umweltbundesamt[©]

AUSTRIA'S NATIONAL INVENTORY REPORT 2005

Submission under the United Nations Framework Convention on Climate Change

Berichte BE-268

Vienna, 2005

Project management

Manuela Wieser

Authors

Michael Anderl

Alexandra Freudenschuß

Doris Halper

Agnes Kurzweil

Stephan Poupa

Daniela Wappel

Manuela Wieser

Reviewed and approved by

Klaus Radunsky

The authors of this report want to express their thanks to all experts at the UMWELTBUNDESAMT as well as experts from other institutions involved in the preparation of the Austrian Greenhouse Gas Inventory for their contribution to the continuous improvement of the inventory.

Reporting entity	Überwachungsstelle Emissionsbilanzen (Inspection Body for Emission Inventories) at the Umweltbundesamt Spittelauer Lände 5 A -1090 Wien
Contracting entitiy	BMLFUW (Federal Ministry of Agriculture, Forestry, Environment and Water Management) Stubenring 1 A-1012 Wien
Responsible for the content of this report	Man Redung
	Dr. Klaus Radunsky
	(Head of the inspection body)
Date of submission	15.04.2005

No parts of this publication may be reproduced or transmitted in any form or any means without prior written permission from the publisher.

For further information about the publications of the Umweltbundesamt please go to: http://www.umweltbundesamt.at/

Imprint

Owner and Editor: Umweltbundesamt GmbH

Spittelauer Lände 5, 1090 Vienna/Austria

Printed on recycling paper

© Umweltbundesamt GmbH, Vienna, 2004 All rights reserved

ISBN 3-85457-770-2

CONTENTS

CON	IENIS	3
EXEC	CUTIVE SUMMARY	9
ES.1 E	Background Information	9
ES.2	Summary of National Emission and Removal Related Trends	11
ES.3	Overview of Source and Sink Category Emission Estimates and Trends	13
ES.4	Overview of Emission Estimates and Trends of Indirect GHGs and SO_2	13
1	INTRODUCTION	14
1.1	Background Information	14
1.2	Institutional Arrangement for Inventory Preparation	16
1.2.1	Austria's Obligations	16
1.2.2	History of NISA	
1.2.3	Institutional arrangements in place	
1.2.4	Adaptation of NISA according to the Kyoto Protocol	
1.3	Inventory Preparation Process	21
1.4	Methodologies and Data Sources Used	23
1.5	Key Source Analysis	26
1.5.1	Austria's Key Source Categories	
1.5.2	Description of Methodology	28
1.6	Quality Assurance and Quality Control (QA/QC)	30
1.7	Uncertainty Assessment	35
1.7.1	First Comprehensive Uncertainty Analysis	37
1.8	Completeness	39
2	TREND IN TOTAL EMISSIONS	42
2.1	Emission Trends for Aggregated GHG Emissions	42
2.2	Emission Trends by Gas	43
2.3	Emission Trends by Source	
2.3.1	Energy (IPCC Category 1)	47
2.3.2	Industrial Processes (IPCC Category 2)	
2.3.3	Solvent and Other Product Use (IPCC Category 3)	
2.3.4	Agriculture (IPCC Category 4)	
2.3.5	LULUCF (IPCC Category 5)	
2.3.6 2.4	Waste (IPCC Category 6) Emission Trends for Indirect Greenhouse Gases and SO₂	
3	ENERGY (CRF SECTOR 2)	
3.1	Sector Overview	
3.1.1	Emission Trends	52
3 2	Fuel Combustion Activities (CRF Source Category 1 A)	54

3.2.1	Source Category Description	
3.2.1.1	Key Sources	
3.2.1.2	Completeness	
3.2.2	Methodological Issues	
3.2.2.1	1 A 1 a Public Electricity and Heat Production	
3.2.2.2	1 A 1 b Petroleum Refining	
3.2.2.3	1 A 1 c Manufacture of Solid Fuels and Other Energy Industries	
3.2.2.4	1 A 2 a Iron and Steel.	
3.2.2.5 3.2.2.6	1 A 2 b Non-Ferrous Metals	
3.2.2.7	1 A 2 d Pulp, Paper and Print	
3.2.2.8	1 A 2 e Food Processing, Beverages and Tobacco	
3.2.2.9	1 A 2 f Manufacturing Industries and Construction – Other	
	1 A 3 a Civil Aviation	
	1 A 3 b Road Transport	
3.2.2.12	1 A 3 c Railways	100
	1 A 3 d Navigation	
	1 A 3 e Other Transportation	
	1 A 4 Other sectors	
	1 A 5 Other	
	International Bunkers - Aviation	
3.2.3	Quality Assurance and Quality Control and Verification	
3.2.4	Recalculations of Category 1 A	113
3.2.5	Planned Improvements	115
3.3	Comparison of the Sectoral Approach with the Reference Approach	116
3.3.1	Comparison of CO ₂ emissions	116
3.3.2	Comparison of energy consumption	118
3.4	Feedstocks	119
3.5	Fugitive Emissions (CRF Source Category 1 B)	
3.5.1	Source Category Description Emission Trends	
3.5.1.1 3.5.1.2	Completeness	
	·	
3.5.2 3.5.2.1	Methodological issues	
3.5.2.1	1 B 2 a Fugitive Emissions from Fuels – Coal Mining	
	1 B 2 b Fugitive Emissions from Fuels – Natural Gas	
3.5.3	Recalculations	
4	INDUSTRIAL PROCESSES (CRF SECTOR 2)	
4.1	Sector Overview	127
4.1.1	Emission Trends	127
4.1.2	Key Sources	132
4.1.3	Methodology	
4.1.4	Uncertainty Assessment	
4.1.5	Quality Assurance and Quality Control (QA/ QC)	
4.1.6		
_	Recalculations	
4.1.7	Completeness	
4.1.8	Planned Improvements	
4.2	Mineral Products (CRF Source Category 2 A)	
4.2.1	Cement Production (2 A 1)	
4.2.1.1	Source Category Description	
4.2.1.2		420

4.2.1.3 4.2.1.4	Uncertainty AssessmentRecalculations	
4.2.2	Lime Production (2 A 2)	
4.2.2.1	Source Category Description	
4.2.2.2	Methodological Issues	
4.2.2.3	Uncertainty Assessment	
4.2.3	Limestone and Dolomite Use (2 A 3)	
4.2.3.1	Source Category Description	
4.2.3.2	Methodological Issues	
4.2.4 4.2.4.1	Soda Ash Use (2 A 4)	
4.2.4.1	Source Category Description	
4.2.5	Asphalt Roofing (2 A 5) and Road Paving with Asphalt (2 A 6)	
4.2.6	Mineral Products – Other (2 A 7)	
4.2.6.1	Source Category Description	
4.2.6.2	Bricks Production	
4.2.6.3	Magnesia Sinter Production	
4.3	Chemical Industry (CRF Source Category 2 B)	146
4.3.1	Ammonia Production (2 B 1)	
4.3.1.1	Source Category Description	
4.3.1.2	Methodological Issues	
4.3.1.3	Uncertainty assessment	
4.3.2	Nitric Acid Production (2 B 2)	148
4.3.2.1	Source Category Description	
4.3.2.2	Methodological Issues	
4.3.2.3	Uncertainty assessment	
4.3.3	Calcium Carbide Production (2 B 4)	
4.3.3.1	Source Category Description	
4.3.3.2	Methodological Issues	
4.3.4 4.3.4.1	Chemical Industry – Other: Production of Fertilizers and Urea (2 B 5)	
4.3.4.1	Methodological Issues	
4.3.4.3	Recalculation	
4.3.4.4	Time Series Consistency / Planned Improvements	
4.4	Metal Production (CRF Source Category 2 C)	152
4.4.1	Iron and Steel (2 C 1)	
4.4.1.1	Source Category Description	
4.4.1.2	Methodological Issues	
4.4.1.3	Uncertainty Assessment	
4.4.1.4	Recalculation	
4.4.2	Aluminium Production (2 C 3)	
4.4.2.1	Source Category Description	
4.4.2.2 4.4.2.3	Methodological Issues	
4.4.3	SF ₆ Used in Aluminium and Magnesium Foundries (2 C 4)	
4.4.3.1	Source Category Description	
4.4.3.2	Methodological Issues	
4.5		
_	Consumption of Halocarbons and SF ₆ (CRF Source Category 2 F)	
4.5.1	Source Category Description	
4.5.2	Methodological Issues	
4.5.2.1 4.5.2.2	2 F 1 Refrigeration and Air Conditioning Equipment	
4.5.2.2	2 F 3 Fire Extinguishers	
4.5.2.4	2 F 6 Semiconductor Manufacture (HFCs, PFCs, SF ₆)	

4.5.2.5 4.5.2.6	2 F 7 Electrical Equipment (SF ₆)	
4.5.3	Uncertainty estimate	
4.5.4	Recalculations	
4.5.5	Planned Improvements	
5	SOLVENT AND OTHER PRODUCT USE (CRF SOURCE	
	CATEGORY 3)	168
5.1	Sector Overview	168
5.1.1	Emission Trends	168
5.1.2	Key Sources	169
5.1.3	Completeness	
5.2	CO ₂ Emissions from Solvent and Other Product Use	170
5.2.1	Methodology Overview	170
5.2.2	Top down Approach	171
5.2.3	Bottom up Approach	
5.2.4	Combination Top down – Bottom up approach	176
5.2.5	Calculation of CO ₂ emissions from Solvent Emissions	
5.2.6	Uncertainty Assessment	
5.3	N ₂ O Emissions from Solvent and Other Product Use	
6	AGRICULTURE (CRF SOURCE CATEGORY 4)	182
6.1	Sector Overview	182
6.1.1	Emission Trends	183
6.1.2	Key Sources	
6.1.3	Methodology	
6.1.4	Quality Assurance and Quality Control (QA/QC)	
6.1.5	Uncertainty Assessment	
6.1.6	Recalculations	187
6.1.7	Completeness	188
6.1.8	Planned Improvements	
6.2	Enteric Fermentation (CRF Source Category 4 A)	191
6.2.1	Source Category Description	
6.2.2	Methodological Issues	
6.2.2.1	Cattle (4 A 1)	
6.2.2.2	Sheep (4 A 3), Goats (4 A 4), Horses (4 A 6) Swine (4 A 8), Poultry (4 A 9) and Other (4 A 10)	198
6.2.3	Uncertainties	199
6.2.4	Recalculations	200
6.3	Manure Management (CRF Source Category 4 B)	202
6.3.1	Source Category Description	202
6.3.2	Methodological Issues	
6.3.2.1	Estimation of CH ₄ Emissions	
6.3.2.2	Estimation of N ₂ O Emissions	
6.3.3	Uncertainties	
6.3.4	Recalculations	
6.3.5	Planned Improvements	211

6.4	Agricultural Soils (CRF Source Category 4 D)	212
6.4.1	Source Category Description	
6.4.2	Methodological Issues	
6.4.2.1	Direct Soil Emissions (4 D 1)	
6.4.2.2	Animal Production (4 D 2)	
6.4.2.3	Indirect Soil Emissions (4 D 3)	
6.4.2.4	Sewage Sludge Application (4 D 4)	
6.4.3	Uncertainties	
6.4.4	Recalculations	
6.5	Field Burning of Agricultural Waste (CRF Source Category 4 F)	226
6.5.1	Source Category Description	226
6.5.2	Methodological Issues	
6.5.2.1	Cereals/ Wheat (4 F 1 a)	
6.5.2.2	Other (4 F 5)	227
7	LAND USE, LAND USE CHANGE AND FORESTRY (CRF SOURCE CATEGORY 5)	228
7.1	Sector Overview	228
7.1.1	Emission Trends	
7.1.2	Methodology	
7.1.3	Completeness	
7.2	Forest Land (5 A)	
7.2.1	Forest Land (5 A)	
7.2.1.1	Methodological Issues	
7.2.1.2	QA/QC, Verification, Uncertainty Assessment	
7.2.1.3	Recalculations	
7.2.1.4	Planned improvements	234
7.2.2	Land Use Changes to and from Forest Land (Categories 5 A 2 and 5 B 2.1, 5 C 2.1, 5 D 2.1, 5 E 2.1, 5 F 2.1).	235
7.2.2.1	Methodological Issues	
7.2.2.2	Uncertainty Assessment	
7.3	5 B Cropland and 5 C Grassland	
7.3.1	Methodological Issues	
7.3.1.1	Cropland: changes in carbon stocks in biomass	
7.3.1.2 7.3.1.3	Cropland: changes in carbon stocks of soils	
7.3.1.4	CO ₂ emissions due to liming of cropland and grassland	
7.3.2	Uncertainty assessment	
8	WASTE (CRF SECTOR 6)	242
8.1	Sector Overview	242
8.1.1	Emission Trends	242
8.1.2	Key Sources	
8.1.3	Methodology	
8.1.4	Uncertainty Assessment	
8.1.5	Recalculations	
8.1.6	Completeness	
8.2	Waste Disposal on Land (CRF Source Category 6 A)	
8.2.1	Managed Waste Disposal on Land (CRF Source Category 6 A 1)	
8.2.1.1	Source Category Description	

8.2.1.3 Recalculations	255
	200
	256
8.3.1 Methodology	257
8.3.1.1 CH ₄ Emissions	
8.3.1.2 N ₂ O Emissions	
8.3.2 Recalculation	
8.3.3 Planned Improvements	260
8.4 Waste Incineration (CRF Source Category 6 C)	261
8.4.1 Source Category Description	261
8.4.2 Methodological Issues	262
8.5 Other Waste (CRF Source Category 6 D)	264
8.5.1 Compost Production	
8.5.1.1 Methodological Issues	
8.5.1.2 Recalculations	265
9 RECALCULATIONS AND IMPROVEMENTS	267
9.1 Explanations and Justifications for Recalculations	267
9.2 Implication for Emission Levels	275
9.2.1 Recalculation of CO ₂ Emissions by Categories	
9.2.2 Recalculation of CH4 Emissions by Categories	
, ,	
9.2.3 Recalculation of N ₂ O Emissions by Categories	
 9.2.3 Recalculation of N₂O Emissions by Categories 9.2.4 Recalculation of National Total GHG Emissions 	279
, 5	
9.2.4 Recalculation of National Total GHG Emissions	282
9.2.4 Recalculation of National Total GHG Emissions	282 283
9.2.4 Recalculation of National Total GHG Emissions 9.3 Implications for Emission Trends 9.4 Planned Improvements	282 283 284

EXECUTIVE SUMMARY

ES.1 Background Information

As a Party to the United Nations Framework Convention on Climate Change (UNFCCC), Austria is required to produce and regularly update National Greenhouse Gas Inventories. To date, National Greenhouse Gas Inventories have been produced for the years 1990 to 2003.

By taking decision 18/CP.8 (see document FCCC/CP/2002/7/Add.2) the Conference of the Parties (COP) has undertaken to implement the UNFCCC guidelines on reporting and reviewing (FCCC/CP/2002/8). According to this decision Parties shall submit a National Inventory Report (NIR) containing detailed and complete information on their inventories, in order to ensure the transparency of the inventory (see paragraph 38 of FCCC/CP/2002/8). This is the fifth version of the National Inventory Report (NIR) submitted by Austria, it is an update of the NIR submitted in 2004¹. This report is based on data submitted to the UNFCCC in the common reporting format (CRF submission 2005). They differ from last year's reported data as some activity data have been updated or changes in methodology have been made retrospectively to enhance the accuracy of the greenhouse gas inventory (for further information see Chapter 9 Recalculations and Improvements). Thus the inventory as presented in the NIR 2005 and as submitted to the UNFCCC in the data submission 2005 replaces all previous versions of data submissions.

The structure of the NIR follows closely the proposal as included in Appendix A of document FCCC/SBSTA/2002/8. First, there is an Executive Summary that gives an overview on Austria's greenhouse gas inventory. Chapters 1 and 2 provide general information on the inventory preparation process and summarize the overall trends in emissions. Comprehensive information on the methodologies used for estimating emissions of Austria's greenhouse gas inventory is presented in the Sector Analysis Chapters 3 – 8. Chapter 9 gives an overview of actions planned to further improve the inventory and of changes previously made (recalculations), it also describes improvements made in response to the UNFCCC centralized review 2004.

The underlying emission data for the year 2003 as reported in the tables of the common reporting format of the data submission 2004 to the convention are also included as well as abbreviations and references used. Furthermore detailed results from the key source analysis, detailed information on the methodology of emission estimates for the fuel combustion sector, the CO_2 reference approach as well as the National Energy Balance are presented in the Annexes.

The aim of this report is to document the methodology in order to facilitate understanding the calculation of the Austrian GHG emission data. The more interested reader is kindly referred to the background literature cited in this document.

Manfred Ritter in his function as head of the *Department of Air Emissions* of the UMWELTBUNDESAMT is responsible for the preparation and review of Austria's National Greenhouse Gas Inventory as well as the preparation of the NIR.

¹ Austria's National Inventory Report 2003 – Submission Under the United Nations Framework Convention of Climate Change. BE-225; Austria's Federal Environment Agency, Vienna.

Klaus Radunsky in his function as head of the *Inspection Body for Emission Inventories* is responsible for the content of this report and for the quality management system of the Austrian Greenhouse Gas Inventory.

Project leader for the preparation of the Austrian air pollutant inventory is Stephan Poupa.

Project leader for the preparation of the NIR is Manuela Wieser.

Specific responsibilities for the NIR 2005 have been as follows:

Executive Summary Manuela Wieser Chapters 1.1 – 1.5, 1.7 Manuela Wieser Chapters 1.6, 1.8 Doris Halper Chapter 2 Manuela Wieser Chapter 3.1/3.2 Energy Stephan Poupa Chapter 3.2 Road Transport Agnes Kurzweil Chapter 3.2 Aviation Agnes Kurzweil Chapter 3.3 Manuela Wieser Chapter 4 Manuela Wieser Chapter 5 Daniela Wappel Chapter 6 Michael Anderl

Chapter 7 Alexandra Freudenschuß, Manuela Wieser

Chapter 8 Daniela Wappel, Stephan Poupa Chapter 9 Stephan Poupa, Manuela Wieser Annexes Stephan Poupa, Manuela Wieser

ES.2 Summary of National Emission and Removal Related Trends

The most important GHG in Austria is carbon dioxide (CO_2), it contributed 83.2% to total national GHG emissions expressed in CO_2 equivalent in 2003, followed by CH_4 , 8.5% and N_2O , 6.1%. PFCs, HFCs and SF_6 contributed for 2.2% to the overall GHG emissions in the country. The energy sector accounted for 75.7% of the total GHG emissions followed by Industrial Processes 12.1%, Agriculture 8.0% and Waste 3.7%.

Total GHG emissions (excluding land-use change and forestry (LUCF)) amounted to 91 566 Gg CO_2 equivalent and increased by 16.5% from 1990 to 2003 (16.6% if calculated from the base year: 1990 for CO_2 , CH_4 and N_2O and 1995 for HFCs, PFCs and SF_6).

Table 1 provides data on emissions by sector and Table 2 by gas from 1990 to 2003.

Table 1: Austria's greenhouse gas emissions by sector

GHG Source and	Ollin Categories	Total (with net CO ₂ emissions/removals)	Total (without CO ₂ from LUCF)	1 Energy	2 Industrial Processes	3 Solvent and Other Product Use	4 Agriculture	5 Land-Use Change and Forestry	6 Waste
BY*		69 521.89	78 535.22	54 945.90	10 114.82	515.17	8 456.23	-9 013.33	4 503.10
1990		69 559.72	78 573.05	54 945.90	10 152.65	515.17	8 456.23	-9 013.33	4 503.10
1991		70 873.96	82 647.00	58 769.48	10 269.45	469.27	8 643.69	-11 773.04	4 495.12
1992		67 627.81	76 062.64	53 932.46	9 118.31	420.24	8 187.31	- 8 434.82	4 404.33
1993		67 416.92	76 177.63	54 573.05	8 842.87	419.85	7 970.20	- 8 760.71	4 371.66
1994	equivalent]	69 405.45	77 045.38	54 536.96	9 376.47	404.04	8 492.49	- 7 639.93	4 235.43
1995	luiva	73 112.74	80 159.10	57 200.73	9 875.84	422.38	8 557.75	- 7 046.36	4 102.39
1996	O ₂ ec	78 045.80	83 237.39	61 019.19	9 751.84	405.31	8 089.34	- 5 191.59	3 971.72
1997	\circ	71 355.65	83 046.10	60 283.20	10 345.24	422.59	8 144.83	-11 690.45	3 850.23
1998	[Gg	69 806.62	82 513.72	60 287.29	9 897.07	404.74	8 146.26	-12 707.10	3 778.36
1999		67 765.51	80 402.96	58 865.23	9 590.82	390.87	7 860.19	-12 637.45	3 695.85
2000		67 437.64	81 083.55	59 014.77	10 328.82	413.52	7 724.46	-13 645.91	3 601.98
2001		71 527.01	84 871.78	62 927.72	10 234.05	426.10	7 753.92	-13 344.77	3 529.99
2002		75 122.83	86 433.79	64 026.01	10 963.93	426.10	7 552.64	-11 310.96	3 465.11
2003		78 793.87	91 566.42	69 330.63	11 046.05	426.10	7 349.06	-12 772.55	3 414.59

*BY= Base Year: 1990 for CO $_2$, CH $_4$ and N $_2$ O and 1995 for HFCs, PFCs and SF $_6$

Over the period 1990-2003 CO_2 emissions increased by 24.4%, mainly due to increased emissions from transport. Methane emissions decreased during the same period by 20.3% mainly due to lower emissions from *Solid Waste Disposal*; N₂O emissions decreased by 3.0% over the same period due to lower emissions from agricultural soils. Emissions from HFCs and PFCs increased by 135.6% and 49.2% respectively whereas SF_6 emissions decreased by 47.9% from the base year (1995) to 2003^2 .

² Data for fluorinated compounds is only available until 2000, for 2001 and 2002 the values of 2000 was used. However, new data will become available in 2004.

Table 2: Austria's greenhouse gas emissions by gas

GHG	}	Total	CO ₂	CH₄	N ₂ O	HFCs	PFCs	SF ₆
BY*		78 535.22	61 262.62	9 797.69	5 711.76	555.26	68.74	1 139.16
1990		78 573.05	61 262.62	9 797.69	5 711.76	219.16	1 079.24	502.58
1991		82 647.00	64 752.08	9 759.88	6 060.03	334.57	1 087.08	653.36
1992		76 062.64	59 348.14	9 460.60	5 706.80	386.59	462.67	697.85
1993		76 177.63	59 899.64	9 425.66	5 561.46	444.24	52.92	793.71
1994	equivalent]	77 045.38	60 203.24	9 257.72	6 034.88	505.20	58.65	985.70
1995	uiva	80 159.10	63 115.45	9 142.84	6 137.65	555.26	68.74	1 139.16
1996	2 eq	83 237.39	66 562.46	8 958.72	5 794.74	637.15	66.27	1 218.05
1997	CO	83 046.10	66 527.30	8 681.40	5 890.80	729.62	96.83	1 120.15
1998	[Gg	82 513.72	66 217.81	8 557.07	5 973.57	812.53	44.75	907.99
1999		80 402.96	64 614.14	8 365.73	5 807.59	866.99	64.54	683.96
2000		81 083.55	65 454.12	8 146.25	5 758.53	1 019.00	72.33	633.31
2001		84 871.78	69 279.64	8 020.50	5 730.53	1 122.34	82.15	636.62
2002		86 433.79	70 994.47	7 856.28	5 636.41	1 218.92	86.87	640.83
2003		91 566.42	76 213.26	7 806.62	5 542.26	1 308.22	102.54	593.52

*BY= Base Year: 1990 for CO2, CH4 and N2O and 1995 for HFCs, PFCs and SF6

NOTE: Total without CO₂ from LUCF

ES.3 Overview of Source and Sink Category Emission Estimates and Trends

In the year 2003, 69 331 Gg CO_2 equivalent, that are 75.7% of national total emissions arose from the sector *Energy*. 99.2% of these emissions arise from fuel combustion activities. The most important subsector of *Fuel Combustion* with 33.2% of total emissions from this sector in 2003 is transport. From 1990 to 2003 emissions from the energy sector increased by 26.2%.

