 Oktavband-Schalleistungspegel Mittelwerte und Standardabweichung aus jeweils 5 Einzelmessungen

Repeatability r, reproducibility R und Standardabweichung s_R Messung nach ÖNORM EN ISO 3744 (unkorrigiert)

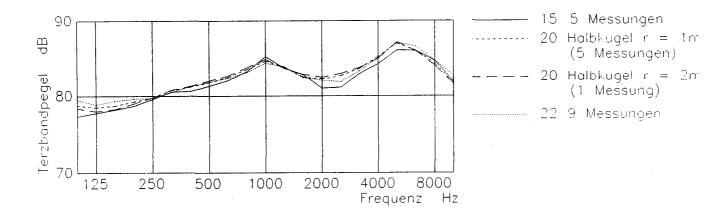


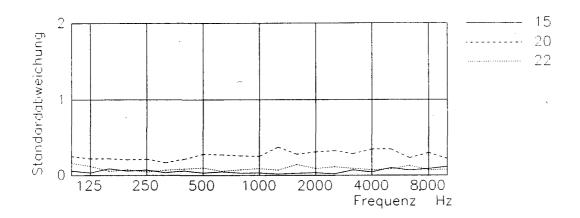

Frequenz (Hz)	125	250	500	1000	2000	4000	8000
r (dB)	0,56	0,39	0,49	0,33	0,39	0,51	0.84
R (dB)	1,80	1,51	2,69	2,17	1,92	2,00	2,31
s _R (dB)	0,64	0,54	0,96	0,77	0,68	0,71	0,82
s _R (dB) gemäß Norm	3	2	1,5	1,5	1,5	1.5	2,5

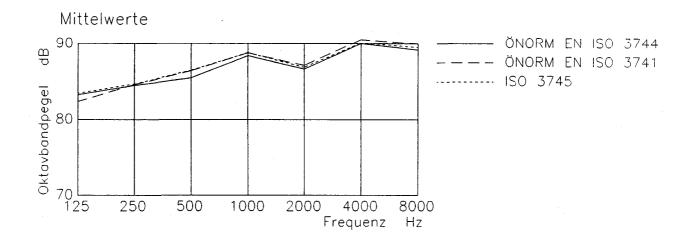
Messung nach ÖNORM EN ISO 3741 und ISO/DIS 6926 im Hallraum Terzbandpegel