Industrial Processes is the second largest sector in Austria with 12.1% of total GHG emissions in 2003 (11 046 Gg CO_2 equivalent). In the year 2003, 41.0% of these emissions arose from *Metal Production*. From the base year to 2003 emissions from industrial processes increased by 9.2%.

In the year 2003, 0.5% of total GHG emissions in Austria (426 Gg CO_2 equivalent) arose from the sector *Solvent and Other Product Use*. From 1990-2003 emissions from this category decreased by 17.3%.

Emissions from *Agriculture* amounted to 7 349 Gg CO_2 equivalent in the year 2003, that are 8.0% of national total emissions. The most important sub sector is *Enteric Fermentation* with 42.1% of the greenhouse gas emissions from the agricultural sector in 2003, the second important sub source is *Agricultural Soils* with 36.3%. In the year 2003 emissions from that category were 13.1% below the level of the base year.

3.7% of Austria's total greenhouse gas emissions in the year 2003 arose from the IPCC Category *Waste*. Emissions from this category decreased: from 1990 to 2003 emissions by 24.2% from 4 503 Gg CO₂ equivalent to 3 414 Gg.

ES.4 Overview of Emission Estimates and Trends of Indirect GHGs and SO₂

Emission estimates of indirect GHGs and SO₂ are presented in Table 3.

Table 3: Emissions of indirect GHGs and SO₂ 1990-2003

_	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003
Gas					[G	g]				
NOX	210.99	192.13	211.78	199.12	211.13	199.16	204.43	213.67	219.72	229.03
CO	1243.6	1018.0	1032.2	962.3	923.4	875.7	810.3	804.0	775.5	801.8
NM-										
VOC	286.02	221.31	216.47	203.72	190.96	180.15	181.01	185.26	181.69	182.30
SO2	76.18	48.21	46.27	42.13	37.25	36.08	33.06	34.22	33.01	34.14

Emissions of indirect greenhouse gases except NOx decreased from the period from 1990 to 2003: for NMVOCs and CO by 36% and for SO_2 emissions by 55%. NOx emissions increased by 9% over the considered period.

The most important emission source for indirect greenhouse gases and SO₂ are fuel combustion activities.

1 INTRODUCTION

1.1 Background Information

Global Warming

By deforestation people have influenced the local and regional climate at all times. But since the beginning of industrialization in the middle of the 18th century mankind has influenced the climate also globally by emitting greenhouse gases like carbon dioxide, methane, nitrous oxide as well as various fluorinated and chlorinated gases.

The average surface temperature of the earth has risen by about 0.6-0.7°C in the past 100 years and, according to the IPCC, will rise by another 1.4-5.8°C in the next 100 years, depending on the emission scenario.

The increase of the average surface temperature of the earth will lead, by increase of the surface temperature of the oceans and the continents, to changes in the hydrologic cycle as well as modification of the albedo (total reflectivity of the earth) and to significant changes of the atmospheric circulation which drives rainfall, wind and temperature on the regional scale. This will increase the risk of extreme weather events such as hurricanes, typhoons, tornadoes, severe storms, droughts and floods.

Climate Change in Austria

The effects of global warming in Austria are manifold because the alps as well as the region along the Danube have a very high vulnerability for climate change, which is reflected in the overall change in temperature of the alps of +1.8°C in the past 150 years. That is significantly higher than the global average.

Even more important than the average temperature for agriculture, energy production, tourism etc. is precipitation. So far experts think that north of the alps rainfall will increase, leading to a high risk of extreme floods, whereas south of the alps there will be a higher risk for droughts. An exact regionalization of these trends is substantial for adjustments in spatial planning, agriculture and forestry, tourism, flood control measures etc. Being aware of the need for further research in this matter, in 2003 Austria has launched StartClim and FloodRisk, two research programs.

The Convention, its Kyoto Protocol and the flexible mechanisms there under

In 1992 Austria has signed the United Nations Framework Convention on Climate Change (UNFCCC) which sets an ultimate objective of stabilizing atmospheric concentrations of greenhouse gases at levels that would prevent "dangerous" human interference with the climate system. Such levels, which the Convention does not quantify, should be achieved within a time frame sufficient to allow ecosystems to adapt naturally to climate change, to ensure that food production is not threatened and to enable economic development to proceed in a sustainable manner.

The UNFCCC covers all greenhouse gases not covered by the Montreal protocol³: carbon dioxide (CO_2), methane (CH_4), nitrous oxide (N_2O) as well as hydrogenated fluorocarbons (HFCs), perfluorated halocarbons (PFCs) and sulfurhexa flourid (SF_6).

Five years after adoption of the Climate Change Convention in 1997, governments took a further step forward and adopted the landmark Kyoto Protocol. Building on the Convention, the

³ The Montreal Protocol sets the elimination of ozone-depleting substances as its final objective and covers chloro and bromo fluorocarbons.

Kyoto Protocol broke new ground with its legally-binding constraints on greenhouse gas emissions and its innovative "mechanisms" aimed at cutting the cost of curbing emissions. Under the terms of the Protocol, the industrialised world - known as Annex 1 countries - pledged to reduce their greenhouse (GHG) emissions by 5% below 1990 levels by the period 2008-2012. The European Union is also a Party to the Convention and the KP and agreed on a reduction target of 8% below 1990 levels during the five-year commitment period from 2008 to 2012. The EU and its Member States decided to achieve this goal jointly, for Austria an emission target of minus 13% was set.

The KP entered into force on 16 February 2005, triggered by Russia's ratification in November 2004 which fulfilled the requirement that at least 55 Parties to the Convention ratify (or approve, accept, or accede to) the Protocol, including Annex I Parties accounting for 55% of that group's carbon dioxide emissions in 1990: by the end of March 2005, 146 Parties have ratified the KP, accounting for 61.6% of emissions of Annex 1 Parties.

The Protocol sets out three 'flexible mechanisms' to help countries meet their obligations to cut emissions.

- Emission Trading: Article 17 of the Kyoto Protocol allows Annex I Parties (basically, the
 industrialised nations) to purchase the rights to emit greenhouse gases (GHG) from
 other Annex I country which have reduced their GHG emissions below their assigned
 amounts. Trading can be carried out by intergovernmental emission trading, or entitysource trading where assigned amounts are allocated to sub-national entities.
- Joint Implementation: Article 6 allows an Annex I Party to gain a credit (converted to Assigned Amounts) by investing in another Annex I country in a project which reduces GHG emissions.
- Clean Development Mechanism: Article 12 allows an Annex I country (or companies in an Annex 1 country) which fund projects in developing countries (non-Annex I Party) to get credits for certified emission reductions providing that "benefits" accrue to host country.

Tradable emission permits tie the emissions to a fixed ceiling, the costs of emission reduction being as low as possible.

National Greenhouse Gas Inventories

As a Party to the Convention, Austria is required to produce and regularly update National Greenhouse Gas Inventories. To date, National Greenhouse Gas Inventories have been produced for the years 1990 to 2003. Furthermore Parties shall submit a National Inventory Report (NIR) containing detailed and complete information on their inventories, in order to ensure the transparency of the inventory.

The preparation of Austria's National Greenhouse Gas Inventory as well as the preparation of the NIR is the responsibility of the *Department of Air Emissions* of the *UMWELTBUNDESAMT* in Vienna.

For the means of Quality Assurance due to increased requirements in transparency, consistency, comparability, completeness and accuracy of the national greenhouse gas inventory related to the new standards defined in the KP, the inventories will be annually reviewed by international experts managed by the Climate Change Secretariat in Bonn (expert review team ERT) starting in 2003. To date, Austria's Greenhouse Gas Inventory has been reviewed by an in-country review and a centralized review in 2001 during the trial period of the

review process as well as during the centralized reviews in 2003 and 2004. The reports on these reviews can be found on the UNFCCC website⁴.

1.2 Institutional Arrangement for Inventory Preparation

1.2.1 Austria's Obligations

Austria has to comply with the following obligations:

- Austria's annual obligation under the UNECE Convention on Long-range Transboundary Air Pollution (CLRTAP) and its Protocols (1979) comprising the annual reporting of national emission data on SO₂, NO_X, NMVOCs, NH₃, CO, TSP, PM₁₀, and PM_{2,5} as well as on the heavy metals Pb, Cd and Hg and persistent organic hydrocarbons (PAHs), dioxins and furans and hexachlorbenzene (HCB).
- Austria's annual obligations under the European Council Decision 280/2004/EC ("Monitoring Decision"; replacing Decision 389/1992/EEC amended by Decision 296/1999/EEC) concerning a mechanism for monitoring Community greenhouse gas emissions and for implementing the Kyoto Protocol..
- Austria's obligation under the United Nations Framework Convention on Climate Change.
 Relevant COP Decisions and Guidelines are:
 - Decision 3/CP.5 Guidelines for the Preparation of National Communications by Parties included in Annex I to the Convention, Part I: UNFCCC Reporting Guidelines on Annual Inventories (referring to Document FCCC/CP/1999/7) revised with Decision 18/CP.8 (referring to Document FCCC/CP/2002/8).
 - Decision 4/CP.5 Guidelines for the Preparation of National Communications by Parties included in Annex I to the Convention, Part II: UNFCCC Reporting Guidelines on National Communications (referring to Document FCCC/CP/1999/7) revised with Decision 19/CP.8 (referring to Document FCCC/CP/2002/8).
 - Document FCCC/CP/1999/7 Review of the Implementation of Commitments and of other Provisions of the Convention UNFCCC Guidelines on Reporting and Review revised with Document FCCC/CP/2002/8.
 - Decision 11/CP.4 National communications from Parties included in Annex I to the Convention.
 - Document FCCC/CP/2001/13/Add.3 Report of the Conference of the Parties on its seventh session, held at Marrakech from 29 October to 10 November 2001, Addendum, Part two: Action taken by the Conference of the Parties, Volume III (Decision 20/CP.7: Guidelines for national systems under Article 5, paragraph 1, of the Kyoto Protocol; Decision 21/CP.7: Good practice guidance and adjustments under Article 5, paragraph 2, of the Kyoto Protocol; Decision 22/C.7: Guidance for the preparation of the information

http://unfccc.int/resource/webdocs/iri(2)/2001/aut.pdf, http://unfccc.int/resource/webdocs/iri(3)/2001/aut.pdf, http://unfccc.int/program/mis/ghg/countrep/autrep03.pdf and http://unfccc.int/files/national_reports/annex_i_ghg_inventories/inventory_review_reports/application/pdf/2004_irr_centralized_review_austria.pdf

- required under Article 7 of the Kyoto Protocol; Decision 23/CP.7: Guidelines for review under Article 8 of the Kyoto Protocol).
- Obligation under the Austrian Ambient Air Quality Law⁵ comprising the reporting of national emission data on SO₂, NO_X, NMVOC, CO, heavy metals (Pb, Cd, Hg), benzene and particulate matter.
- Austria's obligation according to Article 15 of the European IPPC Directive 1996/61/EC is to
 implement a European Pollutant Emission Register (EPER). Article 15 of the IPPC Directive
 can be associated with Article 6 of the Aarhus Convention (United Nations: Aarhus, 1998)
 which refers to the right of the public to access environmental information and to participate
 in the decision-making process of environmental issues.

1.2.2 History of NISA

As there are so many different obligations which are subject to continuous development, Austria's National Inventory System (NISA) has to be adapted to these changes. A brief history of the development and the activities of NISA is shown here:

- Austria established estimates for SO₂ under EMEP in 1978 (Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe).
- As an EFTA country Austria participated in CORINAIR 90, which was an air emission inventory for Europe. It was part of the CORINE (Coordination d'Information Environmentale) work plan set up by the European Council of Ministers in 1985. The aim of CORINAIR 90 was to produce a complete, consistent and transparent emission inventory for the pollutants: SO_X as SO₂, NO_X as NO₂, NMVOC, CH₄, CO, CO₂, N₂O and NH₃.
- Austria signed the UNFCCC on June 8, 1992 and subsequently submitted its instrument of ratification on February 28, 1994.
- In 1994 the first so-called Austrian Air Emission Inventory (Österreichische Luftschadstoff-Inventur, OLI) was prepared.
- In 1997 a consistent time series for the emission data from 1980 to 1995 was reported for the first time.
- In 1998 also emissions of HM, POPs and FCs were included in the inventory.
- Inventory data for particulate matter were included in the inventory in 2001.

1.2.3 Institutional arrangements in place

The Umweltbundesamt is designated as single national entity responsible for preparation of the annual greenhouse gas inventory by law: the Environmental Control Act ("Umweltkontrollgesetz"; Federal Law Gazette 152/ 1998) regulates responsibilities of environmental control in Austria and lists the tasks of the Umweltbundesamt. One task is the preparation of technical expertise and the data basis for fulfilment of the obligations under the UNFCCC and the UNECE LRTAP Convention. Thus the Umweltbundesamt prepares and annually updates the Austrian air emissions inventory ("Österreichische Luftschadstoff-Inventur OLI"), which covers greenhouse gases and emissions of other air pollutants as stipulated in the reporting obligations further explained in the following Chapter.

⁵ AUSTRIAN AMBIENENT AIR QUALITY LAW (1997): Immissionsschutzgesetz-Luft. Federal Law Gazette I 115/1997.

For the UMWELTBUNDESAMT a national air emission inventory that identifies and quantifies the sources of pollutants in a consistent manner is of a high priority. Such an inventory provides a common means for comparing the relative contribution of different emission sources and hence can be a basis for policies to reduce emissions.

Regulations under the UNFCCC and the Kyoto Protocol define new standards for national emission inventories. Therefore the present National Inventory System Austria is currently being adapted to meet all the requirements according Article 5.1 of the Kyoto Protocol (see following sub chapter).

Within the Umweltbundesamt the department of air emissions, with its head Manfred Ritter, is responsible for preparation of the inventory and all work related to inventory preparation. The department for climate change, with its head Klaus Radunsky, is responsible for the quality management of the greenhouse gas inventory.

Besides the Environmental Control Act there are some other legal and institutional arrangements in place as the main basis for the national system:

- the Austrian statistical office (Statistik Austria) is required by contract to annually prepare the national energy balance as the most important data basis for the Austrian Air Emissions Inventory (the contract also covers some quality aspects).
- the ordinance that regulates monitoring and reporting in the context of the EU Emissions Trading scheme in Austria⁶ also regulates that data reported from the plant operators will be used for the inventory, thus ensuring consistency of data sets. This is not only important for emissions from combustion of fuels, where more detailed information than provided in the national energy balance is available, but also for emissions from industrial processes, where the ordinance ensures data availability for most key sources (see Chapter 4 for details). However, first data from the EU Emissions Trading scheme will be only available for the year 2005, this data will be considered in the submission 2007.
- According to national legislation, the Austrian statistical office also has to annually
 prepare import/export statistics, production statistics and statistics on agricultural issues
 (livestock counts etc.), which is an important data basis for calculating emissions from
 the Sectors Industrial Processes, Solvents and Other Product Use and Agriculture.
- According to the Landfill Ordinance [Deponieverordnung (Federal Gazette BGBI. Nr 164/1996)], which came into force in 1997, the operators of landfill sites have to report their activity data annually to the UMWELTBUNDESAMT, where they are stored in the database for solid waste disposals (*Deponiedatenbank*). This data is the main data basis for calculating emissions from the waste sector.
- Since 2004 there is also a reporting obligation under the Austrian Fluorinated Compounds (FC)-regulation⁷ for users of FCs in the following applications: refrigeration and air-conditioning, foam blowing, semiconductor manufacture, electrical equipment, fire extinguishers and aerosols. This data is used for estimating emissions from the consumption of fluorinated compounds (*IPCC Category 2 F*).

⁶ "Verordnung des Bundesministers für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft über die Überwachung und Berichterstattung betreffend Emissionen von Treibhausgasen" Federal Law Gazette 458/2004

⁷ "Industriegas-Verordnung (HFKW-FKW-SF6-VO)"; Federal Law Gazette 447/2002

1.2.4 Adaptation of NISA according to the Kyoto Protocol

Regulations under the UNFCCC and the Kyoto Protocol define new standards for national emission inventories. These standards include more stringent requirements related to transparency, consistency, comparability, completeness and accuracy of inventories. Each Party shall have in place a national system, no later than one year prior to the start of the first commitment period. Also the European Community has to implement such a national system, and as this system also bases upon the national systems of the member states, member states are required to implement their national system earlier than required by the UNFCCC and the KP, by 31 December 2005 (Article 4 of the Monitoring Mechanism Decision 280/2004/EC).

This national system shall include all institutional, legal and procedural arrangements made within a Party for estimating anthropogenic emissions by sources and removals by sinks of all greenhouse gases not controlled by the Montreal Protocol, and for reporting and archiving inventory information.

Austria's aim is to set up a national system that fulfils all the requirements of the Kyoto Protocol and also works as an efficient system to fulfil all the other obligations regarding air emission inventories Austria has to comply with.

The emission inventory system, which is currently being finalized, has a structure as illustrated in Figure 1.

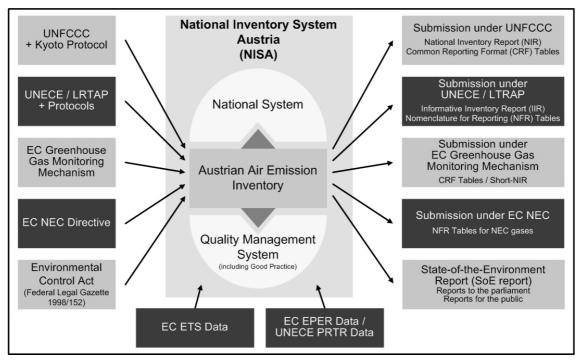


Figure 1: Structure of the emission inventory system in Austria (NISA)

The Austrian Air Emission Inventory comprising all air pollutants stipulated in the various national and international obligations will be the centre of NISA. The national system and the quality management system are incorporated into NISA as complementary sections.

The Guidelines for National Systems for the Estimation of Anthropogenic Greenhouse Gas Emissions by Sources and Removals by Sinks under Article 5.1 of the Kyoto Protocol (Decision 20/CP.7) describe the elements which shall be included in a national system. The main characteristics are that the national system shall ensure transparency, consistency, comparability, completeness and accuracy of inventories and the quality of inventory activities (e.g. collecting activity data, selecting methods and emission factors).

The general functions are

- to establish and maintain the institutional, legal, and procedural arrangements defined in the guidelines for national systems between the government agencies and other entities,
- to ensure sufficient capacity for timely performance,
- to designate a single national entity with overall responsibility for the national system,
- to prepare national annual inventories and supplementary information in timely manner and
- to provide information necessary to meet the reporting requirements.

Specific functions in these guidelines are the inventory planning, preparation and management.

Austria is taking significant steps to ensure a high-quality emission inventory in which uncertainties are reduced as far as feasible and in which data are developed in a transparent, consistent, complete, comparable and accurate manner.

The following steps have already been made to prepare NISA to meet the requirements of the Kyoto Protocol:

- the Umweltbundesamt has been designated as single national entity responsible for inventory preparation: the Environmental Control Act ("Umweltkontrollgesetz"; Federal Law Gazette 152/ 1998) regulates responsibilities of environmental control in Austria and lists the tasks of the Umweltbundesamt. One task is the preparation of technical expertise and the data basis for fulfilment of the obligations under the UNFCCC and the UNECE LRTAP Convention. For further institutional arrangements in place please refer to sub chapter 1.2.3)
- Development of a quality management system
- Implementation of the quality management system
- First comprehensive uncertainty analysis (and an update for key sources where methodologies have been improved since then)
- Identification of key source categories

The inventory preparation process is described in the following sub chapter.

In 2005 the national system will be evaluated and further improved to be fully in line with the requirements of Article 5.1 of the Kyoto Protocol.

1.3 Inventory Preparation Process

The present Austrian greenhouse gas inventory for the period 1990 to 2003 was compiled according to the recommendations for inventories set out in the UNFCCC reporting guidelines according to Decision 18/CP.8, the Common Reporting Format (CRF)⁸ (version 1.01), Decision 13/CP.9, the new CRF for the Land Use Change and Forestry Sector, the IPCC 1996 Guidelines for National Greenhouse Gas Inventories, which specify the reporting obligations according to Articles 4 and 12 of the UNFCCC [IPCC Guidelines, 1997] as well as the IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories [IPCC GPG, 2000].

The preparation of the inventory includes the following three stages:

- (i) inventory planning
- (ii) inventory preparation and
- (iii) inventory management.

In the first stage specific responsibilities are defined and allocated: as mentioned before, the UMWELTBUNDESAMT has the overall responsibility for the national inventory, comprising greenhouse gases as well as other air pollutants. Within the inventory system specific responsibilities for the different emission source categories are defined ("sector experts"), as well as for all activities related to the preparation of the inventory, including QA/QC, data management and reporting.

In Austria, emissions of greenhouse gases are estimated together with emissions of air pollutants in a single data base based on the CORINAIR (CORe Inventory AIR)/ SNAP (Selected Nomenclature for sources of Air Pollution) systematic. This nomenclature was designed by the ETC/AE (European Topic Centre on Air Emissions) to estimate not only emissions of greenhouse gases but all kind of air pollutants.

Like the IPCC Sectors of the CRF format the CORINAIR system has its own nomenclature, called SNAP (Selected Nomenclature for sources of Air Pollution), which may be expanded by so called SPLIT codes and additionally each SNAP/SPLIT category can be extended using a fuel code, a four digit alphanumeric code. The first three digits are based on the NAPFUE code (further information about fuel codes can be found in Chapter 3, the source analysis of the sector Energy).

In the second stage, the inventory preparation process, sector experts collect activity data, emission factors and all relevant information needed for finally estimating emissions. The sector experts are also responsible for methodological choices and for contracting studies, if needed. All data collected together with emission estimates are fed into a database (see below), where data sources are well documented for future reconstruction of the inventory.

As mentioned above, the Austrian Inventory is based on the SNAP systematic, and has to be transformed according to the IPCC Guidelines into the UNFCCC Common Reporting Format to comply with the reporting obligations under the UNFCCC. Additionally to the actual emission data also the background tables of the CRF are filled in by the sector experts, and finally

21/301

⁸ http://www.unfccc.de/resource/CRFV1_01o01.zip

QA/QC procedures as defined in the inventory planning process are carried out before the data is submitted to the UNFCCC.

For the inventory management a reliable data management to fulfil the data collecting and reporting requirements is needed. As mentioned above, data collection is performed by the different sector experts and the reporting requirements grow rapidly and may change over time. Data management is carried out by using MS ExcelTM spreadsheets in combination with Visual BasicTM macros, which is a very flexible system that can easily be adjusted to new requirements. The data is stored on a central network server which is backed up daily for the needs of data security. The inventory management also includes quality management as well as documentation on QA/QC activities (see Chapter 1.6).

1.4 Methodologies and Data Sources Used

The following table presents the main data sources used for activity data as well as information on who did the actual calculations:

Table 4: Main data sources for activity data and emission values

Sector	Data Sources for Activity Data	Emission Calculation
Energy	Energy Balance from STATISTIK AUSTRIA, Steam boiler database;	UMWELTBUNDESAMT, plant operators
Industry	National production statistics, import/export statistics, direct information from industry or associations of industry;	UMWELTBUNDESAMT, plant operators
Waste	Database on landfills	UMWELTBUNDESAMT
LUCF	National forest inventory obtained from the Austrian Federal Office and Research Centre for Forest	UMWELTBUNDESAMT
Solvent	Import/ export statistics, production statistics, consumption statistics;	Contractor: Forschungsinstitut für Energie und Umweltplanung, Wirtschaft und Marktanalysen GmbH and Institut für industrielle Ökologie*
Agriculture	National Studies, national agricultural statistics obtained from STATISTIK AUSTRIA;	Contractors: University of Natural Resources and Applied Life Sciences, Research Center Seibersdorf;

^{*} Research Institute for Energy and Environmental Planning, Economy and Market Analysis Ltd. / Institute for Industrial Ecology

A complete list of data sources for activity and emission data or emission factors used by sector can be found on page 295.

If emission data are reported (e.g. by the plant owner) this data is taken over into the inventory. This method is mainly used for large point sources.

If no such information is available an emission factor is multiplied with the activity data to obtain the emission data for a specific source. This method is mainly used for area sources.

For the preparation of the greenhouse gas inventory, the UMWELTBUNDESAMT prefers emission data that are reported by the operator of the source because these data usually reflect the actual emissions better than data calculated using general emission factors, as the operator has the best information about the actual circumstances. If such data is not available, national emission factors are used or, if there are no national emission factors, international emission factors are used to estimate the emissions.

The main sources for emission factors are:

- National studies for country specific emission factors
- IPCC GPG
- Revised IPCC 1996 Guidelines
- EMEP/CORINAIR Guidebook

Table Summary 3 of the CRF (Summary Report for Methods and Emission Factors Used) presents the methods applied and the origin of emission factors used for the greenhouse gas source and sink categories in the IPCC format for the present Austrian inventory.

For key source categories (see Chapter 1.5) the most accurate methods for the preparation of the greenhouse gas inventory should be used. Required methodological changes and planned improvements are described in the corresponding sector analysis chapters (Chapters 3-8).

Main Data Suppliers

The main data supplier for the Austrian air emission inventory is STATISTIK AUSTRIA who provides the underlying energy source data. The Austrian energy balances are based on several databases mainly prepared by the Ministry of Economic Affairs and Labour, "Bundeslastverteiler" and STATISTIK AUSTRIA. Their methodology follows the IEA and Eurostat conventions. The aggregates of the balances, for example transformation input and output or final energy use, are harmonised with the IEA tables as well as their sectoral breakdown which follows the NACE classification.

The main data suppliers are also presented in Table 4.

Information about activity data and emissions of the industry sector is obtained from *Association* of the Austrian Industries or directly from individual plants. Activity data for some sources is obtained from STATISTIK AUSTRIA which provides statistics on production data⁹. The methodology of this statistic has changed in 1996, no data is available for that year and there are some product groups that are not reported anymore in the new statistics.

Operators of steam boilers with more than 50 MW report their emissions and their activity data directly to the UMWELTBUNDESAMT. National and sometimes international studies are also used as data suppliers. Operators of landfill sites also report their activity data directly to UMWELTBUNDESAMT. Emissions for the years 1998-2002 are calculated on the basis of these data. Activity data needed for the calculation of non energetic emissions are based on several statistics collected by STATISTIK AUSTRIA and national and international studies.

Data from EPER

The European Pollutant Emission Register (EPER) is the first Europe-wide register for emissions from industrial facilities both to air and to water. The legal basis of EPER is Article 15 of the IPPC Directive (EPER Decision 2000/479/EG), the scope is to provide information to the public 10.

It is covering 50 pollutants including CO_2 , CH_4 , N_2O , SF_6 and PFCs. However, emissions only have to be reported if they exceed certain thresholds.

The Umweltbundesamt implemented EPER in Austria using an electronic system that enabled the facilities and the authorities to fulfil the requirements of the EPER decision electronically via the internet.

The Austrian industrial facilities had to report their annual emissions of the year 2001 or 2002. There were about 400 facilities in Austria, that had to report to EPER. As the thresholds for reporting emissions are relatively high only about 130 of them reported emissions according to the EPER Regulation. The plausibility of the reports were checked by the competent authorities. The Umweltbundesamt finally checked the data for completeness and consistency with the national inventory.

⁹ "Industrie und Gewerbestatistik" published by STATISTIK AUSTRIA for the years until 1995; "Konjunkturstatistik im produzierenden Bereich" published by STATISTIK AUSTRIA for the years 1997 to 2000.

¹⁰ data can be obtained from: http://www.umweltbundesamt.at/umweltdaten/datenbanken10/eper/

However, data from EPER could not be used as data source for the national inventory. On one hand this is due to the high threshold for emissions reporting, that's why for example only four facilities reported N_2O emissions and no reported fluorinated compounds. On the other hand this is because the EPER report only contains very little information beyond the emission data, the only information included is whether emissions are estimated, measured or calculated, also included is one activity value that is often not useful in the context of emissions.

Additionally emission information of EPER is not complete regarding IPCC sectors, and it is difficult to include this point source information when no background information (as fuel consumption data) is available.

Thus the top-down approach of the national inventory was considered more reliable and data of EPER was not used as point source data for the national inventory.

1.5 Key Source Analysis

The identification of key source categories is described in the IPCC Good Practice Guidance [IPCC-GPG, 2000], Chapter 7. It stipulates that a key source category is one that is prioritised within the National System because its estimate has a significant influence on a country's total inventory of greenhouse gases in terms of the absolute level of emissions, the trend in emissions, or both.

All notations, descriptions of identification and results for source and key source categories included in this chapter are based on the IPCC Good Practice Guidance.

The identification includes all reported greenhouse gases CO_2 , CH_4 , N_2O , HFC, PFC and SF_6 , and all IPCC source categories, emissions and removals from LULUCF have not been considered in the key source analysis.

The presented key source analysis was performed by UMWELTBUNDESAMT with data for greenhouse gas emissions of the submission 2005 to the UNFCCC and comprises a level assessment for all years between 1990 and 2003 and a trend assessment for the trend of the years 1996 to 2003 with respect to base year emissions (base year for CO_2 , CH_4 , N_2O is 1990 and 1995 for HFC, PFC and SF_6).

1.5.1 Austria's Key Source Categories

This chapter presents the results of Austria's key source analysis. The methodology is described in Chapter 1.5.2.

The identified key source categories are listed in Table 5. They comprise 81 771.3 Gg CO_2e in the year 2003, which is a share of 96.6% of Austria's total greenhouse gas emissions (without LUCF).

Table 5: Austrian key source categories based on emission data submitted 2005 to the UNFCCC

IPCC Category Des	scription	Gas	Emissions 2003 [Gg CO ₂ e]	Share in National Total Emissions 2003
1 A gaseous	Fuel Combustion (stationary)	CO ₂	16 569.4	18.1%
1 A 1 a liquid	Public Electricity and Heat Production	CO ₂	1 110.7	1.2%
1 A 1 a other	Public Electricity and Heat Production	CO_2	402.7	0.4%
1 A 1 a solid	Public Electricity and Heat Production	CO ₂	6 913.3	7.6%
1 A 1 b liquid	Petroleum refining	CO ₂	2 051.0	2.2%
1 A 2 mob-liquid	Manufacturing Industries and Constr.	CO ₂	1 104.7	1.2%
1 A 2 other	Manufacturing Industries and Constr.	CO_2	344.8	0.4%
1 A 2 solid	Manufacturing Industries and Constr.	CO_2	4 545.3	5.0%
1 A 2 stat-liquid	Manufacturing Industries and Constr.	CO_2	2 347.6	2.6%
1 A 3 b diesel	Road Transportation	CO ₂	15 099.5	16.5%
1 A 3 b gasoline	Road Transportation	CO ₂	6 783.4	7.4%
1 A 3 b gasoline	Road Transportation	N_2O	164.6	0.2%
1 A 4 biomass	Other Sectors	CH₄	271.9	0.3%
1 A 4 mob-diesel	Other Sectors	CO_2	1 418.7	1.5%

IPCC Category De	escription	Gas	Emissions 2003 [Gg CO ₂ e]	Share in National Total Emissions 2003
1 A 4 solid	Other Sectors	CO ₂	669.9	0.7%
1 A 4 stat-liquid	Other Sectors	CO ₂	7 701.6	8.4%
2 A 1	Cement Production	CO ₂	1 735.7	1.9%
2 A 2	Lime Production	CO ₂	546.6	0.6%
2 A 7 b	Magnesit Sinter Plants	CO ₂	373.5	0.4%
2 B 1	Ammonia Production	CO ₂	493.6	0.5%
2 B 2	Nitric Acid Production	N ₂ O	883.4	1.0%
2 C 1	Iron and Steel Production	CO ₂	4 513.1	4.9%
2 C 3	Aluminium production	PFCs	0.0	0.0%
2 C 4	SF ₆ used in Al and Mg Foundries	SF ₆	0.0	0.0%
2 F 1/2/3	ODS Substitutes	HFCs	1 304.7	1.4%
2 F 6	Semiconductor Manufacture	FCs	483.0	0.5%
2 F 8	Other Sources of SF ₆	SF ₆	185.1	0.2%
3	Solvent and Other Product Use	CO ₂	193.6	0.2%
4 A 1	Cattle	CH₄	2 887.7	3.2%
4 B 1	Cattle	N_2O	449.5	0.5%
4 B 1	Cattle	CH₄	588.3	0.6%
4 B 8	Swine	CH₄	410.3	0.4%
4 D 1	Direct Soil Emissions	N ₂ O	1 414.1	1.5%
4 D 3	Indirect Emissions	N ₂ O	1 016.1	1.1%
6 A	Solid Waste disposal on land	CH₄	2 828.9	3.1%
6 B	Wastewater handling	N ₂ O	192.4	0.2%

The key source with the highest contribution to national total emissions is 1 A Fuel Combustion – gaseous fuels, this source has not been further disaggregated for the key source analysis because the same emission factor is used for all sub categories. The contribution to national total emissions in the base year was 14.1% compared to 18.1% in 2003. It ranked number one in all level assessments, and number two in all trend assessments – the trend of emissions from this category was almost plus 50%.

The second most important source for greenhouse gas emissions in Austria is 1 A 3 b Road Transportation - diesel oil (CO₂) for the years since 1995 and 1 A 3 b Road Transportation – gasoline (CO₂) for the years after 1995, respectively. The contribution to national total emissions in the base year was 5.1% for diesel and 10.1% for gasoline, respectively, whereas in the last year of the inventory, namely 2003, the contribution was 16.5% and 7.4% respectively. Furthermore, 1 A 3 b Road Transportation - diesel oil (CO₂) was the most important source of GHG emissions regarding the trend of emissions: emissions increased by 276% since the base year (this source ranked number one in all trend assessments).

The third most important source regarding the contribution to national total emissions is 1 A 4 stationary-liquid (commercial and residential plants and plants in agriculture and forestry as well as off road traffic of these sources), it was the third important source for all years. It was also rated a key source in all trend assessments (ranks: 7-13). In the year 2003 it contributed 8.4%

to national total greenhouse gas emissions, emissions from this source increased by 4% from 1990 to 2003.

Comparison to last year's submission

There is a difference in the identified key source categories compared to the results of last year's analysis, as the methodology this year follows more closely the guidance of the GPG (also recalculations and introduction of new source categories might change the result of the KS analysis; for further information see Chapter 9 Recalculations and Improvements).

Compared to last year's key source analysis, one source – 6 B Waste Water Handling - has additionally been identified as key source.

The following key sources have been identified in last year's analysis but not in this:

- 1 A 1 c liquid Manufacture. of Solid fuels and Other Energy Industries (CO₂)
- 2 A 3 Limestone and Dolomite Use (CO₂)
- 2 C 3 Aluminium Production (CO₂)
- Solvent and Other Product Use (N_2O)

The main reason is that the methodology has changed compared to last years analysis (now the aggregation follows more closely the proposal of the GPG11), but also recalculations and newly added source categories might influence the result.

1.5.2 Description of Methodology

The method used to identify key source categories follows the Tier 1 method - quantitative approach described in the Good Practice Guidance [IPCC-GPG, 2000], Chapter 7 *Methodological Choice and Recalculation*.

The analysis includes all greenhouse gases reported under UNFCCC: CO₂, CH₄, N₂O, HFC, PFC and SF₆. All IPCC source categories are included, except emissions and sinks of LULUCF are not included.

The identification of key source categories consists of three steps:

- Identifying source categories
- Level Assessment
- Trend Assessment

Level of disaggregation and identification of key source categories

To identify key source categories total emissions have been split into those source categories that have been estimated using the same methodology and the same emission factor.

Table A1.3 of Annex 1 presents the determined 153 source categories and their greenhouse gas emissions expressed in CO₂ equivalent emissions for the years 1990 to 2003.

¹¹ This year CO2 emissions from gaseous fuels of category 1 A Combustion Activities have been aggregated because the same emission factor is used, whereas in all previous key source analysis this source has been split into sub sources.

Further details and a list of the source categories and key source categories for each category are given in the corresponding subchapter of the chapter analysis chapters 3 *Energy* – 8 *Waste*.

Level Assessment

For the Level Assessment the contribution of GHG emissions (expressed in CO_2 -equivalent emissions) of each source category to national total emissions was calculated. The calculation was performed for the years 1990 to 2003 according to Equation 7.1 of the GPG. Then the sources were ranked in descending order of magnitude according to the results of the level assessment and finally a cumulative total was calculated.

For the year 2003, 29 source categories comprised > 95% of the cumulative total and were thus rated as key sources. For the years 1991 and 2002 30 source categories were identified as key sources in the level assessment, for 1992 33 and for all other years 31 categories were identified as key sources. The results of each level assessment is presented in Annex 1.

Trend Assessment

The Trend Assessment identifies source categories that have a different trend compared to the trend of the overall inventory. As differences in trend are more significant to the overall inventory level for larger source categories, the result of the trend difference (i.e. the source category trend minus total trend) is weighted according to the source's level assessment.

For the Trend Assessment emissions of the years 1996 to 2003 were compared with base year emissions (1990 for CO_2 , CH_4 , N_2O and 1995 for HFCs, PFCs and SF_6), resulting in eight calculations.

The calculation was performed according to Equation 7.2 of the GPG. The results were ranked in descending order of magnitude and a cumulative total was calculated. Those sources that make up > 95% of the total trend were rated key source categories. Between 22 and 26 sources were identified as key source categories for the different trend assessments. Results are presented in Annex 1.

Identification of key source categories

Any source category meeting the 95% threshold in any year of the Level or the Trend Assessment is considered as key source. The key sources are presented in Table 5 in ascending IPCC category order, in Annex 1 they are presented together with their ranking of all assessments where they are within the 95% threshold.

Consequences of key source category selection

Whenever a method used for the estimation of emissions of a key source category is not consistent with the requirements of the IPCC Good Practice Guidance, the method will have to be improved in order to reduce uncertainty, which is considered in the emission inventory improvement programme (see Chapter 9.4).

1.6 Quality Assurance and Quality Control (QA/QC)

A quality management system (QMS) has been designed to contribute to the objectives of *good practice guidance*, namely to improve transparency, consistency, comparability, completeness and confidence in national inventories of emissions estimates. After having been fully implemented during the development of the UNFCCC submission 2004, the accreditation audit of the *Department for Air Emissions* as inspection body is scheduled to take place in autumn 2005.

The International Standard ISO17020 and the Compilation of the National Greenhouse Gas Inventory

The QMS was drawn up to meet requirements of the International Standard ISO/IEC 17020:1998 General Criteria for the operation of various types of bodies performing inspections. The International Standard ISO 17020 has replaced the European Standard EN 45004. This standard covers the functions of bodies whose work includes assessments of conformity against requirements, and the subsequent reporting of results of these activities to clients and, when required, to supervisory authorities. In the case of greenhouse gas emissions inventories, inspection covers the collection of emission data and/or of data which are used to estimate emissions, application of IPCC, CORINAIR and country specific methodologies to estimate emissions, compilation of the emissions inventory and the determination of conformity with national emissions reduction targets. The QMS ensures that all requirements of a Type A inspection body as stipulated in ISO 17020 are met, including strict independence, impartiality and integrity of accredited bodies.

Inspection bodies carry out assessments on behalf of private clients, their parent organisations, and/or official authorities with the objective of providing information to those parties relative to conformity with regulations, standards, or specifications. Inspection parameters may include, among others, matters of quantity and/or quality. The general criteria, with which these bodies are required to comply in order that their services be accepted by clients and by supervisory authorities, are harmonized in the International Standard ISO 17020.

According to ISO 17020, *accreditation* is the procedure by which an authorized body - in Austria this is the Federal Ministry of Economic Affairs and Labour - formally recognizes that an organisation is competent to perform a given conformity-assessment activity.

A Type A inspection body provides "third party" services. This means that the inspection body shall be independent of the parties involved (e.g. industry, government). The inspection body and its staff responsible for carrying out the inspection shall not be the authorized representative of any of these parties. Furthermore, the inspection body and its staff shall not engage in any activities that may conflict with their independence of judgement and integrity in relation to their inspection activities. Finally, all interested parties shall have access to the services of the inspection body. There shall not be undue financial or other conditions. The procedures under which the body operates shall be administered in a non-discriminatory manner.

The International Standard ISO 17020 has been drawn up with the objective of promoting confidence in those bodies performing inspections which conform to it. The ISO 17020 takes into account requirements and recommendation of European and international documents such as the ISO 9000 (EN/ISO 9000) series of standards and Guide EA-5/01 (Guidance on the Application of EN 45004 which is identical with ISO 17020, European Co-operation for Accreditation, 2003).

ISO 17020 forms part of the following series of standards covering testing, inspection and certification.

- ISO 17000 (Conformity assessment vocabulary and general principles)
- ISO 17011 (General requirements for bodies providing assessment and accreditation)
- ISO 17020 (General criteria for the operation of various types of bodies performing inspection) replacing EN 45004
- ISO 17021 (Conformity assessment: Requirements of bodies providing audit and certification of management systems) replacing EN 45012 (General criteria for certification bodies operating quality system certification)
- ISO 17024 (Conformity assessment General requirements for bodies operating certification of persons) replacing EN 45013 (General criteria for certification bodies operating certification of personnel)
- ISO/IEC 17025 (General requirements for the competence of testing and calibration laboratories) replacing EN 45001 (General criteria for the operation of testing laboratories)
- EN 45002 (General criteria for the assessment of testing laboratories)
- EN 45003 (General criteria for the laboratory accreditation bodies)
- EN 45010 (General Criteria for the assessment and accreditation of certification bodies)
- EN 45011 (General criteria for certification bodies operating product certification)
- EN 45020 (General terms and their definitions concerning standardisation and related activities)

Quality Management System (QMS)

The Quality Assurance and Quality Control (QA/QC) procedures within the QMS correspond to the QA/QC system outlined in IPCC-GPG Chapter 8 "Quality Assurance and Quality Control".

The implementation of QA/QC procedures as required by IPCC-GPG support the development of national greenhouse gas inventories that can be readily assessed in terms of quality and completeness. A QMS goes beyond QA/QC activities and comprises supporting and management processes in addition to the QA/QC procedures in inventory compilation. A system of standard operating procedures (SOPs) ensures agreed standards as well as transparency within (i) the inventory compilation process (ii) supporting processes (e.g. achieving) and (iii) management processes (e.g. annual management reviews, internal audits, regular training of personnel, error prevention).

With the Kyoto Protocol having entered into force, pressure upon national GHG emission inventories is expected to increase, therefore a QMS is considered crucial in order to ensure the quality of emission estimates established according to the requirements of the IPCC-GPG as a basis for any kind of international emission trading.

The Department of Air Emissions at the UMWELTBUNDESAMT has decided to implement a QMS based on the International Standard ISO 17020 General Criteria for the operation of various types of bodies performing inspections. The QMS ensures the fulfilment of requirements as stipulated in Chapter 8 of the IPCC-GPG. The department has scheduled its accreditation audit for autumn 2005.

The *Department of Air Emissions* of the UMWELTBUNDESAMT has implemented a QMS based on the International Standard ISO 17020. This process-based approach is illustrated in Figure 2.

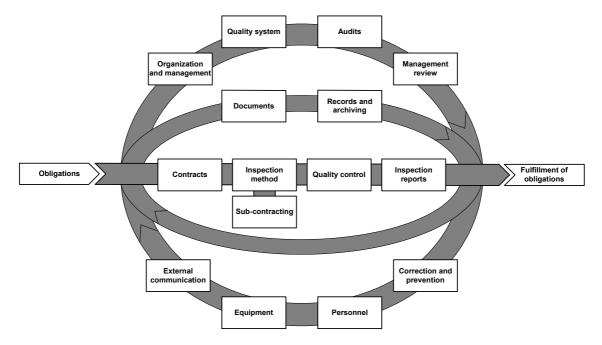


Figure 2: Process-based QMS (the outer circle corresponds to management processes, the straight line to realisation processes and the inner circle to supporting processes)

The QMS is characterized by a *process based approach*, referring to the application of three processes within its organisation, along with the identification and interactions of these processes and their management.

1) Management processes (outer circle)

Management Processes comprise all activities necessary for management and control of an organisation, e.g. organisation and management, quality system, audits, quality management review, corrective actions and prevention, personnel, equipment, external communication.

The most important aspect with respect to organisation and management is that it has to be ensured that the personnel is free from any commercial, financial or other pressure which might affect their judgement. Such regulations are considered fundamental in order to guarantee that emission data reflect actual emissions as truly as possible.

The personnel responsible for inspection have appropriate qualifications, training, experience and a satisfactory knowledge of the requirements of the inspections to be carried out. They have the ability to make professional judgements as to conformity with general requirements using examination results and to report there-on.

Computers are used for the compilation of emission inventories. Procedures for protecting the integrity of data and for maintenance of data security have been established and implemented. Access authorisation is strictly limited for protecting the integrity of data and to ensure data confidentiality where necessary.