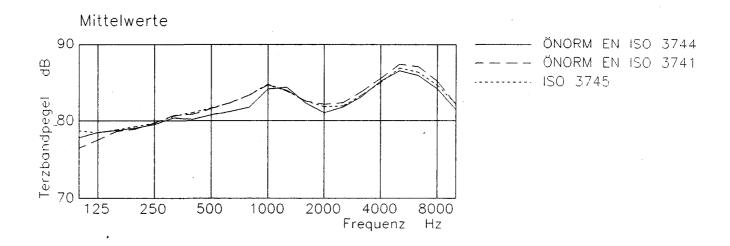
	N				ì				Т					\neg											7							П						П		\neg
	10000 Hz	82.7	83.6	84.0	83.5	83.7	83.49	0.483		82.8	8	84.3	84.2	84.1	83.86	0.602		80.1	80.1	80.4	80.6	79.7	80.17	0.356		80.3	79.9	80.4	80.4	80.4	80.28	0.217		83.6	83.6	83.5	83.57	0.058	97.00	82.16
	8000 Hz	86.1	86.7	87.1	86.7	86.7	86.66	0.354		86.3	86.9	87.3	87.1	86.9	86.89	0.373		83.2	83.0	83.2	83.5	82.6	83.11	0.346		83.7	83.3	83.7	83.6	83.6	83.58	0.164		85.7	85.7	85.5	85.63	0.115	7,700	85.14
	6300 Hz	88.0	88.4	88.6	88.5	98.6	88.40	0.251		88.0	88.6	9.88	88.8	88.7	88.55	0.301		85.2	85.1	85.4	85.4	84.7	85.15	0.291		85.9	85.8	96.0	85.9	85.9	85.90	0.071		87.2	87.2	87.1	87.17	0.058	01.00	87.02
-		88.1	98.6	88.8	88.6	88.6	88.54	0.239		88.3	88.6	88.9	88.8	88.7	88.65	0.206		86.0	85.9	86.2	86.2	85.5	85.97	0.298		86.4	86.2	86.2	86.4	86.3	86.30	0.100		87.3	87.3	87.2	87.27	0.058	1010	87.35
-+	- 1	86.0	85.9	86.4	86.3	86.4	86.19	0.227		96.1	86.0	86.3	86.5	86.4	86.28	0.214		84.4	84.3	84.5	84.6	83.9	84.34	0.272		85.3	85.2	85.1	85.0	85.0	85.12	0.130		85.6	85.6	85.5	85.57	0.058	07.10	85.49
-+	<u> </u>	84.2	84.0	84.4	84.4	84.1	84.22	0.185		84.2	84.1	84.3	84.6	84.2	84.27	0.202		82.9	82.7	82.7	82.8	82.2	82.67	0.249		84.2	84.3	84.1	84.2	84.0	84.16	0.114		83.7	83.7	83.7	83.70	0.000	7000	83.81
\rightarrow	N	82.6	82.2	82.7	82.7	82.6	82.57	0.208		82.7	82.4	82.7	82.9	82.6	82.66	0.156		81.5	81.4	81.4	81.4	80.9	81.32	0.263		83.1	83.1	82.9	82.8	82.8	82.94	0.152		82.4	82.4	82.3	82.37	0.058	20.00	82.37
-	N	82.2	81.9	82.3	82.4	82.2	82.21	0.185		82.4	82.1	82.3	82.7	82.1	82.31	0.235		4.18	81.5	81.4	81.2	81.0	81.31	0.206		82.9	82.9	82.8	82.7	82.6	82.78	0.130		82.1	82.2	82.1	82.13	0.058	27.00	82.15
-	N	82.9	82.4	82.9	82.8	82.7	82.73	0.221		83.0	82.4	82.8	82.9	82.7	82.76	0.228		2.7	81.9	81.8	81.7	81.4	81.79	0.266		83.1	83.2	83.0	82.9	83.0	83.04	0.114		82.6	82.7	82.6	82.63	0.058	02.00	82.59
	-	84.1	83.6	84.1	84.0	83.9	83.96	0.200		84.3	83.8	84.2	84.4	83.9	84.13	0.251		83.7	83.3	83.3	83.2	82.9	83.28	0.289		84.5	84.6	84.3	84.2	84.3	84.38	0.164		84.0	84.0	84.0	84.00	0.000	20.00	83.95
\rightarrow	-	85.1	84.6	84.8	85.0	84.5	84.80	0.255		85.2	84.9	84.6	84.9	84.7	84.87	0.225		84.3	4.1	83.9	83.8	83.4	83.91	0.347		85.1	85.2	85.0	84.8	84.9	85.00	0.158		84.6	84.5	84.4	84.50	0.100	57.0	84.63
	800 Hz 1	83.6	83.5	83.3	83.5	83.4	83.45	960.0		83.6	83.6	83.3	83.8	83.4	83.55	0.170		£.	82.8	82.7	82.5	82.2	82.65	0.346		83.9	83.9	83.7	83.6	83.7	83.76	0.134		83.1	83.2	83.1	83.13	0.058	0000	83.32
	630 Hz	82.7	82.2	82.5	82.3	82.6	82.48	0.211		82.9	82.1	82.6	82.7	82.6	82.59	0.289		82.3	81.9	81.8	81.4	81.2	81.74	0.409		82.7	82.8	82.7	82.6	82.7	82.70	0.071		82.3	82.3	82.3	82.30	0.000	0000	82.37
- 1			81.8	81.8	81.8	82.3	81.84	0.252		81.6	81.5	81.8	82.0	82.1	81.80	0.251			-		80.8	-	-			82.0	82.1	81.8	81.7	81.8	81.88	0.164			81.6			\vdash		81.62
- 1					-		81.04					81.3	<u> </u>	<u> </u>		-			├	-	80.1	-		-	-	-		81.0	~	-					80.9		├	 	-+	80.83
	z 315 Hz	-	├	 	├	-	81.15				-	81.3	-	-		-			├		79.7	-	-	-	-			80.8				-			-			3 0.058	+	69.08
(dB)	z 250 Hz	├-	├—	-	-	-	80.04	\vdash			-	79.7		-		-	-			-	78.8			-			-	80.0	-		-	-	\rightarrow				}	3 0.058	-	5 79.74
	z 200 Hz	├-	├-		-	-	2 78.80	\vdash	\vdash		_	79.1	_	-	<u> </u>			_	├		78.5		-	-				79.4							1	_	1	0 0.058	\vdash	5 78.95
_	-	ļ.,	-	-	-		9 78.82					80.5	<u> </u>	-	_	<u>-</u>	-		-	-	6.77	├	⊢	⊢				3 78.7			8 78.72		-		\vdash		⊢	8 0.100	\vdash	6 78.65
	Iz 125 Hz	i	-	├		-	2 77.79	-	-		ļ	78.0		<u> </u>	_	<u> </u>		_	├-	<u> </u>	177.2	-	⊢			_	-	77.3	-	-		-	\dashv		78.4		-	+	-	2 77.56
	100 Hz	76.7		ļ	75.8	76.7	el 76.62	s 0.591		77.1		76.0	75.8	77.7	_	s 0.828		76.6	76.1	78.9	79.4	75.4	<u> </u>	s 1.766		76.2	76.0	75.7	75.3	76.4		s 0.432		_	75.6	75.4	<u> </u>		\vdash	76.52
Teiln.Nr.		С	3 Meßpunkte				Mittel			ო	Mikrofonpfad				Mittel			15					Mittel			20					Mittel			22	(ISO 6926)		Mittel		; -	Gesamtmitte