2) Realisation processes (horizontal bar)

Realisation processes are the *Department of Air Emissions* core competences as they concern the compilation of emission inventories. The first process constitutes a contract control system which ensures that methods to be used are selected in advance, taking into account that for key source categories the most accurate method, i.e. the method with the

lowest uncertainty, is the most appropriate. The inspection process consists of two steps, (i) data collection and (ii) the application of methods to estimate emissions. The UMWELTBUNDESAMT uses IPCC methods, CORINAIR methods and country specific methods. The country-specific methods have to be thoroughly documented and validated. Emission estimates are subject to quality control checks before being published in an inspection report.

The inspection body performs the majority of inspection processes. Any subcontractor performing part of the inspection is required to work in compliance with ISO 17020.

3) Supporting processes (inner circle)

Supporting processes support both management and realisation processes. They include a control system for all documents and data as well as for records and their archiving.

The quality management system is in compliance with all relevant requirements addressed in the IPCC-GPG.

Accreditation Act

The Austrian Accreditation Act ("Akkreditierungsgesetz", Federal Law Gazette 468/1992 as amended by 430/1996) regulates the accreditation of testing, inspection and certification bodies. It designates the Federal Ministry for Economic Affairs and Labour as accreditation body and defines the conditions for granting, maintaining and extending accreditation and the conditions under which accreditation may be suspended or withdrawn, partially or in total for all or part of the testing, inspection or certification body's scope of accreditation. It requires reassessment in the event of changes affecting the activity and operation of the testing, inspection or certification body, such as changes in personnel or equipment, or if analysis of a complaint or any other information indicates that the testing, inspection or certification body no longer complies with the requirements of the accreditation body.

In Figure 3 the inter-relationship between the Austrian Accreditation Act, the EN 45000/ISO 17000 series and the ISO 9000 series is shown.

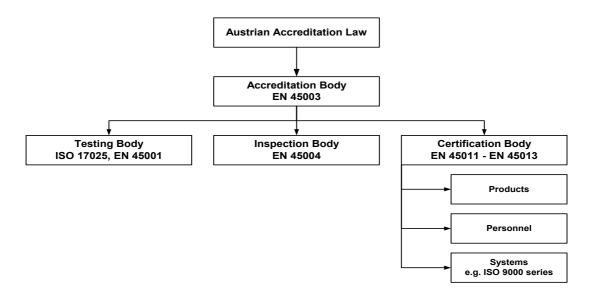


Figure 3: Inter-relationship between the Austrian Accreditation Act, the EN 45000/ISO 17000 series and the ISO 9000 series.

The personnel of the inspection body have to be free from any commercial, financial and other pressures which might affect their judgement. It has to be ensured that persons or organisations external to the inspection body cannot influence the results of inspections carried out. We feel that such a regulation is fundamental in order to guarantee that the emission data reflect the real emissions as truly as possible.

Reports issued by an accredited body may carry the federal emblem in addition to the accreditation logo. These reports are official documents.

QA/QC Activities

During the year 2004 QA/QC activities were focused on transparent documentation, adaptation of SOPs (Standard Operation Procedures) to be more practical and user friendly. SOPs comply with both IPCC-GPG and ISO 17020 requirements. QC procedures follow the recommendations of IPCC-GPG chapter 8 on *Quality Assurance and Quality Control*. Priority is given to key sources. For all sources, fundamental checks such as completeness of estimates, time series consistencies, data transcription and documentation are performed. For key sources, activity data, emission factors, emissions and uncertainty analysis are assessed using the Tier 1 checklist. In addition, where applicable Tier 2 QC procedures are employed. Special attention is given to documentation, achieving and reporting as outlined in chapter 8.10 of IPCC-GPG.

One of the core activities was the re-design of the key management process "Corrective and Preventive Actions". An efficient process was established to gain transparency when collecting and analyzing findings by UNFCCC reviews experts or any other discrepancies found during inventory compilation. Any findings and discrepancies are documented, responsibilities, resources and a time schedule are attributed to each of these. A periodic review assesses the progress of the inventory improvement process.

Table 6 presents the timetable for the implementation of the quality management system:

Table 6: Timetable for steps

Step	Date
1. Development of a quality management system including quality manual	1999 – 2002
2. Implementation of the quality management system	2003 – 2004
3. Accreditation of the inspection body	2005

1.7 Uncertainty Assessment

In this submission uncertainty estimates for all key sources are presented. They are mainly based on results from the first comprehensive uncertainty analysis that was performed in 2001 based on data from submission 1999 [Winiwarter & Rypdal, 2001].

However, the methodologies for some sectors have been improved. In those cases the uncertainty was estimated for the new methodology. Furthermore, the first uncertainty analysis did not cover fluorinated compounds. Thus for key sources regarding FC emissions uncertainty estimates are presented for the first time.

The following table presents uncertainties for activity data and emission factors (or a combined uncertainty) for all key sources¹². For information on the uncertainty estimates of the different sources please refer to the respective chapters of this report.

Table 7: Uncertainty estimates for key sources

IPCC Category	Description	Gas	AD	EF	Combined
			Uncertainty ¹³ [%]		
1 A gaseous	Stationary Combustion	CO ₂	2	0.5	2.1
1 A 1 a liquid	Public Electricity and Heat Production	CO ₂	0.5	0.5	0.7
1 A 1 a other	Public Electricity and Heat Production	CO ₂	10	20	22.4
1 A 1 a solid	Public Electricity and Heat Production	CO_2	0.5	0.5	0.7
1 A 1 b liquid	Petroleum refining	CO ₂	0.5	0.5	0.7
1 A 1 c liquid	Manuf. of Solid fuels and Other Energy Ind.	CO ₂	0.5	0.5	0.7
1 A 2 mob-liquid	Manufacturing Industries and Construction	CO ₂	1	0.5	0.7
1 A 2 solid	Manufacturing Industries and Construction	CO ₂	1	0.5	0.7
1 A 2 stat-liquid	Manufacturing Industries and Construction	CO ₂	1	0.5	0.7
1 A 2 other	Manufacturing Industries and Construction	CO ₂	10	20	22.4
1 A 3 b diesel oil	Road Transportation	CO ₂	0.5	0.5	0.7
1 A 3 b gasoline	Road Transportation	CO ₂	0.5	0.5	0.7
1 A 3 b gasoline	Road Transportation	N ₂ O	10	40	41.2
1 A 4 mob-diesel	Other Sectors	CO ₂	0.5	0.5	0.7
1 A 4 biomass	Other Sectors	CH ₄	10	50	51.0
1 A 4 gaseous	Other Sectors	CO ₂	2	0.5	2.1
1 A 4 stat-liquid	Other Sectors	CO ₂	0.5	0.5	0.7

¹² values refer to random uncertainty only (in the comprehensive uncertainty estimate described in Chapter 1.7.1 both random and systematic uncertainties were considered)

¹³ referring to 2 standard deviations (95% confidence interval)

Uncertainty ¹³ [% 1 A 4 solid Other Sectors CO2 0.5 0.5 0. 2 A 1 Cement Production CO2 5 5 7. 2 A 2 Lime Production CO2 5 5 7. 2 A 3 Limestone and Dolomite Use CO2 15 2 15 2 A 7 b Magnesite Sinter Plants CO2 5 5 7. 2 B 1 Ammonia Production CO2 5 5 7. 2 B 2 Nitric Acid Production N2O 3. 2 C 1 Iron and Steel Production CO2 5 5 7. 2 C 4 SF6 used in Al and Mg Foundries SF6 20 0 20 2 C 3 Aluminium production PFCs 5 2 5 2 C 3 Aluminium production CO2 5 20 20 2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes	IPCC Category	Description	Gas	AD	EF	Combined
2 A 1 Cement Production CO2 5 5 7. 2 A 2 Lime Production CO2 5 5 7. 2 A 3 Limestone and Dolomite Use CO2 15 2 15 2 A 7 b Magnesite Sinter Plants CO2 5 5 7. 2 B 1 Ammonia Production CO2 5 5 7. 2 B 2 Nitric Acid Production N2O 3. 2 C 1 Iron and Steel Production CO2 5 5 7. 2 C 4 SF6 used in Al and Mg Foundries SF6 20 0 20 2 C 3 Aluminium production PFCs 5 2 5 2 C 3 Aluminium production CO2 5 20 20 2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes HFCs 20 50 53			Oas	Uncertainty ¹³ [%]		
2 A 2 Lime Production CO2 5 5 7 2 A 3 Limestone and Dolomite Use CO2 15 2 15 2 A 7 b Magnesite Sinter Plants CO2 5 5 7 2 B 1 Ammonia Production CO2 5 5 7 2 B 2 Nitric Acid Production N2O 3 2 C 1 Iron and Steel Production CO2 5 5 7 2 C 4 SF6 used in Al and Mg Foundries SF6 20 0 20 2 C 3 Aluminium production PFCs 5 2 5 2 C 3 Aluminium production CO2 5 20 20 2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes HFCs 20 50 53	1 A 4 solid	Other Sectors	CO ₂	0.5	0.5	0.7
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 A 1	Cement Production	CO ₂	5	5	7.1
2 A 7 b Magnesite Sinter Plants CO2 5 5 7 2 B 1 Ammonia Production CO2 5 2 B 2 Nitric Acid Production N2O 3 2 C 1 Iron and Steel Production CO2 5 5 7 2 C 4 SF6 used in Al and Mg Foundries SF6 20 0 20 2 C 3 Aluminium production PFCs 5 2 5 2 C 3 Aluminium production CO2 5 20 20 2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes HFCs 20 50 53	2 A 2	Lime Production	CO ₂	5	5	7.1
2 B 1 Ammonia Production CO_2 5. 2 B 2 Nitric Acid Production N_2O 3. 2 C 1 Iron and Steel Production CO_2 5 5 7. 2 C 4 SF6 used in Al and Mg Foundries SF_6 20 0 20. 2 C 3 Aluminium production $PFCs$ 5 2 5. 2 C 3 Aluminium production $PFCs$ 5 2 5. 2 C 3 Semiconductor Manufacture PCs 5 10 11. 2 F 1/2/3 ODS Substitutes $PFCs$ 20 50 53.	2 A 3	Limestone and Dolomite Use	CO ₂	15	2	15.1
2 B 2Nitric Acid Production N_2O 3.2 C 1Iron and Steel Production CO_2 557.2 C 4SF6 used in Al and Mg Foundries SF_6 200202 C 3Aluminium production $PFCs$ 525.2 C 3Aluminium production CO_2 520202 F 6Semiconductor Manufacture FCs 510112 F 1/2/3ODS Substitutes $HFCs$ 205053	2 A 7 b	Magnesite Sinter Plants	CO ₂	5	5	7.1
$2 C 1$ Iron and Steel Production CO_2 5 5 7 $2 C 4$ SF6 used in Al and Mg Foundries SF_6 20 0 20 $2 C 3$ Aluminium production $PFCs$ 5 2 5 $2 C 3$ Aluminium production CO_2 5 20 20 $2 F 6$ Semiconductor Manufacture FCs 5 10 11 $2 F 1/2/3$ ODS Substitutes $HFCs$ 20 50 53	2 B 1	Ammonia Production	CO ₂			5.0
2 C 4 SF6 used in Al and Mg Foundries SF_6 20 0 20 2 C 3 Aluminium productionPFCs 5 2 5 2 C 3 Aluminium production CO_2 5 20 20 2 F 6 Semiconductor ManufactureFCs 5 10 11 2 F 1/2/3 ODS SubstitutesHFCs 20 50 53	2 B 2	Nitric Acid Production	N ₂ O			3.0
2 C 3 Aluminium production PFCs 5 2 5. 2 C 3 Aluminium production CO_2 5 20 20 2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes HFCs 20 50 53	2 C 1	Iron and Steel Production	CO ₂	5	5	7.1
2 C 3 Aluminium production CO_2 5 20 20 $2 F 6$ Semiconductor Manufacture FCs 5 10 11 $2 F 1/2/3$ ODS Substitutes FCs 20 50 53	2 C 4	SF6 used in Al and Mg Foundries	SF ₆	20	0	20.0
2 F 6 Semiconductor Manufacture FCs 5 10 11 2 F 1/2/3 ODS Substitutes HFCs 20 50 53	2 C 3	Aluminium production	PFCs	5	2	5.4
2 F 1/2/3 ODS Substitutes HFCs 20 50 53	2 C 3	Aluminium production	CO ₂	5	20	20.6
	2 F 6	Semiconductor Manufacture	FCs	5	10	11.2
2 F 8 Other Sources of SF6 SF _c 25 50 55	2 F 1/2/3	ODS Substitutes	HFCs	20	50	53.9
	2 F 8	Other Sources of SF6	SF ₆	25	50	55.9
3 Solvent and Other Product Use CO ₂ 15 10 18	3	Solvent and Other Product Use	CO ₂	15	10	18.0
3 Solvent and Other Product Use N ₂ O 50 0 50	3	Solvent and Other Product Use	N ₂ O	50	0	50.0
4 A 1 Cattle CH ₄ 8.	4 A 1	Cattle	CH ₄			8.0
4 B 1 Cattle N ₂ O 10 75 75	4 B 1	Cattle	N ₂ O	10	75	75.7
4 B 1 Cattle CH ₄ 10 69 70	4 B 1	Cattle	CH ₄	10	69	70.1
4 B 8 Swine CH ₄ 10 70 70	4 B 8	Swine	CH ₄	10	70	70.7
4 D Agricultural Soils N ₂ O 24	4 D	Agricultural Soils	N ₂ O			24.0
6 A 1 Managed Waste disposal CH ₄ 15 30 33	6 A 1	Managed Waste disposal	CH ₄	15	30	33.5

<u>Note:</u> Uncertainties for activity data for stationary combustion of IPCC Category 1 A Fuel Combustion were estimated for gross inland consumption, only random uncertainty was considered.

No Tier 1 Uncertainty analysis was made with this data, as uncertainties were only available for key sources. Instead National Totals reported for the base year and the year 1995 as reported in the submissions 1998-2005 were compared and the standard deviations were calculated. The following Table presents results from this analysis, giving "uncertainties" as two standard deviations (2σ) relative to the mean value for CO_2 , CH_4 , N_2O as well as for National Total Emissions (no values for FCs are given, because only two different values were reported during the reporting period 2001-2005, thus no standard deviation could be calculated).

Table 8: Uncertainties for CO_2 , CH_4 , N_2O as well as for total GHG emissions as derived from reported values for the base year and 1995 in the submissions 1998-2005.

	CO ₂	CH₄	N ₂ O	Total GHG emissions ¹⁴
Base Year	2.5%	19.1%	104.3%	4.1%
1995	2.0%	20.3%	101.2%	5.5%

<u>Note</u>: it was not possible to calculate such "uncertainties" also for the last reporting year (2003) because for this year only one estimate is available. However, it is assumed that for 2003 the uncertainties are in the same range than the given uncertainties for the base year and 1995.

1.7.1 First Comprehensive Uncertainty Analysis

IPCC-GPG requires uncertainty estimates as an essential part of a complete emission inventory. Uncertainty information is not intended to dispute the validity of the inventory as a whole but to help prioritise efforts to improve the accuracy of inventories in the future and guide decisions on methodological choice.

The starting point for any prioritisation of efforts aimed at improving the accuracy of inventories is the identification of key source categories. Based on these categories, the uncertainty is estimated (being itself an input for a possible second step in the identification of key source categories) and as a next step, if required, the methods for emission estimation are adapted.

A first comprehensive uncertainty analysis was performed as a pilot study [WINIWARTER & RYPDAL, 2001] on the greenhouse gases CO₂, CH₄ and N₂O for the years 1990 and 1997. The work was carried out by the *Austrian Research Centres Seibersdorf* to assure independent assessment.

In Table 9 the most important emission sources with respect to uncertainty are listed.

Table 9: Most important emission sources with respect to uncertainty

Emission Source	CO ₂	CH ₄	N ₂ O
Energy Conversion	×		×
Industry	×		
Transport	×		×
Energy – Other Sources	×		
Fugitive Emissions – Gas and Liquid Fuels	×		
Industrial Processes – Cement	×		
Metal Industry Processes – Iron and Steel	×		
Enteric Fermentation – Cattle		×	
Agricultural Soils		×	×
Abandonment of Managed Lands	×		
Solid Waste Disposal		×	

37/301

¹⁴ including FCs for the reporting years 2001-2005

As regards uncertainty, two aspects were considered: systematic uncertainty and random uncertainty. Random uncertainty covers the fluctuation of a large set of measurements, which may include both the random uncertainty of the measurements and the natural variability of a parameter. A systematic error is the deviation of a result from "reality", a deviation that may be caused by a systematically flawed estimate as well as by the omission or false interpretation of certain data or statistics. The main difficulty in dealing with the systematic error is that it is normally by definition not apparent. Once a systematic error becomes apparent, it can be accounted for and eliminated.

The total uncertainty comprises both systematic and random uncertainty and reflects the current situation, whereas the random uncertainty can be established under ideal conditions with the inventory techniques currently available.

Table 10 shows the estimates for total uncertainty including systematic uncertainty and random uncertainty and Table 11 refers to random uncertainty.

Table 10: Total uncertainty of emission data (emissions given in Tg CO₂ equivalent per year, uncertainties given as a percentage of the mean value)

Total u	ncertainty	CO ₂	CH₄	N ₂ O	Total GHG emissions
	Mean value	63.20	9.48	6.59	79.27
1990	Standard deviation	0.73	2.29	2.95	3.89
2σ		2.3%	48.3%	89.6%	9.8%
	Mean value	67.76	8.34	6.81	82.91
1997	Standard deviation	0.71	1.98	2.93	3.67
	2σ	2.1%	47.4%	85.9%	8.9%

Table 11: Random uncertainty of emission data (emissions given in Tg CO₂ equivalent per year, uncertainties given as a percentage of the mean)

Rando	m uncertainty	CO ₂	CH₄	N ₂ O	Total GHG emissions
	Mean value	63.54	11.41	1.99	76.94
1990	Standard deviation	0.30	1.64	0.26	1.73
_	2σ	1.0%	28.7%	25.6%	4.5%
	Mean value	68.05	10.02	2.27	80.34
1997	Standard deviation	0.34	1.43	0.27	1.53
_	2σ	1.0%	28.5%	23.9%	3.8%

Regarding the individual greenhouse gases, the emissions of CO_2 have a low uncertainty whereas the uncertainty for N_2O is high. The overall relative uncertainty calculated for the year 1990 was 9,8%, for the year 1997 it was 8.9%. The reduction is due to the increase in CO_2 emissions caused by the use of fossil fuels. These CO_2 emissions have a very low uncertainty in comparison to other greenhouse gas emissions and as they dominate the total greenhouse gas emissions their uncertainty dominates the overall uncertainty. The random uncertainty calculated for the year 1990 was 4,5%, for the year 1997 it was 3,8%.

Procedure

The uncertainty was determined in four steps:

- Step 1: Compilation of emission sources
- Step 2: Prioritisation and first estimate of uncertainty
- Step 3: Uncertainty assessment for input parameters
- Step 4: Monte Carlo analysis

Step 1: Compilation of emission sources

The emission sources had to be compiled so that it was possible to describe emissions in terms of statistically independent parameters. As the Austrian Air Emission Inventory is based on the CORINAIR SNAP Code, these source categories had to be first transformed into IPCC source categories. Emission source categories that are based on common assumptions and use the same emission factors have been aggregated.

Step 2: Prioritisation and first estimate of uncertainty

A prioritisation of input parameters (emission factors and activities or emission data) was performed using three different approaches in order to determine the emission sources with the highest uncertainty and to provide a focus for further assessment. One approach was based on the results for the UK as described by CHARLES et al. (1998), another approach was based on the results for Norway as described by RYPDAL (1999). In case of qualitative estimates of uncertainty (such as low, medium and high) as in the Norwegian study, these categories were transformed into quantitative values (low = 5%, medium = 30%, high = 80%). Based on the method for the UK and Norway a first estimate of uncertainty was made. The third approach was made according to the IPCC-GPG 2000, Chapter 7 (Methodological Choice and Recalculation).

Step 3: Uncertainty assessment for input parameters

Any emission source category that was relevant in at least one of the approaches described in step 2 was analysed more thoroughly with regard to its uncertainty. A detailed uncertainty analysis was performed by quantitative estimation, by literature research or by expert judgement. In the latter case the experts were asked to provide references from the literature so that their uncertainty estimates could be taken into account.

As already mentioned, two aspects were considered regarding uncertainty: systematic uncertainty and random uncertainty.

Step 4: Monte Carlo analysis

The uncertainty data determined in Step 3 were fed into a Monte Carlo analysis. All input parameters were varied to obtain overall uncertainties for each of the greenhouse gases CO_2 , CH_4 and N_2O and for their combination as CO_2 equivalent (using values for greenhouse gas warming potentials). The uncertainties for the underlying data (activities and emission factors) were calculated as well.

1.8 Completeness

CRF–Table 9 (Completeness) has been used in order to describe this issue. This chapter includes additional information. An assessment of completeness for each sector is given in the Sector Overview part of the corresponding subchapters.

Sources and sinks

All sources and sinks included in the IPCC Guidelines are covered. No additional sources and sinks specific to Austria, have been identified.

Gases

Both direct GHGs as well as precursor gases are covered by the Austrian inventory.

Geographic coverage

The geographic coverage is complete. Austria has no territory not covered by the inventory.

Notation keys

The sources and sinks not considered in the inventory but included in the IPCC Guidelines are clearly indicated, the reasons for such exclusion are explained. In addition, notation keys presented below are used to fill in the blanks in all the tables in the CRF. Notation keys used in the NIR are consistent with those reported in the CRF. Notation keys are used according to the UNFCCC guidelines on reporting and review (FCCC/CP/2002/8).

Allocation to categories may differ from party to party. The main reasons for different allocation to categories are the allocation in national statistics, insufficient information on the national statistics, national methods, and impossibility to disaggregate emission declarations.

IE (included elsewhere):

"IE" is used for emissions by sources and removals by sinks of greenhouse gases estimated but included elsewhere in the inventory instead of the expected source/sink category. Where "IE" is used in the inventory, the CRF completeness table (Table 9) indicates where in the inventory the emissions or removals from the displaced source/sink category have been included. Such deviation from the expected category is explained. It is planned to further improve the level of disaggregation in order to reduce the number of "IE".

NE (not estimated):

"NE" is used for existing emissions by sources and removals by sinks of greenhouse gases which have not been estimated. Where "NE" is used in an inventory for emissions or removals, both the NIR and the CRF completeness table indicate why emissions or removals have not been estimated. For those emissions by sources and removals by sinks of greenhouse gases marked by "NE" there are checkups in progress if they actually are "NO" (not occurring). As a part of the improvement program of the inventory it is planned that those source or sink categories are either estimated or allocated to "NO".

NA (not applicable):

"NA" is used for activities in a given source/sink category that do not result in emissions or removals of a specific gas. The increase of this number is due to improved completeness of the CRF- tables.

• C (confidential):

"C" is used for emissions which could lead to the disclosure of confidential information if reported at the most disaggregated level. In this case a minimum of aggregation is required to

protect business information. Activity data for SF₆ from Aluminium Foundries (cast aluminium – sector 2 C 3) and semiconductor manufacture are reported as confidential.