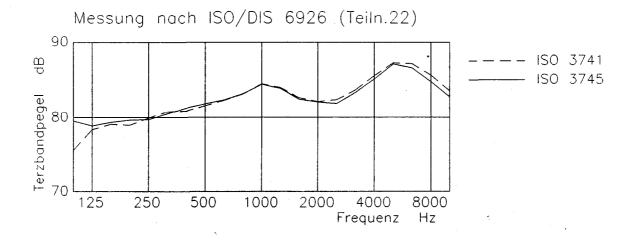
Messung nach ÖNORM EN ISO 3741 und ISO/DIS 6926 Terzband-Schalleistungspegel Mittelwerte und Standardabweichung Prüfstellen 3, 15, 20 jeweils 5 Einzelmessungen Prüfstelle 22 3 Einzelmessungen (mit jeweils 4 Quellenpositionen)

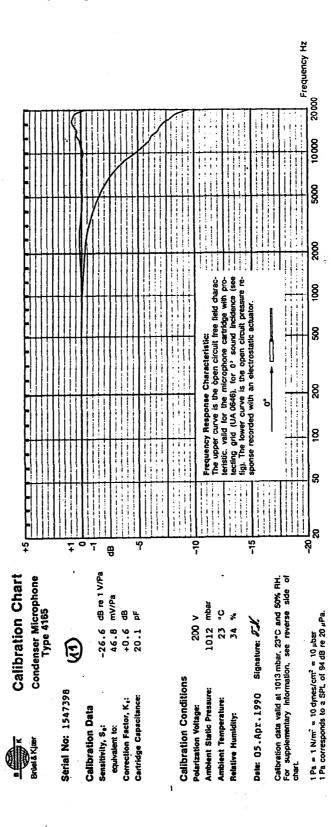


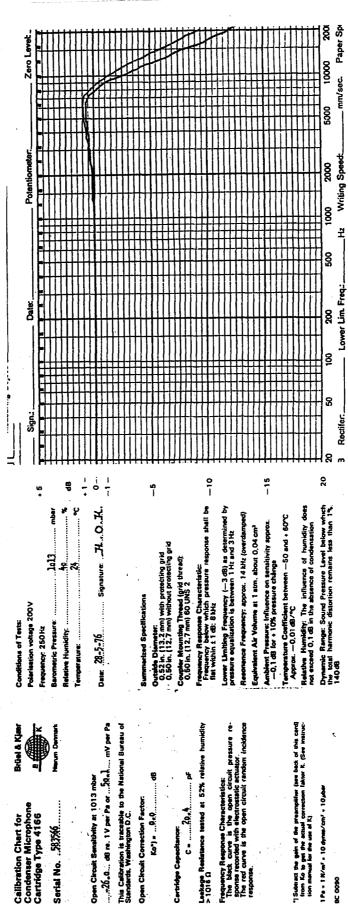



374	_
8	ege
nach	pandg
sung	Terzi
es	


Teiln Nr.			Terzbandpegel (dB)	pedel (a	<u>@</u>																
	N	125 Hz	!	160 Hz 200 Hz 250 Hz	ZH O	315 Hz	-	500 Hz		800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz	5000 Hz	6300 Hz	8000 Hz	10000 Hz
15	77.4	77.8	78.3	78.7	79.5	80.5	80.5		82.0	83.3	85.3	83.8	82.8	81.0	81.1	82.9	84.3	96.0	86.0	84.7	
	77.4	77.8	78.1	78.8	79.6	90.6	80.7	81.3	82.0	83.3	85.3	83.7	82.9	81.0	81.1	82.9	84.2	86.0	86.0	84.6	81.8
	77.3	77.8	78.2	78.7	79.7	90.6	9.08	81.3	82.1	83.3	85.3	83.7	82.9	81.0	81.1	83.0	84.3	86.2	86.1	84.8	82.0
	77.4	8.77	78.3	78.7	9.6/	80.6	80.6	81.3	82.1	83.3	85.3	83.7	82.9	81.1	81.1	83.1	84.3	86.2	86.1	84.8	82.1
	77.3	77.8	78.2	78.6	9.6	80.5	9.08	81.3	82.1	83.3	85.3	83.8	82.8	81.0	81.1	82.9	84.3	96.1	96.1	84.7	81.9
Mittel	77.35	77.79	78.22	78.70	79.59	80.55	80.63	81.30	-	83.30	85.29	83.74	82.85	81.01	81.11	82.97	84.29	86.12	86.05	84.73	81.93
w	0.059	0.033	0.086	0.057	0.069	0.035	0.059	0.030	0.045	0.028	0.030	0.017	0.027	0.033	0.018	0.069	0.041	0.098	0.064	0.085	0.113
20	78.8	78.5	78.8	79.3	79.9	80.8	81.3	82.0	82.7	83.8	84.7	83.5	82.5	82.3	82.9	83.9	84.8	86.7	85.8	84.0	81.5
r≕1m	78.7	78.5	78.7	79.3	79.8	80.8	81.2	81.7	82.5	83.6	84.8	84.4	82.7	82.6	83.0	83.8	85.6	86.9	86.0	84.3	81.7
	78.6	78.3	78.5	79.1	79.6	90.6	81.0	81.5	82.2	83,3	84.5	83.8	82.3	82.0	82.5	83.4	85.3	86.9	86.0	84.3	81.7
	78.6	78.5	78.7	79.1	9.6	9.08	81.0	81.7		83.4	84.5	83.7	82.4	81.9	82.3	83.4	85.1	87.1	86.2	84.5	81.8