Compared to submission 2004, both transparency and completeness have increased in each sector. With respect to land use, land use change and forestry (LULUCF), the use of notation keys NE and IE has increased in number, which does not, however, indicate a decrease in transparency and completeness, but is rather due to the new CRF tables for LULUCF requiring emission estimates to be reported at a more disaggregated level. Subcategories were considered at the most disaggregated level available. Overall transparency increased from 95% to 96%, overall completeness – with exception of LULUCF - increased from 96% to 97%, taking account of notation keys in LULUCF, completeness decreased from 94% to 90%. It should be noted, however, that transparency and completeness values are not related to the respective source's contribution to total emissions. Increased completeness and transparency was accomplished by both advanced completeness of inventory estimates and the proper use of notation keys.

Table 12: Transparency and completeness in submissions 2003 and 2004.

	Submiss	Submission 2004		ion 2004	Submiss	sion 2005	Submission 2005	
Sector	ΙE	NE	Transp arency	Compl etenes s	ΙE	NE	Transp arency	Compl etenes s
1 Energy	26	16	92%	95%	29	12	91%	96%
2 Industrial processes	2	15	100%	97%	4	10	99%	97%
3 Solvents	0	1	100%	95%	0	1	100%	95%
4 Agriculture	6	2	88%	96%	2	0	96%	100%
5 LUCF	3	15	94%	69%	0	76	100%	60%
6 Waste	2	3	93%	89%	2	0	93%	100%
Total	39	52	95%	94%	37	97	96%	90%
Total number of estimates*	1013							

^{* (}including IE and NE, also including NO an NA)

Transparency was calculated as: [1 - (number of IE / number of estimates)]*100

Completeness was calculated as: [1 - (number of NE / number of estimates)]*100

2 TREND IN TOTAL EMISSIONS

According to the Kyoto Protocol, Austria's greenhouse gas emissions have to be 8% below base year emissions during the five-year commitment period from 2008 to 2012. The European Community and its Member States also have a common reduction target of 8%, which they decided to achieve jointly. In April 2002 the Council of the EC has adopted a decision, the so called "burden sharing agreement" which includes reduction targets for each EC Member State. Austria agreed to reduce its greenhouse gas emissions for 2008–2012 by 13% compared to base year emissions (1990 except for fluorinated gases where the base year is 1995).

For Austria, there is also a CO_2 stabilisation target 2000 according to the UNFCCC, which means that by 2000 CO_2 emissions should have been reduced to 1990 levels. However, the member states of the EC agreed to jointly implement this stabilization target and the EC was successful in fulfilling this goal.

2.1 Emission Trends for Aggregated GHG Emissions

Under the burden sharing agreement of the European Union, Austria is committed to a reduction of its greenhouse gases by 13% below 1990 levels by 2008-2012. Table 13 shows the summary of Austria's anthropogenic greenhouse gas emissions 1990-2003.

For CO_2 , CH_4 and N_2O the base year is 1990. For the F-gases the year 1995 has been selected as base year, since the data are considered to be more reliable than those from 1990.

Table 13: Summary of Austria's anthropogenic greenhouse gas emissions from 1990-2003

Greenhouse gas emissions [Gg CO2 equivalent]								Trend			
	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003	BY*- 2003
Total	78 573	80 159	83 237	83 046	82 514	80 403	81 084	84 872	86 434	91 566	16.6%
CO ₂	61 263	63 115	66 562	66 527	66 218	64 614	65 454	69 280	70 994	76 213	24.4%
CH ₄	9 798	9 143	8 959	8 681	8 557	8 366	8 146	8 021	7 856	7 807	-20.3%
N ₂ O	5 712	6 138	5 795	5 891	5 974	5 808	5 759	5 731	5 636	5 542	-3.0%
HFCs	219	555	637	730	813	867	1 019	1 122	1 219	1 308	135.6%
PFCs	1 079	69	66	97	45	65	72	82	87	103	49.2%
SF6	503	1 139	1 218	1 120	908	684	633	637	641	594	-47.9%

Total emissions and CO2 are without LUCF

Note: Global warming potentials (GWPs) used (100 years time horizon): carbon dioxide (CO_2) = 1; methane (CH_4) = 21; nitrous oxide (N_2O) = 310; sulphur hexafluoride (N_2O_2) = 3900; hydrofluorocarbons (HFCs) and perfluorocarbons (PFCs) consist of different substances, therefore GWPs have to be calculated individually depending on the substances

^{*}BY= Base Year: 1990 for CO₂, CH₄ and N₂O and 1995 for HFCs, PFCs and SF₆

¹⁵ Council Decision of 25 April 2002 (2002/358/CE) concerning the approval, on behalf of the EC, of the KP to the UNFCCC and the joint fulfilment of commitments thereunder

Austria's total greenhouse gases showed an increase of 16.6% from the base year to 2003 (CO_2 : +24.4%).

In the period from 2002 to 2003 Austria's total greenhouse gases increased by 5.9%, CO_2 emissions increased by 7.4%. The following figure presents the trend in total GHG emissions 1990-2003 in comparison to Austria's Kyoto reduction target of 13% from the base year 1990 (BY). This figure excludes emissions and removals from land-use change and forestry (LUCF).

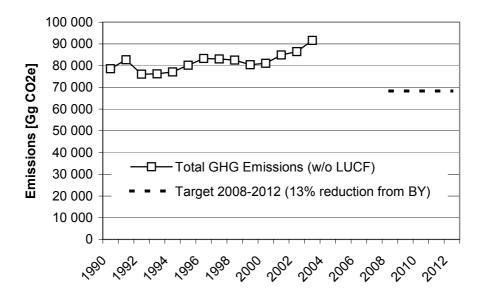


Figure 4: Trend in total GHG emissions 1990-2003

2.2 Emission Trends by Gas

Table 14 presents greenhouse gas emissions of the base year and 2003 as well as their share in total greenhouse gas emissions.

Table 14: Austria's greenhouse gas emissions by gas in the base year and in 2003.

CHC	Base year*	2003	Base year*	2003
GHG	CO ₂ equiva	alent [Gg]	[%]
Total	78 535	91 566	100.0%	100.0%
CO ₂	61 263	76 213	78.0%	83.2%
CH ₄	9 798	7 807	12.5%	8.5%
N_2O	5 712	5 542	7.3%	6.1%
F-Gases	1 763	2 004	2.2%	2.2%

Total emissions and CO2 are without LUCF

The major greenhouse gas in Austria is CO_2 , which represented 83.2% of total greenhouse gas emissions in 2003 compared to 78.0% in the base year, followed by CH_4 (8.5% in 2002 respectively 12.5% in the base year), N_2O (6.1% in 2003 and 7.3% in the base year) and finally fluorinated hydrocarbons with a share of 2.2%.

^{*1990} for CO₂, CH₄ and N₂O and 1995 for F-Gases

The trend in Austrian greenhouse gas emissions is presented in Figure 5 relative to emissions in the base year (index form: 1990 = 100 for CO_2 , CH_4 and N_2O and 1995 = 100 for HFCs, PFCs and SF_6).

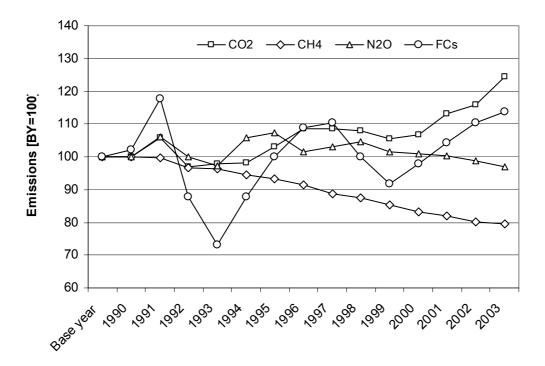


Figure 5: Trend in greenhouse gas emissions 1990-2003by gas in index form (base year = 100)

CO2

 ${\rm CO_2}$ emissions have been fluctuating at the beginning of the decade, and after an increase until 1996 followed by a decrease emissions seemed to have stabilized on this level. However, since 2000 emissions are strongly increasing again, from 2000 to 2001 by 6.1%, the next year by 2.5% and again from 2002 to 2003 by 7.4%.

This resulted in a total increase of 24.4% from 1990 to 2003. Quoting in absolute figures, CO_2 emissions increased from 61 263 to 76 213 Gg (see Table 13) during the period from 1990 to 2003 mainly due to higher emissions from transport, which increased by 83%.

The main source of CO₂ emissions in Austria is fossil fuel combustion, within the fuel combustion sector transport is the most important sub source.

According to the Climate Convention Austria's CO₂ emissions should have been reduced to the levels of 1990 by 2000, but the CO₂ stabilisation target for 2000 could not be met. However, the Member States agreed to jointly fulfil this goal and the EC was successful doing so.

CH₄

 CH_4 emissions decreased steadily during the period from 1990 to 2003, from 9 798 to 7 807 Gg CO_2 equivalent (see Table 13). In 2003 CH_4 emissions were 20.3% below the level of the base year, mainly due lower emissions from solid waste disposal sites.

The main sources of CH₄ emissions in Austria are solid waste disposal on land (landfills) and agriculture (enteric fermentation and manure management).

N_2O

 N_2O emissions in Austria fluctuated from 1990 to 1995, increasing by 7% over this period. Since then emissions have a moderate decreasing trend, resulting in 5 542 Gg CO_2 equivalent compared to 5 712 in the base year, this is 3% below the level of the base year. The decrease is mainly due lower N_2O emissions from agricultural soils.

The main source of N_2O emissions are agricultural soils with a share of 48% in national total N_2O emissions. Fossil fuel combustion has a share of 15%, nitric acid production which is another important source with regard to national total N_2O emissions had a share of 16%.

HFCs

HFC emissions increased remarkably during the period from 1990 to 2003 from 219 to 1 308 Gg CO₂ equivalent.. In 2000 HFC emissions were 136% above the level of the base year (1995). HFCs are used as substitutes for HCFCs (Hydro Chloro Fluoro Carbons; these are ozone depleting substances), the use of which have been banned for most applications.

PFCs

PFC emissions show the inverse trend as HFC emissions. PFC emissions decreased remarkably during the period from 1990 to 2003, from 1079 to 103 Gg CO_2 equivalent. In 2003 PFC emissions were 49% below the level of the base year (1995).

PFCs are side products of aluminium production, which was terminated in Austria in 1992, since then the main source of PFC emissions is semiconductor manufacture.

SF₆

 SF_6 emissions in 1990 amounted to 503 Gg CO_2 equivalent. They increased steadily until 1996 reaching a maximum of 1 218 Gg CO_2 equivalent. Since then they are deceasing, in 2003 SF_6 emissions amounted to 594 Gg CO_2 equivalent, which is 48% below the level of the base year (1995).

The main sources of SF₆ emissions are semiconductor manufacture, magnesium production and filling of noise insulating windows.

2.3 Emission Trends by Source

Table 15 presents a summary of Austria's anthropogenic greenhouse gas emissions by sector for the period from 1990 to 2003:

- Sector 1: Energy
- Sector 2: Industrial Processes
- Sector 3: Solvent and Other Product Use
- Sector 4: Agriculture
- Sector 5: Land-Use Change and Forestry

Sector 6: Waste

Table 15: Summary of Austria's anthropogenic greenhouse gas emissions from 1990-2003

	Greenhouse gas emissions [Gg CO2 equivalent]											
	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003		
Total	78 573	80 159	83 237	83 046	82 514	80 403	81 084	84 872	86 434	91 566		
1	54 946	57 201	61 019	60 283	60 287	58 865	59 015	62 928	64 026	69 331		
2	10 153	9 876	9 752	10 345	9 897	9 591	10 329	10 234	10 964	11 046		
3	515	422	405	423	405	391	414	426	426	426		
4	8 456	8 558	8 089	8 145	8 146	7 860	7 724	7 754	7 553	7 349		
5	-9 013	-7 046	-5 192	-11 690	-12 707	-12 637	-13 646	-13 345	-11 311	-12 773		
6	4 503	4 102	3 972	3 850	3 778	3 696	3 602	3 530	3 465	3 415		

Total emissions are without LUCF

Austria's greenhouse gas emissions by sector in the base year and in 2003 as well as their share and trend are presented in the following table.

Table 16: Austria's greenhouse gas emissions by sector in the base year and in 2003 as well as their share and trend.

Base year*	2003	Trend BY*-	Base year*	2003
Emissions [[Gg CO₂e]	2003	Share	[%]
78 535	91 566	16.6%	100%	100%
54 946	69 331	26.2%	70%	76%
10 115	11 046	9.2%	13%	12%
515	426	-17.3%	1%	0%
8 456	7 349	-13.1%	11%	8%
-9 013	-12 773	41.7%	-11%	-14%
4 503	3 415	-24.2%	6%	4%
	Fmissions 78 535 54 946 10 115 515 8 456 -9 013	Emissions [Gg CO ₂ e] 78 535 91 566 54 946 69 331 10 115 11 046 515 426 8 456 7 349 -9 013 -12 773	Emissions [Gg CO ₂ e] 2003 78 535 91 566 16.6% 54 946 69 331 26.2% 10 115 11 046 9.2% 515 426 -17.3% 8 456 7 349 -13.1% -9 013 -12 773 41.7%	Emissions [Gg CO2e] 2003 Share 78 535 91 566 16.6% 100% 54 946 69 331 26.2% 70% 10 115 11 046 9.2% 13% 515 426 -17.3% 1% 8 456 7 349 -13.1% 11% -9 013 -12 773 41.7% -11%

Total emissions without LUCF

The dominant sectors are the energy sector, which caused 76% of total greenhouse gas emissions in Austria in 2003 (70% in 1990), followed by the Sector Industrial Processes, which caused 12% of greenhouse gas emissions in 2003 (13% in 1990).

The trend of Austria's greenhouse gas emissions by sector is presented in Figure 6 relative to emissions in the base year 1990.

^{*}Base Year: 1990 for CO₂, CH₄ and N₂O and 1995 for HFCs, PFCs and SF₆

^{*1990} for CO2, CH4 and N2O and 1995 for HFC, PFC, and SF6

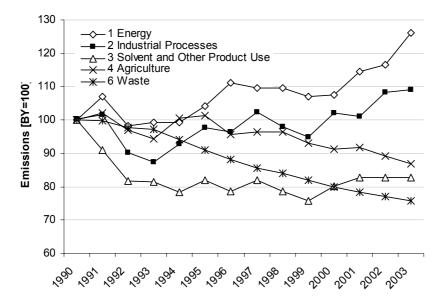


Figure 6: Trend in emissions 1990-2003 by Sector in index form (base year = 100)

2.3.1 Energy (IPCC Category 1)

The trend for greenhouse gas emissions from IPCC category 1 (energy) shows that emissions stabilized between 1996 and 2000, but emissions increased strongly since from 54 946 Gg CO₂ equivalent to 69 331 Gg in 2003, which corresponds to an increase of 26.2%.

99.2% of emissions from this sector in 2003 originated from fossil fuel combustion (Sector 1 A), fugitive emissions from fuels (Sector 1 B) are of minor importance.

CO₂ contributes 97.9% to total GHG emissions from *Energy*, N₂O 1.2% and CH₄ 0.9%.

The most important energy sub-sectors in 2003 are 1 A 3 Transport with a share of 33%, followed by 1 A 1 Energy Industries (23%), 1 A 4 Other Sectors (22%), and 1 A 2 Manufacturing Industries and Construction (21%).

The increasing trend from IPCC Category 1 (Energy) is mainly due to a strong increase of emissions from sub-sector 1 A 3 Transport, which almost doubled from 1990 to 2003 with 82%. Apart from an increase of road performance (miles driven) in Austria, another main reason for this strong increase is tank tourism. In the beginning of the 1990s fuel prices in Austria were higher compared to neighbouring countries, whereas since the middle of the 1990s it is the other way round.

Emissions from sub-sector 1 A 1 Energy Industries show an increase of 18% from the base year to 2003. The main drivers for emissions from this sector are total electricity production (which increased about 30% from 1990 to 2003; where consumption increased by 40% over this period) and an increase in heat production, which doubled over this period due to an increase of district heating demand in the residential and commercial sector. Furthermore, the share of biomass used as a fuel in this sector and the contribution of hydro plants to total electricity production, which is generally about 75% and varied from 67% to 78% in the observed period (depending on the annual water situation), are important drivers. Also the climatic circumstances influence emissions from this sector: a "cold winter" leads to an increase of heat production.

The increase of heating space, warm water heat demand, climatic circumstances and the change of fuel mix are the most important drivers for emissions from 1 A 4 Other Sectors. However, the effects compensated each other, and emissions in 2003 are on the level of the base year.

Emissions from 1 A 2 Manufacturing Industries and Construction increased by 9.1% from 1990 to 2003, mainly due to an increase of natural gas and fuel waste consumption, whereas consumption of solid and liquid fossil fuels is quite stable.

2.3.2 Industrial Processes (IPCC Category 2)

Greenhouse gas emissions from the industrial processes sector fluctuated during the period 1990-2003 and show a minimum in 1993. In 2003 they were 9.2% above the level of the base year. In 2003 greenhouse gas emissions from Category 2 *Industrial Processes* amounted to 11 046 Gg CO₂ equivalent.

The main sources of greenhouse gas emissions in the industrial processes sector are *Metal Production* and *Mineral Products*, which caused 41% respectively 28% of the emissions from this sector in 2003. The emission trend in this sector follows production figures to a large extent.

The most important GHG of the industry sector was carbon dioxide with 73.8% of emissions from this category, followed by HFCs with 11.8%, N_2O with 8.0%, SF6 with 5.4%, PFCs with 0.9% and finally CH_4 with 0.1%.

2.3.3 Solvent and Other Product Use (IPCC Category 3)

In the year 2003, 0.5% of total GHG emissions in Austria (426 Gg CO₂ equivalent) took place in the Solvent and Other Product Use sector.

Greenhouse gas emissions in this sector decreased by almost 20% from 1990 to 1992 and then remained on that level. In 2002 greenhouse gas emissions from *Solvent and Other product Use* were 17.3% below the level of the base year (emissions for 2002 have been reported as a first estimate of emissions from the year 2003).

55% of these emissions were CO₂ emissions, N₂O emissions contributed 45%.

2.3.4 Agriculture (IPCC Category 4)

Greenhouse gas emissions from the agricultural sector fluctuated at the beginning of the 90ties, since 1995 they show a steady downward trend. In the year 2003 emissions from this category were 13.1% below base year. The decrease is mainly due to decreasing livestock numbers. The fluctuations result from variation of mineral fertilizer sales used as activity data for calculating N_2O emissions from agricultural soils, which is an important sub source.

Emissions from Agriculture amounted to 7 349 Gg CO_2 equivalent in 2003, which corresponds to 8% of national total emissions. In 2003 the most important sub sector *Enteric Fermentation* contributed 42% to total greenhouse gas emissions from the agricultural sector, the second largest sub source *Agricultural Soils* had a share of 36%.

Agriculture is the largest source for both N_2O and CH_4 emissions: 61% of all N_2O emissions and 51% (190.0 Gg CH_4) of all CH_4 emissions in Austria in 2003 originated from this sector. N_2O emissions from *Agriculture* amounted to 10.8 Gg in 2003 (3 360 Gg CO_2 equivalent), which corresponds to 46% of the GHG emissions from this sector, methane contributed 54%.

2.3.5 LULUCF (IPCC Category 5)

Land use change and forestry is a net sink in Austria. CO_2 removals from that category amounted to 9 013 Gg CO_2 in the base year, which corresponds to 11% of national total GHG emissions (without LULUCF) compared to 14% in the year 2003. The trend in net removals from LULUCF is plus 42% over the observed period.

The main sink is subcategory 5 A Forest Land with net removals of 13 060 Gg CO_2 in 2003. Small emissions arise from the other subcategories, where emissions from all other subcategories together amounted to 287 Gg CO_2 in 2003.

2.3.6 Waste (IPCC Category 6)

Greenhouse gas emissions from Category 6 Waste decreased steadily during the period, mainly as a result of waste management policies: the amount of land filled waste has decreased as well as methane recovery.

In 2003 the greenhouse gas emissions from the waste sector amounted to 3 415 Gg CO_2 equivalent. This was 24% below the level of the base year. The share of emissions from this category in national total emissions was 4% in the year 2003.

The main source of greenhouse gas emissions in the waste sector is solid waste disposal on land, which caused 83% of the emissions from this sector in 2003.

92.4% of all greenhouse gas emissions in 2003 from *Waste* are CH_4 emissions, 7.2% are N_2O and 0.3% CO_2 .

2.4 Emission Trends for Indirect Greenhouse Gases and SO₂

Emission estimates for NO_X , CO, NMVOC and SO_2 are also reported in the CRF. The following chapter summarizes the trends for these gases.

A detailed description of the methodology used to estimate these emissions will be provided in *Austria's Informative Inventory Report (IIR) 2005, Submission under the UNECE/CLRTAP Convention*, which will be published by the end of 2005.

Table 17 presents a summary of emission estimates for indirect greenhouse gases and SO_2 for the period from 1990 to 2003. The "National Emission Ceilings" (NEC) as set out in the 1999 Gothenburg Protocol to Abate Acidification, Eutrophication and Ground-level Ozone are also presented in Table 17. These reduction targets should be met by 2010 by parties to the UNECE/CLRTAP convention who signed this protocol.

Table 17: Emissions of indirect GHGs and SO₂ 1990-2002

Can	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003	NEC
Gas						[Gg]					
NO _X	210.99	192.13	211.78	199.12	211.13	199.16	204.43	213.67	219.72	229.03	107
СО	1243.6	1018.0	1032.2	962.3	923.4	875.7	810.3	804.0	775.5	801.8	
NM- VOC	286.02	221.31	216.47	203.72	190.96	180.15	181.01	185.26	181.69	182.30	159
SO ₂	76.18	48.21	46.27	42.13	37.25	36.08	33.06	34.22	33.01	34.14	39

NEC: National Emission Ceiling, goal should be met by 2010

Emissions of NMVOCs and CO decreased from the period from 1990 to 2003: for by 36%. SO_2 emissions had a significant negative trend, emissions decreased by 55% compared to 1990 levels. NO_X emissions increased by 9% over this period.

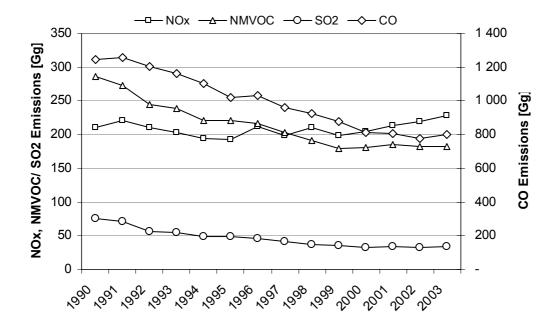


Figure 7: Emissions of indirect GHGs and SO₂ 1990-2003

NO_X

 NO_X emissions increased from 211 to 229 Gg during the period from 1990 to 2001. In 2001 the NO_X emissions were 9% above the level of 1990.

Over 97% of NO_X emissions in Austria originate from fossil fuel combustion, where the main part originates from mobile combustion.

CO

CO emissions decreased from 1 244 to 802 Gg during the period from 1990 to 2003. In 2003 CO emissions were 36% below the level of 1990.

In the year 2003, 96% of total CO emissions in Austria originated from fuel combustion activities, where the most important sub source regarding CO emissions is the residential and commercial sector.

NMVOC

NMVOC emissions decreased from 286 to 182 g Gg during the period from 1990 to 2003. In 2003 NMVOC emissions were 36% below the level of 1990.

The most important emission sources for NMVOC emissions are *Solvent Use* and fossil fuel combustion, contributing 43% and 46% respectively to national total emissions in 2003.

SO₂

 SO_2 emissions decreased from 76 to 34 Gg during the period from 1990 to 2003. In 2003 SO_2 emissions were 55% below the level of 1990.

In the year 2003, 96% of total SO_2 emissions in Austria originated from fuel combustion activities. The decrease is mainly due to lower emissions from residential plants and manufacturing industries and construction.

3 ENERGY (CRF SECTOR 2)

3.1 Sector Overview

In sector 1 Energy emissions originating from fuel combustion activities (Category 1 A) as well as fugitive emissions from fuels (Category 1 B) are considered.

 ${\rm CO_2}$ emissions from fossil fuel combustion are the main source of GHGs in Austria. In the year 2003 about 75.1% of national total GHGs emissions and 89% of national total anthropogenic ${\rm CO_2}$ emissions from Austria were caused by fossil fuel combustion in road traffic, in the energy and manufacturing industry and in the commercial, agricultural and house holding sector.

3.1.1 Emission Trends

Figure 8 presents the trend for emission from IPCC Sector 1 Energy in Gg CO_2 equivalent. The trend increased by 26.2% from 54.95 Gg CO_2 equivalent in 1990 to 69.33 Gg CO_2 equivalent in 2003 which is mainly caused by increasing emissions from the transport sector.

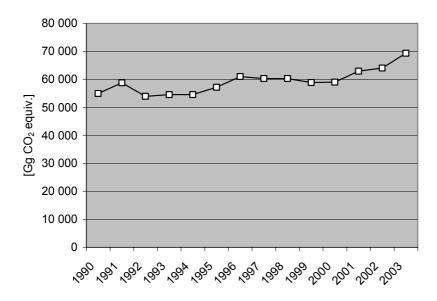


Figure 8: Trend of GHG emissions from 1990-2003 for Sector 1 Energy.

Table 18 presents the emission trend by GHG. The increase of CO_2 and N_2O emissions is mainly caused by the increasing activity in the transport sector. The strong increase of CO_2 emissions from 2002 to 2003 is additionally caused by public electricity plants. The decrease of CH_4 emissions is mainly caused by the decrease of CH_4 emissions from biomass combustion in the residential sector.

CO₂ [Gg] CH₄ [Gg] N₂O [Gg] 1990 53 527 35.56 2.17 1991 57 237 37.09 2.43 1992 52 426 34.97 2.49 1993 53 038 34.65 2.60 1994 2.67 53 028 32.43 1995 55 667 33.46 2.68 1996 59 430 35.35 2.73 1997 58 798 30.76 2.71 1998 58 808 30.15 2.73 1999 57 400 30.32 2.67

Table 18: Emissions of greenhouse gases and their trend from 1990-2003 from category 1 Energy

2.55

2.64

2.63

2.65

22.0%

Emission trends by sectors

57 617

61 475

62 587

67 857

26.8%

28.89

30.27

29.70

31.11

-12.5%

2000

2001

2002

2003

Trend

1990-2003

Table 19 presents the emission trend by sub category. Emissions from category 1 A 3 Transport increased very strong since 1990 whereas emissions from stationary combustion do not show such a significant increase. The increase of emissions from category 1 B is mainly caused by the increase of CH₄ emissions from natural gas distribution.

Table 19: Total GHG emissions in [Gg CO₂ equivalent] from 1990–2003 by sub categories of sector 1 Energy.

	1	1 A	1 A 1	1 A 2	1 A 3	1 A 4	1 A 5	1 B	1 B 1	1 B 2
1990	54 946	54 566	13 672	13 138	12 637	15 083	36	380	11	369
1991	58 769	58 377	14 474	13 555	14 295	16 015	38	392	9	383
1992	53 932	53 533	11 393	12 449	14 269	15 388	35	400	8	392
1993	54 573	54 174	11 432	12 988	14 473	15 240	40	399	8	391
1994	54 537	54 128	11 694	14 001	14 447	13 943	43	409	6	403
1995	57 201	56 781	12 731	14 085	14 825	15 106	33	420	6	414
1996	61 019	60 635	13 815	13 954	16 392	16 434	40	384	5	379
1997	60 283	59 851	13 422	16 314	15 304	14 774	38	432	5	427
1998	60 287	59 835	12 954	14 777	17 523	14 537	43	453	5	447
1999	58 865	58 380	12 314	13 745	16 909	15 368	43	486	5	481
2000	59 015	58 544	12 334	14 480	18 039	13 645	46	471	6	465
2001	62 928	62 435	13 490	14 245	19 184	15 480	37	492	5	487
2002	64 026	63 546	13 415	14 576	21 280	14 234	42	480	8	471
2003	69 331	68 776	16 105	14 338	22 996	15 300	37	554	8	546
Trend 1990-2003	26.2%	26.0%	17.8%	9.1%	82.0%	1.4%	3.5%	46.0%	-26.0%	48.1%

3.2 Fuel Combustion Activities (CRF Source Category 1 A)

This chapter gives an overview of emissions and key sources of category 1 A Fuel Combustion, includes information on completeness, QA/QC, planned improvements as well as on emissions, emission trends and methodologies applied (including emission factors).

Additionally to information provided in this chapter, Annex 2 includes further information on the underlying activity data used for emissions estimation. The Annex describes the national energy balance (fuels and fuel categories, net calorific values) and the methodology of how activity data is extracted out of the energy balance (correspondence of energy balance to SNAP and IPCC categories). Activity data used for emissions calculation and information on the last revision of the national energy balance is also presented in Annex 2.

For results, methodology and detailed data used for the CO₂ reference approach see Annex 3.

National energy balance data are presented in Annex 4.

3.2.1 Source Category Description

In 2003 the most important source of GHGs is the transport sector (IPCC Category *1 A 3*), with a share of 25.1% in national total GHG emissions. 13.8% of national GHG emissions are released by passenger cars, 1.5% by light duty vehicles, 8.8% by heavy-duty vehicles and 0.02% by mopeds and motorcycles. Austria's railway system is mainly driven by electricity, only 0.2% of overall GHGs originate from this sector. Fuels used by ships on inland waterways have a share of 0.1% in total GHG emissions. Because Austria is a land locked country, there is no occurrence of maritime activities. About 0.1% of national GHG arise from domestic air traffic.

The second largest GHG source of the energy sector in 2003 is category 1 A 1 Energy Industries, where fossil fuels are combusted to produce electrical power or district heating. In the year 2003 overall gross public electricity production is 55 977¹⁶ GWh of which 37 304 GWh (66.6%) are generated by hydro plants, 18 292 GWh (32.7%) by thermal power plants and 381 GWh (0,7%) by solar, geothermal and wind plants. Industrial auto producers generate 7 196 GWh of electricity in the year 2003. There are no operating nuclear plants in Austria. Thus, the seasonal water situation in Austria has an important influence on the needs for electric power generation by fossil fuels. In category 1 A 1 biomass is mainly used by smaller district heating plants. The refinery industry which consists of only one plant in Austria is also included in this category (subcategory 1 A 1 b Petroleum refining).

Fossil fuels, mainly used for space and warm water heating in the commercial, agricultural and house holding sector (Category 1 A 4 Other Sectors or "small combustion" sector) is the third largest subcategory. Emissions of this category are very dependant on the climatic circumstances and on the economic trend (for example a "cold winter" combined with an economic up trend may influence emissions from this sector significantly). The main share of biomass in Austria is used in the small combustion sector. This sector also includes emissions from off-road mobile sources. In the year 2003 the share in total GHG emissions of category 1 A 4 is 16.7% of which agricultural and forestry off-road machinery has a share of 1.9% in the national total.

¹⁶ Source: IEA Questionnaire dec/2004 by STATISTIC AUSTRIA.

3.2.1.1 Key Sources

The methodology and results of the key source analysis is presented in Chapter 1.5. Table 20 presents the key source categories of category 1 A Fuel Combustion Activities.

Table 20: Key sources of Category 1 Energy

IDCC Catagory	Source Categories	Key S	ources		
IPCC Category	Source Categories	GHG	KS-Assessment		
1 A gaseous	Fuel Combustion (stationary)	CO ₂	LA; TA		
1 A 1 a liquid	Public Electricity and Heat Production	CO ₂	LA; TA 1996-1999,2002-2003		
1 A 1 a other	Public Electricity and Heat Production	CO ₂	LA 1992, 1996-1998, 2000-2003; TA		
1 A 1 a solid	Public Electricity and Heat Production	CO_2	LA; TA		
1 A 1 b liquid	Petroleum refining	CO_2	LA; TA 1996-2001, 2003		
1 A 2 mob-liquid	Manufacturing Industries and Constr.	CO_2	LA		
1 A 2 other	Manufacturing Industries and Constr.	CO ₂	LA 1990,1992,1999-2003; LA 1996,1998,2001-2002		
1 A 2 solid	Manufacturing Industries and Constr.	CO_2	LA; TA		
1 A 2 stat-liquid	Manufacturing Industries and Constr.	CO_2	LA; TA		
1 A 3 b diesel oil	Road Transportation	CO ₂	LA; TA		
1 A 3 b gasoline	Road Transportation	CO_2	LA; TA		
1 A 3 b gasoline	Road Transportation	N_2O	LA 1993-1995; TA 1996-1998		
1 A 4 biomass	Other Sectors	CH ₄	LA 1990-1996,1998-1999; TA 1997-2000		
1 A 4 mob-diesel	Other Sectors	CO ₂	LA; TA 2003		
1 A 4 solid	Other Sectors	CO ₂	LA; TA		
1 A 4 stat-liquid	Other Sectors	CO ₂	LA; TA		

LA = Level Assessment 1990-2003

TA = Trend Assessment 1996-2003

3.2.1.2 Completeness

Table 21 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated. A "NO" indicates that the Austrian energy balance does not quote an energy consumption for the regarding sector and fuel category.

Emissions of all sources of category 1 A Fuel Combustion have been estimated, the status of emission estimates of this category is complete.

Table 21: Overview of subcategories of Category 1 A Fuel Combustion: transformation into SNAP Codes and status of estimation

IDCC Catagony	CNAD		Status	
IPCC Category	SNAP	CO_2	CH₄	N ₂ O
1 A 1 a Public Electricity and Heat Production	0101 Public power 0102 District heating plants			
1 A 1 a Liquid Fuels		✓	✓	✓
1 A 1 a Solid Fuels		✓	✓	\checkmark
1 A 1 a Gaseous Fuels		✓	✓	✓
1 A 1 a Biomass		✓	✓	✓
1 A 1 a Other Fuels		✓	✓	✓
1 A 1 b Petroleum refining	0103 Petroleum refining plan	its		
1 A 1 b Liquid Fuels		✓	IE ⁽¹⁾	✓
1 A 1 b Solid Fuels		NO	NO	NO
1 A 1 b Gaseous Fuels		✓	IE ⁽¹⁾	✓
1 A 1 b Biomass		NO	NO	NO
1 A 1 b Other Fuels		NO	NO	NO
1 A 1 c Manufacture of Solid fuels and Other Energy Industries	010503 Oil/Gas Extraction pla	ants		
1 A 1 c Liquid Fuels		✓	✓	✓
1 A 1 c Solid Fuels		NO	NO	NO
1 A 1 c Gaseous Fuels		✓	✓	✓
4. A. 4. a. Diamana		NO	NO	NO
1 A 1 c Biomass		NO	NO	NO
1 A 1 c Other Fuels	0201 Comb In boilers gas to	NO	NO	NO
	0301 Comb. In boilers, gas to stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont Steel Industry)	NO urbines Steel lu plants	NO and ndustry	NO)
1 A 1 c Other Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO urbines Steel lu plants	NO and ndustry	NO)
1 A 1 c Other Fuels 1 A 2 a Iron and Steel	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO Irbines Steel Ir I plants act-Oth	NO and ndustry er(Iron	NO) and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO urbines Steel In plants act-Oth	NO and ndustry er(Iron	NO) and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO urbines Steel Ir plants act-Oth	NO and ndustry er(Iron	NO) and ✓
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO urbines Steel III plants act-Oth	NO and ndustry	NO) and ✓
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont	NO urbines Steel II	NO and ndustry er(Iron / / NO and	NO) and ✓ ✓ ✓ NO
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II	NO and ndustry er(Iron / / NO and	NO) and ✓ ✓ ✓ NO
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II	NO and ndustry er(Iron / / / NO and and als Indu	NO and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Liquid Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II	NO and andustry er(Iron / / NO and als Indu	NO) and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Solid Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II J plants act-Oth NO NO urbines bus Met	NO and ndustry er(Iron NO NO and als Indu /	NO and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Liquid Fuels 1 A 2 b Solid Fuels 1 A 2 b Gaseous Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II	NO and andustry er(Iron / / NO and als Indu / / /	NO) and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Solid Fuels 1 A 2 b Solid Fuels 1 A 2 b Gaseous Fuels 1 A 2 b Biomass	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry)	NO urbines Steel II J plants act-Oth NO urbines sus Met NO NO urbines	NO and ndustry er(Iron / / / NO and als Indu / / NO NO and	NO and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Liquid Fuels 1 A 2 b Gaseous Fuels	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry) 0301 Comb. In boilers, gas to stationary engines (Non-ferror of the cont.)	NO urbines Steel II J plants act-Oth NO urbines sus Met NO NO urbines	NO and ndustry er(Iron / / / NO and als Indu / / NO NO and	NO and
1 A 1 c Other Fuels 1 A 2 a Iron and Steel 1 A 2 a Liquid Fuels 1 A 2 a Solid Fuels 1 A 2 a Gaseous Fuels 1 A 2 a Biomass 1 A 2 a Other Fuels 1 A 2 b Non-ferrous Metals 1 A 2 b Solid Fuels 1 A 2 b Gaseous Fuels 1 A 2 b Chemicals	stationary engines (Iron and 030301 Sinter and palletising 030326 Processes with Cont. Steel Industry) 0301 Comb. In boilers, gas to stationary engines (Non-ferror of the cont.)	NO urbines Steel II J plants act-Oth NO urbines NO urbines I Indus	NO and ndustry er(Iron V V NO and als Indu V NO NO and try)	NO and

IPCC Category	SNAP		Status	
		O ₂	CH₄	N ₂ C
1 A 2 c Biomass	✓		✓	✓
1 A 2 c Other Fuels	✓		✓	✓
1 A 2 d Pulp, Paper and Print	0301 Comb. in boilers, gas turbines and stationary engines (Pulp, Paper and Print Industry)			
1 A 2 d Liquid Fuels	✓		✓	✓
1 A 2 d Solid Fuels	✓		✓	✓
1 A 2 d Gaseous Fuels	✓		✓	✓
1 A 2 d Biomass	✓		✓	✓
1 A 2 d Other Fuels	✓		✓	✓
1 A 2 e Food Processing, Beverages and Tobacco	0301 Comb. in boilers, gas turbi stationary engines (Food Proces and Tobacco Industry)			erages
1 A 2 e Liquid Fuels	✓		✓	✓
1 A 2 e Solid Fuels	✓		✓	✓
1 A 2 e Gaseous Fuels	✓		✓	✓
1 A 2 e Biomass	✓		✓	✓
1 A 2 e Other Fuels	✓		✓	✓
	stationary engines (Other Indus and Heat Production in Industry		Licciii	City
	030311 Cement Industry 030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	-	hinery	
1 A 2 f Liquid Fuels	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and	-	hinery.	
1 A 2 f Liquid Fuels 1 A 2 f Solid Fuels	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	-		
·	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	-	✓	✓
1 A 2 f Solid Fuels	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	-	✓ ✓	✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	-	✓ ✓ ✓	✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	Mac	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	Mac	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	Mac	√	√ √ √ √
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation 1 A 3 a Aviation Gasoline	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	LTO >100 and	v v v v cycles 0 m) v v t buses cm3	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation 1 A 3 a Aviation Gasoline 1 A 3 a Jet Kerosene	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	LTO >100 and	v v v v cycles 0 m) v v t buses cm3	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation 1 A 3 a Aviation Gasoline 1 A 3 a Jet Kerosene 1 A 3 b Road Transportation	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	LTO >100 and	v v v cycles 0 m) v v buses cm3	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation 1 A 3 a Aviation Gasoline 1 A 3 a Jet Kerosene 1 A 3 b Road Transportation 1 A 3 b Gasoline	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry 080501 Domestic airport traffic (<1000 m) 080503 Domestic cruise traffic (0701 Passenger cars 0702 Light duty vehicles < 3.5 t 0704 Mopeds and Motorcycles < 0705 Motorcycles > 50 cm3 0706 Gasoline evaporation from	LTO >100	v v v v cycles 0 m) v v t buses cm3 icles	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
1 A 2 f Solid Fuels 1 A 2 f Gaseous Fuels 1 A 2 f Biomass 1 A 2 f Other Fuels 1 A 3 a Civil Aviation 1 A 3 a Aviation Gasoline 1 A 3 a Jet Kerosene 1 A 3 b Road Transportation 1 A 3 b Gasoline 1 A 3 b Diesel Oil	030317 Other Glass 030319 Bricks and Tiles 0808 Other Mobile Sources and Industry	LTO >1000 and : 50 c	cycles or my buses cm3 icles	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

PCC Category	SNAP		Status	
ii CC Category	SIVAI	CO_2	CH₄	N ₂ C
1 A 3 c Railways	0802 Other Mobile Sources a	and Mad	chinery-	•
1 A 3 c Solid Fuels		✓	✓	✓
1 A 3 c Liquid Fuels		✓	✓	✓
1 A 3 c Other Fuels		NO	NO	NO
1 A 3 d Navigation	0803 Other Mobile Sources a waterways	and Mad	chinery-	Inlan
1 A 3 d Coal		NO	NO	NO
1 A 3 d Residual Oil		NO	NO	NO
1 A 3 d Gas/Diesel oil		✓	✓	✓
1 A 3 d Other Fuels: Gasoline		✓	✓	✓
1 A 3 e Other	010506 Pipeline Compresso 0810 Other Mobile Sources a off-road		chinery-	Othe
1 A 3 e Liquid Fuels		NO	NO	NO
1 A 3 e Solid Fuels		NO	NO	NO
1 A 3 e Gaseous Fuels		✓	✓	✓
1 A 4 a Commercial/Institutional	0201 Commercial and institu	ıtional p	olants	
1 A 4 a Liquid Fuels		✓	✓	✓
1 A 4 a Solid Fuels		✓	✓	✓
1 A 4 a Gaseous Fuels		✓	✓	✓
1 A 4 a Biomass		✓	✓	✓
1 A 4 a Other Fuels		✓	✓	✓
1 A 4 b Residential	0202 Residential plants 0809 Other Mobile Sources a Household and gardening	and Mad	chinery-	
1 A 4 b Liquid Fuels		✓	✓	✓
1 A 4 b Solid Fuels		✓	✓	✓
1 A 4 b Gaseous Fuels		✓	✓	✓
1 A 4 b Biomass		✓	✓	✓
1 A 4 b Other Fuels		NO	NO	NO
1 A 4 c Agriculture/Forestry/Fisheries	0203 Plants in agriculture, for aquaculture 0806 Other Mobile Sources a Agriculture 0807 Other Mobile Sources a Forestry	and Mad	chinery-	
1 A 4 c Liquid Fuels		✓	✓	✓
1 A 4 c Solid Fuels		✓	✓	✓
1 A 4 c Gaseous Fuels		✓	✓	✓
1 A 4 c Biomass		✓	✓	✓
1 A 4 c Other Fuels		NO	NO	NO
1 A 5 Other	0801 Other Mobile Sources a	and Mad	chinery-	•
	-			

IDOC Catagoria	SNAP		Status	
IPCC Category	SNAP	CO ₂	CH ₄	N_2O
1 A 5 Solid Fuels		NO	NO	NO
1 A 5 Gaseous Fuels		NO	NO	NO
1 A 5 Biomass		NO	NO	NO
1 A 5 Other Fuels		NO	NO	NO
Marine Bunkers				
Gasoline		NO	NO	NO
Gas/Diesel oil		NO	NO	NO
Residual Fuel Oil		NO	NO	NO
Lubricants		NO	NO	NO
Coal		NO	NO	NO
Other Fuels		NO	NO	NO
Aviation Bunkers	080502 International airport	traffic (LTO cy	cles -
	080504 International cruise	traffic (>	1000 m	1)
Jet Kerosene		✓	✓	✓
Gasoline		NO	NO	NO
Multilateral Operations		IE ⁽²⁾	IE ⁽²⁾	IE ⁽²⁾

⁽¹⁾ CH_4 emissions from petroleum refining are included in 1 B 2 Fugitive Emissions from Fuels.

⁽²⁾ Energy consumption and emissions from Multilateral Operations are included in 1 A 4 a Commercial / Institutional.

3.2.2 Methodological Issues

Choice of Methodology

In general the CORINAIR methodologies are applied. In the inventory area sources as well as point sources are considered.

However, the applied methodologies are equivalent to the IPCC Tier 2 and Tier 3 methodologies, respectively.

Tier 2 methodology

For the following categories and pollutants the IPCC Tier 2 methodology is used:

- 1 A 1 a Public Electricity and Heat Production, plants >= 50 MW_{th}: CO₂, CH₄, N₂O, NMVOC.
- 1 A 1 a Public Electricity and Heat Production, plants < 50 MW_{th}: All Pollutants.
- 1 A 1 b Petroleum Refining: CO₂, CH₄, N₂O.
- 1 A 1 c Manufacture of Solid Fuls and Other Energy Industries: All Pollutants
- 1 A 2 Manufacturing Industries and Construction-Stationary sources: All Pollutants.
- 1 A 3 c Railways: All Pollutants
- 1 A 3 d Navigation: All Pollutants
- 1 A 3 e Other Transportation-Pipeline compressors: All Pollutants
- 1 A 4 Other Sectors-Stationary sources: All Pollutants

Methodology of emission calculation: Each activity (fuel input) of each subcategory is multiplied with an emission factor.

Activity data is taken from official energy statistics.

Calorific values used for conversion of fuel activity data from [tonnes] and [cubicmetres] into [Terajoule] are country specific.

Emissions factors are country specific, fuel and technology dependent.

Regarding to the above listed criteria this methodology is equivalent to the IPCC bottom up Tier 2 methodology. See [IPCC 1996 rev. Guidelines] chapter 2.1.1.1 Choice of Method.

Tier 3 methodology

For the following categories the IPCC Tier 3 methodology is used.

- 1 A 3 a Civil Aviation
- 1 A 3 b Road Transport
- 1 A 2 f Industry-Mobile machinery
- 1 A 4 b Residential-Mobile machinery
- 1 A 4 c Agriculture and Forestry-mobile machinery
- 1 A 5 Other Mobile-Military
- International Bunkers-Aviation

Methodology of emission calculation: Each activity (fuel input) of each subcategory is multiplied with an emission factor.