	79.2	78.9	79.1	9.62	80.1	81.0	81.5	82.2	-	83.9	85.1	84.2	83.0	82.5	83.0	84.0	85.6	87.6	86.4	84.8	82.1
Mitte	78.76	78.52	78.74	79.26	79.78	80.74	81.18	81.80	-	83.58	84.70	83.90	82.56	82.24	82.72	83.68	85.26	87.02	86.06	84.36	81.74
S	0.249	0.219	0.219	0.205	0.212	0.167	0.212	0.277	0.270	0.255	0.249	0.370	0.277	0.305	0.321	0.283	0.342	0.344	0.228	0.295	0.219
23	78.4	78.0	78.3	79.0	79.8	80.8	81.3	82.0	82.7	83.8	84.9	83.7	82.9	82.5	83.0	83.8	85.0	87.2	86.0	84.1	81.6
r = 2m																					
22	79.3	78.7	79.3	9.62	79.7	80.4	81.2	81.7	82.3	83.1	84.3	83.8	82.2	81.9	81.7	83.2	85.0	87.1	86.4	84.7	82.7
	79.4	78.8	79.3	79.6	79.7	80.5	81.2	81.7	82.3	83.0	84.3	83.8	82.3	82.0	81.7	83.3	85.1	87.0	86.5	84.7	82.7
	79.5	78.9	79.4	79.7	79.7	80.5	81.2	81.7	82.3	83.1	84.4	83.8	82.3	82.0	81.8	83.3	85.1	87.0	86.5	84.7	82.7
	79.3	78.7	79.3	79.6	79.7	80.5	81.2	\dashv	82.4	83.2	84.5	83.9	82.5	82.1	81.9	83.4	85.2	87.2	9.98	84.8	82.8
	79.7	79.0	79.4	79.7	79.8	80.5	81.4	81.9	82.4	83.2	84.5	83.9	82.5	82.2	81.9	83.4	85.2	87.2	89.8	84.8	82.8
	79.5	78.9	79.4	9.62	79.7	80.5	81.4	-	82.4	83.2	84.5	84.0	82.5	82.1	81.9	83.4	85.2	87.2	86.7	84.9	82.9
	79.5	78.9	79.3	79.6	79.7	80.6	81.3	}	82.3	83.2	84.5	83.9	82.5	82.0	81.9	83.3	85.1	87.1	9.98	84.8	82.7
	79.7	79.0	79.4	79.8	79.8	90.6	81.3	-	82.4	83.2	84.5	83.9	82.6	82.1	82.0	83.4	85.1	87.1	86.7	84.7	82.7
	79.7	79.0	79.4	79.6	79.7	90.6	81.3		_	83.2	84.5	83.9	82.6	82.1	82.0	83.5	85.2	87.2	86.7	84.8	82.8
Mittel	79.51	78.88	79.36	79.64	79.72	80.52	81.28			83.16	84.44	83.88	82.44	82.06	81.87	83.36	85.13	87.12	86.61	84.77	82.76
S	0.162	0.120	0.053	0.073	0.044	0.067	0.083	0.097	0.053	0.073	0.088	0.067	0.142	0.088	0.112	0.088	0.071	0.083	0.127	0.071	0.073
						•										_					
Gesamtmittel	78 73	78 47	78 86	79 28	79.71	80.60	81.09	81 70	82 34	83 33	84 74	83.84	02 68	24 26	24 05	20 20	0.4 0.5	20 20	00 00	04 60	C