Emissions factors are fuel and technology dependent.

Calorific values used for conversion of fuel activity data from [tonnes] into [Terajoule] are country specific.

Technology dependent activity data is calculated by means of a bottom up model and adjusted to top down activity data. Bottom up activity data are calculated by means of vehicle-kilometres, vehicle stock statistics and operating condition dependant fuel consumption per vehicle kilometer. Top down activity data are based on fuel sales taken from the national energy balance.

Consideration of point source emissions

Within the following categories and pollutants plant specific emission declarations are considered.

- 1 A 1 a Public Electricity and Heat Production (42 plants): CO, SO₂, NO_X
- 1 A 1 b Petroleum Refining (1 plant): SO₂, NO_X, CO, VOC ("IE": reported under 1 B)
- 1 A 2 a Iron and Steel (2 integrated iron & steel plants): CO₂, CO, VOC, SO₂, NO_X
- 1 A 2 f Other Cement production (10 plants): CO₂, SO₂, NO_X, CO, VOC

To avoid double counting of point source emissions with area sources (data from the national energy balance) consistency of reported activity by plant operators with activity data from energy statistics is checked: reported data must not be greater than data from energy statistics for the respective category (the correspondence of a plant to the specific energy balance sector is determined by identical NACE or ISIC-Codes). Only consistent data is used for inventory preparation, if data is not consistent data from the national energy balance is used.

Choice of emission factors for stationary sources

Emission factors for combustion plants are expressed as kg/GJ for CO_2 and g/GJ for CH_4 and N_2O . Please note that emission factors sometimes are different for different sectors because of the different share of fuel types combusted (e.g. the CO_2 emission factor for "hard coal" used in the energy industries is different from the factor used for manufacturing industry because different hard coal types with different origin are used; "hard coal" is actually a group of different hard coal types).

Emission factors may vary over time for the following reasons:

- The chemical characteristics of a fuel category varies, e.g. sulphur content in residual oil, carbon content of coal, CH₄ content of natural gas.
- The mix of fuels in the fuel category changes over time. If the different fuels of a fuel category have different calorific values and their share in the fuel category changes, the calorific value of the fuel category might change over time.
- The technical equipment of a combustion plant, which burns a specific fuel, changes over time.

References for CO_2 and CH_4 emission factors are national studies [BMWA-EB, 1990], [BMWA-EB, 1996], [BMWA-EB, 2003]. N_2O emission factors are also taken from national studies [STANZEL et al., 1995] and [BMUJF, 1994]. Detailed figures are included in the relevant chapters.

CO₂ emission factors for stationary sources per fuel type

Natural Gas (fossil)

For all stationary sources of natural gas combustion a CO_2 emission factor of 55 t CO_2 / TJ is selected [BMWA-EB, 1996].

Liquid fuels (fossil)

Fuel oil: Depending on the sulfur content three fuel oil categories are considered in the inventory. CO₂ emisson factors are taken from [BMWA-EB, 1996].

Gasoil, Diesel Oil: CO₂ emisson factors are taken from [BMWA-EB, 1996].

Liquid Petroleum Gas, LPG: CO₂ emisson factors are taken from [BMWA-EB, 1996].

Refinery Gas: The CO₂ emission factor is based on plant specific measurements. See chapter 3.2.2.2 1 A 1 b Petroleum Refining.

Solid fuels (fossil)

Coal: [BMWA-EB, 1996]: CO_2 emission factors are based on elemental analysis with the assumption that 100% of carbon is released as CO_2 (values originate from the study [Hackl & Mauschitz, 1994], where the EF are based on the elemental analysis for different coal types).

Peat: A default carbon content of 29.9 t C/TJ for peat is taken from [IPCC Guidelines ,1997].

Coke Oven Gas: The CO₂ emission factor is a plant specific implied emission factor. Details are provided in chapter 3.2.2.4 1 A 2 a Iron and Steel.

Municipal Solid Waste, MSW (partly fossil)

The fossil carbon content for MSW is taken from [ABFALLWIRTSCHAFT, 2003]. A fraction analysis of the typical wet MSW for Vienna¹⁷ was performed by the local waste authority of Vienna (MA 48) in 1997/1998.

The fossil and non fossil carbon content of each fraction is taken from [ÖKOINSTITUT, 2002]. This leads to a fossil share of 45% of the overall carbon content of 261 t C/ t MSW $_{\text{wet matter}}$. The CO $_2$ emission factor is converted into t CO $_2$ /TJ by means of a heating value of 9,8 GJ/t. The heating value is a personal information of STATISTIK AUSTRIA to the Umweltbundesamt and consistent with the energy balance [IEA JQ 2004]. STATISTIK AUSTRIA quotes that the heating value was inquired from plant operator.

Hazardous Waste (partly fossil)

At current the composition and therefore the fossil carbon content of hazardous waste incinerated is widely unknown. However, it is known that at current hazardous waste is incinerated in one waste incineration plant and a couple of public power plants. The selected emission factor of 50 t CO_2 / TJ Waste is based on an expert judgement.

Industrial Waste (partly fossil)

The main share of industrial waste is used in cement and chemical industry for the purpose of energy recovery. For cement industry emission factors are based on the studies [HACKL & MAUSCHITZ,1995/1997/2001/2004] which include information about fractions and carbon contents. Details about emissions from cement industry are given in chapter 3.2.2.9 (1 A 2 f Manufacturing Industries and Construction – Other). The fractions and the specific carbon contents of waste incinerated in chemical industry, pulp and paper industry and wood products

Incineration of MSW until 1998 only took place in Vienna at the one plant where the analysis was performed; in 2003
 73% of total MSW in Austria was combusted in this plant, the value was applied to total MSW combustion in Austria.

manufacturing industry are unknown. The selected emission factor of 10 t CO_2 / TJ Waste is based on an expert judgement.

Sewage Sludge (non fossil)

Sewage sludge is incinerated in one waste incineration plant and a couple of public power plants. A default carbon content of 29.9 t C/TJ for solid biomass is taken from [IPCC Guidelines,1997].

Black Liquor (non fossil)

Black liquor is incinerated in pulp and paper industry and in wood products manufacturing industry. A default carbon content of 29.9 t C/TJ for solid biomass is taken from [IPCC Guidelines,1997].

Biogas, Sewage Sludge Gas, Landfill Gas (non fossil)

Biogas reported by [IEA JQ, 2004] is used for energy recovery in all subcategories of Category 1 A. A default carbon content of 30.6 t C/TJ for biogas is taken from [IPCC Guidelines ,1997].

Choice of activity data for stationary sources

For information on the underlying activity data used for estimating emissions see Annex 2. It describes the national energy balance (including fuel and fuel categories, net calorific values) and the methodology applied to extract activity data from the energy balance for the calculation of emissions for *Sector 1 A Fuel Combustion* (such as correspondence of categories of the energy balance to IPCC categories). Activity data used for estimating emissions in the sectoral approach is taken from the energy balance as well as information on the last revision of the national energy balance (see Annex 2).

The national energy balance is provided by STATISTIK AUSTRIA [IEA JQ, 2004] (it is presented in Annex 4). Also net calorific values (NCV) used for converting mass or volume units of the fuel quantities into energy units [TJ], are provided by STATISTIK AUSTRIA (and presented in Annex 4).

In the sectoral approach of Category 1 A only the fuel quantities that are combusted are relevant and thus considered for emission calculation; not considered are non energy and feedstock use, international bunker fuels, transformation and distribution losses, transformations of fuels to other fuels like hard coal to coke oven coke and internal refinery processes which have been added to the transformation sector of the energy balance.

Potential emissions from other than energy use are considered in other IPCC categories as described in Chapter 3.4 Feedstocks.

3.2.2.1 1 A 1 a Public Electricity and Heat Production

Key Source: Yes (CO₂: gaseous/ liquid/ solid/ other)

Category 1 A 1 a Public Electricity and Heat Production covers emissions from fuel combustion in public power and heat plants. The share in total GHG emissions from sector 1 A is 20% for the year 1990 and 19.4% for the year 2003. The increase of CH_4 emissions is caused by the increase of natural gas combustion in plants smaller 50 MW_{th} and lack of information on activity data for plants greater than 300 MW_{th} from 2002 onwards which have lower CH_4 emission factors.

Table 22: Greenhouse gas emissions from Category 1 A 1 a.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	10 864	0.14	0.14	10 911
1991	11 622	0.16	0.16	11 676
1992	8 612	0.15	0.13	8 655
1993	8 346	0.16	0.13	8 390
1994	8 635	0.15	0.14	8 680
1995	9 747	0.15	0.15	9 796
1996	10 925	0.18	0.15	10 974
1997	10 497	0.18	0.14	10 544
1998	10 055	0.19	0.16	10 108
1999	9 849	0.15	0.16	9 901
2000	9 880	0.16	0.17	9 935
2001	11 021	0.19	0.19	11 085
2002	10 625	0.21	0.19	10 688
2003	13 292	0.30	0.21	13 363
Trend 1990- 2003	22.3%	113.3%	48.3%	22.5%

As can be seen from Table 23 during the last three years solid fossil fuels and natural gas were dominant compared to other fuel types. Since 2000 liquid fossil fuels became less important. The share in CO_2 emissions from waste incineration in district heating plants which are reported as 'other fuels' increased from 1% in 1990 to 3% in 2003.

Table 23: Share of fuel types on total CO₂ emissions from Category 1 A 1 a.

	Liquid	Solid	Gaseous	Other
1990	11%	58%	30%	1%
1991	13%	59%	27%	1%
1992	17%	47%	34%	3%
1993	25%	37%	36%	3%
1994	22%	38%	37%	3%
1995	16%	46%	35%	3%
1996	14%	43%	40%	3%
1997	18%	48%	31%	3%
1998	22%	35%	40%	3%
1999	20%	38%	39%	2%
2000	12%	51%	34%	3%
2001	12%	54%	31%	3%
2002	8%	52%	37%	3%
2003	8%	52%	37%	3%

Methodology

The CORINAIR simple methodology is applied.

Emission factors

National emission factors for CO_2 and CH_4 are taken from [BMWA-EB, 1990], [BMWA-EB, 1996] and [UBAVIE, 2001]. N_2O -emission factors are taken from a national study [STANZEL et al., 1995]. The selected emissions factors for 2003 are listed in the following table. The CO_2 emission factor for municipal solid waste is taken from [Abfallwirtschaft, 2003].

Table 24: Emission factors of Category 1 A 1 a for 2003.

Light Fuel Oil in plants >= 50 MW _{th} 77.00 1.00 1.00 Light Fuel Oil in plants <= 50 MW _{th} 78.00 0.80 0.60 Medium Fuel Oil 78.00 1.00 1.00 Heavy Fuel Oil in plants >= 50 MW _{th} 80.00 0.60 - 1.80 1.80 Heavy Fuel Oil in plants <= 50 MW _{th} 78.00 2.00 1.00 Gasoil 75.00 1.20 1.00 Diesel oil 75.00 0.20 0.60 Liquified Petroleum Gas 64.00 1.50 1.00 Hard coal in power and CHP plants 95.00 0.10 0.50 Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW _{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW _{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW _{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW _{th} 55.00 1.50 1.00 Natura	Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N ₂ O [kg / TJ]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Light Fuel Oil in plants >= 50 MW _{th}	77.00	1.00	1.00
Heavy Fuel Oil in plants >= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Reavy Fuel Oil in plants <= 50 MW _{th} Diesel oil Reavy Fuel Oil in plants Reavy Fuel Oil	Light Fuel Oil in plants <= 50 MW _{th}	78.00	0.80	0.60
Heavy Fuel Oil in plants <= 50 MW _{th} 78.00 2.00 1.00	Medium Fuel Oil	78.00	1.00	1.00
Gasoil 75.00 1.20 1.00 Diesel oil 75.00 0.20 0.60 Liquified Petroleum Gas 64.00 1.50 1.00 Hard coal in power and CHP plants 95.00 0.10 0.50 Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW _{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW _{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW _{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW _{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW _{th} 55.00 1.50 0.10 Fuel Wood (1)10.00 21.00 3.00 Wood Waste (1)110.00 2.00 4.00 Sewage Sludge (1)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (1)112.00 1.50 1.00 Municipal Solid Waste _{wet} (2)48.88	Heavy Fuel Oil in plants >= 50 MW _{th}	80.00		1.80
Diesel oil 75.00 0.20 0.60 Liquiffed Petroleum Gas 64.00 1.50 1.00 Hard coal in power and CHP plants 95.00 0.10 0.50 Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW _{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW _{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW _{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW _{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW _{th} 55.00 1.50 0.10 Fuel Wood (¹)100.00 21.00 3.00 Wood Waste (¹)110.00 2.00 4.00 Sewage Sludge (¹)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (¹)112.00 1.50 1.00 Municipal Solid Waste _{wet} (²)48.88 12.00 1.40 Hazardous Waste <td< td=""><td>Heavy Fuel Oil in plants <= 50 MW_{th}</td><td>78.00</td><td>2.00</td><td>1.00</td></td<>	Heavy Fuel Oil in plants <= 50 MW _{th}	78.00	2.00	1.00
Liquified Petroleum Gas 64.00 1.50 1.00 Hard coal in power and CHP plants 95.00 0.10 0.50 Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW _{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW _{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW _{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW _{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW _{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW _{th} 55.00 1.50 0.10 Fuel Wood (1)100.00 21.00 3.00 Wood Waste (1)110.00 2.00 4.00 Sewage Sludge (1)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (1)112.00 1.50 1.00 Municipal Solid Waste _{wet} (2)48.88 12.00 1.40 Hazard	Gasoil	75.00	1.20	1.00
Hard coal in power and CHP plants 95.00 0.10 0.50 Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW_{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW_{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW_{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood $(^{10}10.00)$ 21.00 3.00 Wood Waste $(^{10}110.00)$ 2.00 4.00 Sewage Sludge $(^{10}110.00)$ 1.50 1.00 Municipal Solid Waste _{wet} $(^{20}10.00)$ 1.40 Hazardous Waste $(^{20}10.00)$ 1.40	Diesel oil	75.00	0.20	0.60
Hard coal in district heating plants. 93.00 0.30 5.00 Lignite and brown coal in power and CHP plants >= 50 MW_{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW_{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants <= 50 MW_{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood $(1)10.00$ 21.00 3.00 Wood Waste $(1)10.00$ 2.00 4.00 Sewage Sludge $(1)10.00$ 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas $(1)112.00$ 1.50 1.00 Municipal Solid Wastewet $(2)48.88$ 12.00 1.40 Hazardous Waste $(2)50.00$ 12.00 1.40	Liquified Petroleum Gas	64.00	1.50	1.00
Lignite and brown coal in power and CHP plants >= 50 MW_{th} 110.00 0.10 0.50 Lignite and brown coal in district heating plants >= 50 MW_{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW_{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood $(^{10})100.00$ 21.00 3.00 Wood Waste $(^{10})110.00$ 2.00 4.00 Sewage Sludge $(^{10})110.00$ 1.50 1.40 Biogas, Sewage Sludge Gas, Landfill Gas $(^{10})112.00$ 1.50 1.00 Municipal Solid Waste _{wet} $(^{20})112.00$ 1.40 Hazardous Waste $(^{20})112.00$ 1.40	Hard coal in power and CHP plants	95.00	0.10	0.50
Lignite and brown coal in district heating plants >= 50 MW_{th} 108.00 0.20 2.00 Lignite, brown coal and brown coal briquettes in plants < 50 MW_{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood $(^{10})10.00$ 21.00 3.00 Wood Waste $(^{10})10.00$ 2.00 4.00 Sewage Sludge $(^{10})110.00$ 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas $(^{10})112.00$ 1.50 1.00 Municipal Solid Wastewet $(^{20})48.88$ 12.00 1.40 Hazardous Waste $(^{20})50.00$ 12.00 1.40	Hard coal in district heating plants.	93.00	0.30	5.00
Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th} 97.00 7.00 1.40 Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood $(^{1)}100.00$ 21.00 3.00 Wood Waste $(^{1)}110.00$ 2.00 4.00 Sewage Sludge $(^{1)}110.00$ 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas $(^{1)}112.00$ 1.50 1.00 Municipal Solid Waste _{wet} $(^{2})48.88$ 12.00 1.40 Hazardous Waste $(^{2})50.00$ 12.00 1.40	Lignite and brown coal in power and CHP plants >= 50 MW _{th}	110.00	0.10	0.50
Natural Gas in power and CHP plants >= 50 MW_{th} 55.00 0.18 0.50 Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood ${}^{(1)}100.00$ 21.00 3.00 Wood Waste ${}^{(1)}110.00$ 2.00 4.00 Sewage Sludge ${}^{(1)}110.00$ 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas ${}^{(1)}112.00$ 1.50 1.00 Municipal Solid Wastewet ${}^{(2)}48.88$ 12.00 1.40 Hazardous Waste ${}^{(2)}50.00$ 12.00 1.40	Lignite and brown coal in district heating plants >= 50 MW _{th}	108.00	0.20	2.00
Natural Gas in district heating plants >= 50 MW_{th} 55.00 1.50 1.00 Natural Gas in plants <= 50 MW_{th} 55.00 1.50 0.10 Fuel Wood ${}^{(1)}100.00$ 21.00 3.00 Wood Waste ${}^{(1)}110.00$ 2.00 4.00 Sewage Sludge ${}^{(1)}110.00$ 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas ${}^{(1)}112.00$ 1.50 1.00 Municipal Solid Wastewet ${}^{(2)}48.88$ 12.00 1.40 Hazardous Waste ${}^{(2)}50.00$ 12.00 1.40	Lignite, brown coal and brown coal briquettes in plants < 50 MW _{th}	97.00	7.00	1.40
Natural Gas in plants <= 50 MW _{th} 55.00 1.50 0.10 Fuel Wood (¹¹)100.00 21.00 3.00 Wood Waste (¹¹)110.00 2.00 4.00 Sewage Sludge (¹¹)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (¹¹)112.00 1.50 1.00 Municipal Solid Waste _{wet} (²²48.88 12.00 1.40 Hazardous Waste (²²50.00 12.00 1.40	Natural Gas in power and CHP plants >= 50 MW _{th}	55.00	0.18	0.50
Fuel Wood (¹)100.00 21.00 3.00 Wood Waste (¹)110.00 2.00 4.00 Sewage Sludge (¹)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (¹)112.00 1.50 1.00 Municipal Solid Wastewet (²)48.88 12.00 1.40 Hazardous Waste (²)50.00 12.00 1.40	Natural Gas in district heating plants >= 50 MW _{th}	55.00	1.50	1.00
Wood Waste (¹)110.00 2.00 4.00 Sewage Sludge (¹)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (¹)112.00 1.50 1.00 Municipal Solid Wastewet (²)48.88 12.00 1.40 Hazardous Waste (²)50.00 12.00 1.40	Natural Gas in plants <= 50 MW _{th}	55.00	1.50	0.10
Sewage Sludge (¹)110.00 12.00 1.40 Biogas, Sewage Sludge Gas, Landfill Gas (¹)112.00 1.50 1.00 Municipal Solid Wastewet (²)48.88 12.00 1.40 Hazardous Waste (²)50.00 12.00 1.40	Fuel Wood	(1)100.00	21.00	3.00
Biogas, Sewage Sludge Gas, Landfill Gas (1)112.00 1.50 1.00 Municipal Solid Wastewet (2)48.88 12.00 1.40 Hazardous Waste (2)50.00 12.00 1.40	Wood Waste	(1)110.00	2.00	4.00
Municipal Solid Wastewet (2)48.88 12.00 1.40 Hazardous Waste (2)50.00 12.00 1.40	Sewage Sludge	(1)110.00	12.00	1.40
Hazardous Waste (2)50.00 12.00 1.40	Biogas, Sewage Sludge Gas, Landfill Gas	(1)112.00	1.50	1.00
	Municipal Solid Waste _{wet}	(2)48.88	12.00	1.40
Industrial Waste (2)10.00 12.00 1.40	Hazardous Waste	(2)50.00	12.00	1.40
	Industrial Waste	⁽²⁾ 10.00	12.00	1.40

Reported as CO₂ emissions from biomass.

According to IPCC guidelines non fossil CO₂ emissions of "other fuels" are not reported.

Activity data

Fuel consumption is taken from [IEA JQ 2004] prepared by STATISTIK AUSTRIA (see Annex 4).

In a first step large point sources are considered. UBAVIE is operating a database to store plant specific data, called "Dampfkesseldatenbank" (DKDB) which includes fuel consumption, CO,

 NO_X , SO_X and dust emissions from boilers with a thermal capacity greater than 3 MW for the years 1990 onwards. These data are used to generate a sectoral split of the categories *Public Power* and *District Heating*, each for the two categories \geq 300 MW and \geq 50 MW to 300 MW of thermal capacity. Currently 42 plants are considered in this approach.

The remaining fuel consumption (= total consumption minus consumption of large point sources) is the activity data for plants smaller than 50 MW.

Fuel consumption in the public electricity sector varies strongly over time. The most important reason for this variation is the fact that in Austria up to 78% of yearly electricity production comes from hydroelectric power plants. If production of electricity by hydropower is low, production from thermal power plants is high and vice versa.

The following Table 25 shows the gross electricity and heat production of public power and district heating plants.

Table 25: Public gross electricity and heat production.

		Gr	oss electricity _l	oroduction [GV	Vh]		Heat Production
	Total	Hydro	Combustib le Fuels	Geotherm al	Solar	Wind	[TJ] by Combustible Fuels
1990	43 404	30 111	13 293	0	0	0	24 420
1991	43 497	30 268	13 229	0	0	0	29 033
1992	42 838	33 530	9 308	0	0	0	27 600
1993	45 063	35 334	9 729	0	1	0	30 387
1994	44 982	34 243	10 738	0	1	0	30 684
1995	47 944	35 794	12 148	0	1	1	34 350
1996	46 011	32 950	13 055	0	1	5	44 438
1997	47 696	34 701	12 972	0	2	20	40 531
1998	48 250	36 058	12 145	0	2	45	43 343
1999	51 608	39 593	11 963	0	2	51	45 090
2000	53 158	41 410	11 677	0	3	67	42 605
2001	53 656	39 681	13 798	0	4	172	48 820
2002	54 851	40 581	14 060	3	4	203	46 756
2003	55 977	37 304	18 292	3	12	366	50 707

Source: STATISTIK AUSTRIA.

Recalculations

The $\rm CO_2$ emission factor for municipal solid waste has been revised as data based on a more detailed methodology that is also better documented (it is described in chapter 3.2.2 Methodological Issues) has become available. Total carbon content (fossil and non fossil) is recalculated from 267 t C to 261 t C / t Waste and the fraction of fossil carbon is reduced from 62% to 45%.

In the previous submission activity data from the steam boiler database was taken which was higher than energy statistics, this overhead of plant specific activity data was subtracted from industrial autoproducers. For this submission for the years 1990 and 1991 plant specific data is updated according to a publication from the "Bundeslastverteiler", now PS data is lower and thus the subtraction from industrial autoproducers was not necessary anymore. This results in a

shift of CO₂ emissions within these two categories, does however not imply changes in total CO₂ emissions from liquid fuels.

Changes of activity data are based on energy balance recalculation as described in Annex 2.