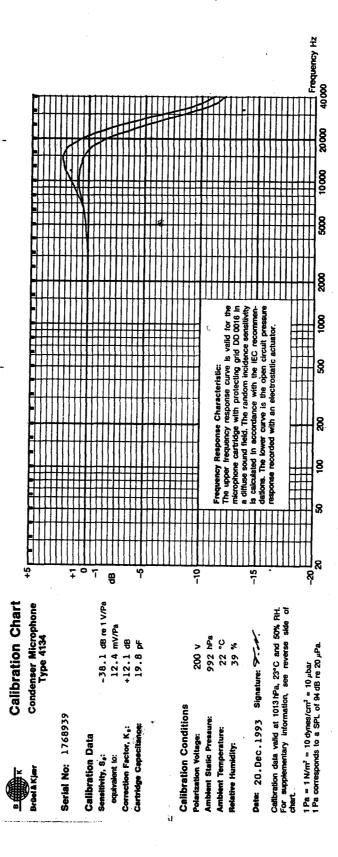

Messung nach ISO 3745 Terzband—Schalleistungspegel Mittelwerte und Standardabweichung





Teil 1			Terzbandpegel (dB)) legedb	dB)														
Teiln.Nr.	100 Hz	125 Hz		200 Hz	160 Hz 200 Hz 250 Hz	315 Hz	400 Hz	500 Hz	630 Hz	800 Hz	1000 Hz	1250 Hz	1600 Hz	2000 Hz	2500 Hz	3150 Hz	4000 Hz 5000 Hz	5000 Hz	6300 Hz
14					79.4	80.0	79.3	80.1	80.9	81.2	84.7	85.2	81.8	81.6	81.4	82.4	84.2	84.7	83.2
			and the state of t		79.4	79.9	79.4	80.0	80.6	80.8	84.4	85.1	82.1	81.4	81.8	82.6	84.1	84.6	83.1
					79.7	80.3	80.0	80.7	80.9	80.7	84.4	85.3	83.2	81.8	82.6	83.4	84.8	85.5	83.9
					80.0	9.08	90.6	81.1	81.1	81.2	84.4	85.5	83.6	82.1	82.9	83.8	85.2	86.0	84.4
					79.4	6.62	79.5	80.2	80.4	80.4	84.2	85.0	82.5	81.4	82.0	82.9	84.4	85.0	83.5
Mitte					9.62	80.1	79.8	80.4	80.8	80.9	84.4	85.2	82.6	81.7	82.1	83.0	84.5	85.2	83.6
S					0.268	0.305	0.541	0.466	0.277	0.344	0.179	0.192	0.750	0.297	0.607	0.576	0.456	0.586	0.536
																		A SAN THE SAN	
15		76.7	78.0	78.4	78.6	79.5	78.8	79.4	80.8	81.0	83.5	84.6	80.8	90.6	80.4	81.6	83.8	84.5	83.8
	76.5	6.97	6.77	78.5	78.2	79.4	78.8	79.4	80.4	80.9	83.7	84.8	81.0	80.5	80.7	81.8	84.2	84.7	83.8
	76.1	76.0	77.3	78.2	77.9	79.0	77.6	78.3	90.6	80.9	83.2	84.1	80.3	80.3	80.2	81.4	83.7	84.3	83.6
	9.92	76.5	77.8	78.6	78.5	79.8	78.4	78.3	80.2	9.08	83.4	84.4	80.4	80.2	80.1	81.4	83.7	84.2	83.8
	76.1	76.1	77.4	78.1	78.2	79.3	77.9	78.0	90.6	81.3	83.0	84.7	81.4	80.3	80.8	81.9	84.0	84.9	84.0
Mittel	16.4	76.4	7.77	78.4	78.3	79.4	78.3	78.7	80.5	80.9	83.4	84.5	80.8	80.4	80.4	81.6	83.9	84.5	83.8
S	0.259	0.385	0.311	0.207	0.277	0.292	0.539	0.669	0.228	0.251	0.270	0.277	0.449	0.164	0.305	0.228	0.217	0.286	0.141
Teil 2																			
14					9.62	80.2	80.4	81.3	82.0	82.6	83.5	82.9	81.6	81.4	81.8	82.9	83.8	84.9	83.6
					79.1	80.0	80.0	80.9	81.6	82.5	83.4	82.7	81.3	81.0	81.3	82.5	83.4	84.5	83.3
					79.3	80.0	80.2	81.0	81.8	82.6	83.9	82.8	81.1	80.5	81.0	82.5	83.7	84.8	83.3
					79.2	80.2	80.2	81.3	82.1	82.8	83.9	82.8	81.4	80.9	81.0	82.4	83.6	84.8	83.4
					79.3	80.2	80.2	81.1	81.8	82.6	83.6	82.7	81.4	81.0	81.3	82.6	83.5	84.6	83.3
Mitte					79.3	80.1	80.2	81.1	81.9	82.6	83.7	82.8	81.4	81.0	81.3	82.6	83.6	84.7	83.4
S					0.187	0.110	0.141	0.179	0.195	0.110	0.230	0.084	0.182	0.321	0.327	0.192	0.158	0.164	0.130

Frequenzgang des Mikrofons 4165



Frequenzgang des Mikrofons 4166

BC 0090

Frequenzgang des Mikrophons 4134