3.2.2.2 1 A 1 b Petroleum Refining

Key Source: Yes (CO₂: gaseous/ liquid)

Category 1 A 1 b Petroleum Refining enfolds CO_2 and N_2O emissions from fuel combustion and thermal cracking of the only petroleum refining plant in Austria. CH_4 emissions are included in category 1 B 2 a Fugitive Emissions from Fuels – Oil.

The share in total GHG emissions from sector 1 A is 4.5% for the year 1990 and 3.7% for the year 2003. Crude oil input which was 8 Mio t in 1990 and 9 Mio t in 2003.

Table 26: Greenhouse gas emissions from Category 1 A 1 b.

	CO ₂ [Gg]	N ₂ O [Gg]	CO ₂ equiv. [Gg]
1990	2 456	0.009	2 459
1991	2 488	0.010	2 491
1992	2 444	0.009	2 447
1993	2 732	0.012	2 735
1994	2 709	0.012	2 713
1995	2 591	0.012	2 594
1996	2 646	0.011	2 650
1997	2 640	0.011	2 643
1998	2 642	0.011	2 645
1999	2 271	0.009	2 274
2000	2 199	0.010	2 202
2001	2 216	0.008	2 219
2002	2 551	0.011	2 555
2003	2 526	0.012	2 530
Trend 1990-2003	2.9%	29.0%	2.9%

Table 27 presents the share of CO₂ emissions on the different fuel types.

Table 27: Share of fuel types on total CO₂ emissions from Category 1 A 1 b.

	Liquid	Gaseous
1990	80%	20%
1991	77%	23%
1992	78%	22%
1993	80%	20%
1994	86%	14%
1995	84%	16%

	Liquid	Gaseous
1996	83%	17%
1997	82%	18%
1998	83%	17%
1999	82%	18%
2000	84%	16%
2001	82%	18%
2002	84%	16%
2003	81%	19%

Methodology

The IPCC Tier 2 bottom up methodology is used. Activity data is multiplied with emission factors. For calculation of CO_2 emissions plant specific emission factors are used. For calculation of N_2O emissions country specific default emission factors are used.

The carbon contents for the fuel groups *gaseous*, *liquid* and *solid* are reported by plant operator. The fuel groups do not correspond with IPCC definitions, e.g. gaseous fuels include refinery gas which is in IPCC definition a liquid fuel.

Table 28: Carbon content per fuel group for petroleum refining

Fuel-Group	PS Carbon Content [t CO ₂ /t fuel]	Associated IEA-Fuels
Gaseous	2.683	Natural Gas, Refinery Gas
Liquid	3.047	Residual Fuel Oil, Gas Oil, Diesel, Petroleum, Jet Gasoline, Other Oil Products, LPG.
Solid	3.430	Petrol Coke

CO₂ emissions are calculated by multiplying activity data from the energy balance with the emission factors in Table 28.

To reach consistency with IPCC fuel group definition, total CO_2 emissions are disaggregated to the IEA fuel types (see column "Associated IEA-fuels") by using default emission factors for industrial boilers (they are presented in Table 30, for references see Chapter 3.2.2 Methodological Issues), subtracting the calculated CO_2 emissions from total CO_2 emissions, and associating remaining CO_2 emissions to refinery gas. The resulting IEF for refinery gas is presented in Table 29.

Table 29: Implied emission factors for refinery gas.

	t CO ₂ / TJ
1990	51.7
1991	50.9
1992	51.1
1993	49.2
1994	50.4
1995	52.3

t CO ₂ / TJ
51.8
51.0
51.2
56.8
51.7
52.0
48.6
47.3

 N_2O emissions are calculated by multiplying fuel consumption with the emission factors presented in Table 30 (they are selected according to chapter 3.2.2 Methodological Issues).

No combustion specific CH₄ emissions are reported for this category, process-specific CH₄ emissions are reported in Category 1 B 2 a Fugitive Emissions from Fuels – Oil.

For corresponding crude oil input data which may be used as an indicator over time series refer to Chapter 3.5.2.2 (Table 103).

Table 30: Emission factors of Category 1 A 1 b for 2003.

Fuel	CO ₂ [t / TJ]	N₂O [kg / TJ]
Residual Fuel Oil	80.00	0.60
Gas oil	75.00	0.60
Diesel	78.00	0.60
Petroleum	78.00	0.60
Jet Gasoline	78.00	0.60
Other Oil Products	78.00	0.60
LPG	64.00	1.00
Petrol Coke	100.88	-
Natural Gas	55.00	0.10

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

The methodology of calculation of CO_2 emissions has been revised: in the previous submission CO_2 emissions used for the inventory were reported by plant operator but were inconsistent with activity data in the national energy balance that is reported to energy statistics by the *Association of Austrian Petroleum Industry*. For the years 1990 to 1994 emissions had been calculated by using the implied CO_2 emission factor of 1995, expressed as t CO_2 / *Crude Oil Input*, while the applied methodology for the years 1995 to 2002 has not been transparent.

The new methodology for estimating CO_2 emissions is now transparent, more accurate, consistent over time series and consistent with national energy statistics. It uses plant specific emissions factors and data from the national energy balance; the new methodology has been approved by and checked with the plant operator.

Changes in allocation of emissions

Natural Gas: Emissions from electricity autoproduction in petroleum refinery so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category. Due to changes of the energy balance a shift of liquid fuel consumption to industrial autoproducers has been performed. An overview about changes of the energy balance is given in Annex 2.

3.2.2.3 1 A 1 c Manufacture of Solid Fuels and Other Energy Industries

Key Source: Yes (CO₂: gaseous)

Category 1 A 1 c Manufacture of Solid Fuels and Other Energy Industries enfolds emissions from fuel combustion in the oil and gas extraction sector. The share in sector 1 A overall GHG emissions is 0.6% for the year 1990 and 0.3% for the year 2003.

Table 31: Greenhouse gas emissions from Category 1 A 1 c.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	302	0.008	0.0005	302
1991	307	0.008	0.0006	307
1992	290	0.008	0.0005	291
1993	307	0.008	0.0006	307
1994	300	0.008	0.0005	300
1995	340	0.009	0.0006	340
1996	191	0.005	0.0003	191
1997	234	0.006	0.0004	235
1998	201	0.005	0.0004	201
1999	138	0.004	0.0003	139
2000	196	0.005	0.0004	197
2001	186	0.005	0.0003	186
2002	172	0.005	0.0003	172
2003	212	0.006	0.0005	213
Trend 1990-2003	-29.7%	-29.9%	-17.0%	-29.7%

Table 32 shows that except for 2003 all emissions of category 1 A 1 c originated from natural gas combustion.

Table 32: Share of fuel types on total CO₂ emissions from Category 1 A 1 c.

	Liquid	Gaseous
1990	0%	100%
1991	0%	100%
1992	0%	100%
1993	0%	100%
1994	0%	100%

	Liquid	Gaseous
1995	0%	100%
1996	0%	100%
1997	0%	100%
1998	0%	100%
1999	0%	100%
2000	0%	100%
2001	0%	100%
2002	0%	100%
2003	3%	97%

Methodology

The CORINAIR simple methodology is applied.

Emission factors

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

The N₂O emission factor is taken from a national study [BMUJF, 1994].

The emission factors are presented in Table 33.

Table 33: Emission factors of Category 1 A 1 c.

Fuel	CO ₂ [t / TJ]	CH ₄ [kg / TJ]	N₂O [kg / TJ]
Natural Gas	55.00	1.50	0.10
Heavy Fuel Oil	78.00	2.00	1.00

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Natural gas consumption for oil/gas extraction and storage for 2001 an 2002 has been corrected based on improved energy statistics.

Changes in activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

- Emissions of final energy use in coal mining which is assumed to be needed for space heating purpose only - so far reported under this category is now reported under category 1 A 2 f Manufacturing Industries and Construction-Other.
- Emissions from electricity autoproducers of oil/gas extraction and gas works so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.
- In the previous submission emissions from transformation of liquid gas into gas works
 gas were estimated under this category which was a double counting with emissions
 from final energy consumption of gaseous fuels in category 1 A 4 Other. This double
 counting has been eliminated.

3.2.2.4 1 A 2 a Iron and Steel

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 a Iron and Steel enfolds emissions from fuel combustion in iron and steel industry. CO_2 emissions from ore reduction in blast furnaces are included in category 2 C 1. The share in total GHG emissions from sector 1 A is 9.1% for the year 1990 and 7.5% for the year 2003.

Table 34: Greenhouse gas emissions from Category 1 A 2 a.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	4 945	0.025	0.0434	4 959
1991	4 622	0.023	0.0425	4 636
1992	3 941	0.020	0.0360	3 953
1993	4 221	0.022	0.0374	4 233
1994	4 490	0.026	0.0403	4 503
1995	4 819	0.026	0.0458	4 834
1996	4 690	0.030	0.0425	4 704
1997	5 400	0.037	0.0475	5 415
1998	4 795	0.033	0.0515	4 812
1999	4 886	0.031	0.0482	4 901
2000	5 260	0.038	0.0574	5 279
2001	5 205	0.035	0.0556	5 223
2002	5 489	0.037	0.0573	5 507
2003	5 143	0.035	0.0551	5 161
Trend 1990-2003	4.0%	39.7%	26.8%	4.1%

As can be seen from Table 35, CO_2 emissions from category 1 A 2 a are mainly arising from solid fossil fuels.

Table 35: Share of fuel types in total CO_2 emissions from Category 1 A 2 a.

	Liquid	Solid	Gaseous
1990	9.0%	78.0%	13.0%
1991	9.6%	76.0%	14.4%
1992	11.0%	73.0%	16.1%
1993	10.8%	74.8%	14.4%
1994	10.7%	74.2%	15.0%
1995	11.5%	72.9%	15.6%
1996	9.8%	70.4%	19.8%
1997	9.7%	69.0%	21.3%
1998	14.0%	63.6%	22.4%
1999	13.6%	66.0%	20.4%

	Liquid	Solid	Gaseous
2000	16.0%	65.7%	18.4%
2001	17.0%	64.6%	18.3%
2002	9.7%	71.9%	18.4%
2003	10.9%	71.5%	17.6%

Methodology

Two iron and steel production sites (the only ones operating blast furnaces in Austria) are considered as point sources. For 1990 to 2002 CO₂ emissions and fuel consumption from these two plants are reported by the plant operator. The reported fuel consumption of the two plants is subtracted from total fuel consumption for iron and steel production in Austria, the resulting fuel consumption is considered as area source. For the area sources CORINAIR simple methodology was applied for all GHGs.

 CO_2 , NMVOC, CO, NO_X and SO_2 emissions are reported by the two Austrian iron and steel plants together with their coal, fuel oil and natural gas fuel consumption. For liquid fuels, natural gas and coke oven coke CO_2 emission factors taken from [BMWA-EB, 1996] are applied. The remaining CO_2 emissions are allocated to the reported coke oven gas consumption. The methodology to divide the reported fuel consumption into energy related and process related consumption is performed with the information provided in [IEA JQ 2004]. The complex carbon fluxes in iron and steel plants can not be well modelled within the energy balance. Thus the resulting implied CO_2 emission factors for solid fuels in CRF-table 1.A(a) for category 1 A 2 a vary strongly over time and are not reliable.

 N_2O emissions of the two iron and steel plants are calculated with the CORINAIR simple methodology.

 CH_4 emissions are calculated under the assumption that the ratio of CH_4 emissions to the reported NMVOC emissions is equal to the ratio of CH_4 and NMVOC emissions if calculated with the CORINAIR simple method. For the year 2003 this ratio is 90/322; the plant reported 90 t NMVOC and by applying the ratio obtained from the CORINAIR simple methodology total CH_4 emissions were estimated to be 27 t. In a last step CH_4 emissions were allocated to the different fuel types.

Point source CO₂ emissions 2003

As for the year 2003 no point source CO_2 emissions are reported by plant operators, the Umweltbundesamt performed calculations on the basis of 2000 to 2002 data by means of a simple approach: Activity data taken from [IEA JQ 2004] is multiplied with the average implied emission factors 2000 to 2002.

Emissions

The following table lists the results of the two approaches.

Table 36: Greenhouse gas emissions from Category 1 A 2 a by sub sources.

_							
			area sources			point sources	
		CO ₂ [Gg]	CH ₄ [Gg]	N ₂ O [Gg]	CO ₂ [Gg]	CH ₄ [Gg]	N ₂ O [Gg]
	1990	192	0.005	0.001	4 753	0.020	0.042
	1991	256	0.007	0.001	4 366	0.016	0.041
	1992	210	0.006	0.001	3 731	0.014	0.035

		area sources			point sources	
	CO ₂ [Gg]	CH ₄ [Gg]	N ₂ O [Gg]	CO ₂ [Gg]	CH ₄ [Gg]	N₂O [Gg]
1993	229	0.006	0.002	3 992	0.016	0.036
1994	248	0.006	0.002	4 242	0.020	0.039
1995	302	0.008	0.002	4 517	0.018	0.044
1996	441	0.012	0.003	4 249	0.019	0.040
1997	541	0.014	0.002	4 859	0.022	0.045
1998	471	0.012	0.002	4 324	0.021	0.050
1999	335	0.009	0.001	4 550	0.022	0.047
2000	420	0.011	0.002	4 840	0.027	0.056
2001	282	0.008	0.001	4 923	0.027	0.054
2002	382	0.010	0.001	5 107	0.027	0.056
2003	314	0.008	0.001	4 829	0.027	0.054

Emission factors

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

 $N_2\text{O}$ emission factors are taken from the national study [BMUJF, 1994].

The selected and calculated emission factors for 2002 are presented in Table 37 and Table 38.

Table 37: Emission factors of Category 1 A 2 a for 2003, area sources

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N₂O [kg / TJ]
Light Fuel Oil	78.00	0.20	0.60
Heavy Fuel Oil	78.00	2.00	1.00
Gas oil	75.00	1.20	1.00
Petroleum	78.00	0.20	0.60
LPG	64.00	1.50	1.00
Hard Coal	94.00	5.00	1.40
Lignite and brown coal	97.00	7.00	1.40
Coke	104.00	2.00	1.40
Natural Gas	55.00	1.50	0.10
Wood Waste	⁽¹⁾ 110.00	2.00	4.00

⁽¹⁾ Reported as CO₂ emissions from biomass.

Table 38: Emission factors of Category 1 A 2 a for 2003, point sources

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N ₂ O [kg / TJ]
Heavy Fuel Oil	78.00	0.56	1.00
Coke	104.00	0.56	1.40
Coke Oven Gas	⁽¹⁾ 22.44	0.00	0.00
Natural Gas	55.00	0.42	0.10

⁽¹⁾ Implied emission factor of remaining CO_2 emissions.

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Point source activity data reported by plant operators are widely consistent with [IEA JQ 2004].

Recalculations

Activity data is now fully taken from the energy balance which is consistent with plant operators information. In the previous submission information about activity data was partly taken from plant operator. Especially for the year 2002 coke oven coke consumption has been corrected and is now consistent with pig iron production.

Changes in allocation of emissions

Emissions from electricity autoproducers of iron & steel industry so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.

While total emissions from integrated iron and steel plants were not recalculated a more accurate estimate of process CO₂ emissions from blast furnaces which are reported in category 2 C 1 Iron and Steel Production leads to the following shifts from or to category 1 A 2 a:

Table 39: Shift of CO₂ emissions from category 2 C 1 to category 1 A 2 a.

	CO ₂ [Gg]
1990	48.7
1991	-29.8
1992	-32.5
1993	-36.1
1994	-28.2
1995	-32.5
1996	8.8
1997	2.4
1998	1.7
1999	-39.5
2000	-37.5
2001	-169.6
2002	587.0

3.2.2.5 1 A 2 b Non-Ferrous Metals

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 b Non-Ferrous Metals enfolds emissions from fuel combustion in non ferrous metal industry. The share in total GHG emissions from sector 1 A is 0.2% for the year 1990 and 0.3% for the year 2003.

Table 40: Greenhouse gas emissions from Category 1 A 2 b.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	112	0.003	0.0006	113

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1991	118	0.003	0.0008	118
1992	145	0.003	0.0009	146
1993	153	0.004	0.0008	154
1994	242	0.006	0.0011	242
1995	265	0.007	0.0010	266
1996	165	0.004	0.0008	165
1997	237	0.005	0.0012	238
1998	213	0.004	0.0011	213
1999	199	0.004	0.0011	199
2000	201	0.004	0.0011	201
2001	205	0.005	0.0010	205
2002	211	0.005	0.0011	212
2003	211	0.005	0.0011	211
Trend 1990-2003	87.3%	72.0%	63.7%	87.3%

As can be seen from Table 41 the main share in CO2 emissions arise from combustion of natural gas and heavy fuel oil.

Table 41: Share of fuel types in total CO₂ emissions from Category 1 A 2 b

	Liquid	Solid	Gaseous
1990	30%	3%	66%
1991	28%	16%	56%
1992	21%	19%	60%
1993	21%	10%	69%
1994	16%	10%	74%
1995	15%	4%	81%
1996	29%	3%	68%
1997	32%	8%	60%
1998	31%	8%	61%
1999	30%	11%	59%
2000	26%	11%	63%
2001	24%	6%	69%
2002	23%	8%	69%
2003	31%	2%	66%

Methodology

CORINAIR simple methodology is applied. Fuel consumption is taken from [IEA JQ 2004] as described in Annex 4.

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

The emission factors for 2003 are presented in Table 42.

Table 42: Emission factors of Category 1 A 2 b for 2003.

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N₂O [kg / TJ]
Light Fuel Oil	78.00	0.20	0.60
Medium Fuel Oil	78.00	2.00	1.00
Heavy Fuel Oil	78.00	2.00	1.00
Gas oil	75.00	1.20	1.00
Petroleum	78.00	0.20	0.60
LPG	64.00	1.50	1.00
Hard Coal	94.00	5.00	1.40
Coke	104.00	2.00	1.40
Natural Gas	55.00	1.50	0.10

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

Emissions from electricity autoproducers of non-ferrous metals industry so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.

3.2.2.6 1 A 2 c Chemicals

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 c Chemicals enfolds emissions from fuel combustion in chemical industry. The share in total GHG emissions from sector 1 A is 1.3% for the year 1990 and 1.8% for the year 2003.

Table 43: Greenhouse gas emissions from Category 1 A 2 c.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	705	0.052	0.018	712
1991	696	0.056	0.019	703
1992	784	0.067	0.022	792
1993	866	0.054	0.016	872
1994	835	0.053	0.015	840
1995	889	0.058	0.014	895
1996	856	0.061	0.019	863
1997	1 069	0.060	0.020	1 076
1998	977	0.054	0.017	984

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1999	1 232	0.081	0.023	1 241
2000	1 199	0.068	0.016	1 206
2001	1 252	0.058	0.014	1 257
2002	1 224	0.073	0.018	1 231
2003	1 251	0.089	0.029	1 262
Trend 1990-2003	77.4%	72.0%	0.646	77.3%

As can be seen in Table 44, natural gas is still the main source of CO_2 emissions from category 1 A 2 c. CO_2 emissions from solid fossil fuel combustion increased whereas liquid fossil fuel got less important.

Table 44: Share of fuel types in total CO_2 emissions from Category 1 A 2 c

	Liquid	Solid	Gaseous	Other
1990	11%	10%	75%	3%
1991	12%	18%	66%	4%
1992	7%	26%	63%	4%
1993	8%	20%	69%	2%
1994	11%	21%	66%	3%
1995	10%	17%	71%	3%
1996	10%	20%	67%	3%
1997	13%	24%	61%	2%
1998	12%	26%	60%	2%
1999	8%	25%	65%	3%
2000	5%	22%	71%	2%
2001	6%	21%	72%	1%
2002	5%	21%	72%	2%
2003	9%	20%	68%	2%

Methodology

CORINAIR simple methodology is applied.

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

Emission factors for 2003 are presented in Table 45.

Table 45: Emission factors of Category 1 A 2 c for 2003.

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N₂O [kg / TJ]
Light Fuel Oil	78.00	0.20	0.60
Medium Fuel Oil	78.00	2.00	1.00
Heavy Fuel Oil	78.00	2.00	1.00

Gas oil	75.00	1.20	1.00
LPG	64.00	1.50	1.00
Hard Coal	94.00	5.00	1.40
Lignite and brown coal	97.00	7.00	1.40
Brown Coal Briquettes	97.00	7.00	1.40
Coke	104.00	2.00	1.40
Natural Gas	55.00	1.50	0.10
Fuel Wood	⁽¹⁾ 100.00	2.00	4.00
Wood Waste	⁽¹⁾ 110.00	2.00	4.00
Black Liquor	⁽¹⁾ 110.00	2.00	1.40
Biogas	⁽¹⁾ 112.00	1.50	1.00
Industrial Waste	⁽²⁾ 10.00	12.00	1.40

Reported as CO2 emissions from biomass

According to IPCC guidelines non fossil CO2 emissions of "other fuels" are not reported.

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

Emissions from electricity autoproducers of chemicals industry so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.

3.2.2.7 1 A 2 d Pulp, Paper and Print

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 d Pulp, Paper and Print enfolds emissions from fuel combustion in pulp, paper and print industry. The share in total GHG emissions from sector 1 A is 3.9% for the year 1990 and 12.7% for the year 2003.

Table 46: Greenhouse gas emissions from Category 1 A 2 d.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	2 124	0.120	0.059	2 145
1991	2 566	0.132	0.065	2 589
1992	2 124	0.125	0.062	2 146
1993	2 165	0.131	0.077	2 191
1994	2 620	0.146	0.080	2 648
1995	2 231	0.138	0.079	2 258
1996	2 148	0.131	0.065	2 170
1997	2 925	0.152	0.081	2 953
1998	2 677	0.141	0.068	2 701
1999	2 025	0.124	0.065	2 048

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
2000	2 176	0.127	0.057	2 196
2001	2 012	0.117	0.052	2 030
2002	1 917	0.121	0.063	1 939
2003	1 857	0.111	0.065	1 879
Trend 1990-2003	-12.6%	-7.0%	0.099	-12.4%

As can be seen in Table 47, natural gas combustion is the main source of CO_2 emissions from category 1 A 2 d. Liquid fuel consumption decreased since 1990 whereas the share of solid fuels in total CO_2 emissions is quite constant.

Table 47: Share of fuel types in total CO₂ emissions from Category 1 A 2 d.

	Liquid	Solid	Gaseous
1990	39%	17%	44%
1991	42%	19%	39%
1992	30%	20%	50%
1993	31%	19%	50%
1994	24%	14%	61%
1995	23%	17%	60%
1996	18%	17%	65%
1997	19%	15%	66%
1998	18%	16%	66%
1999	13%	17%	70%
2000	9%	19%	72%
2001	10%	18%	72%
2002	8%	22%	70%
2003	10%	17%	73%

Methodology

The CORINAIR simple methodology is applied.

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

Emission factors for 2002 are presented in Table 48.

Table 48: Emission factors of Category 1 A 2 d for 2003.

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N₂O [kg / TJ]
Hard Coal	94.00	5.00	1.40
Lignite and brown coal	97.00	7.00	1.40
Brown Coal Briquettes	97.00	7.00	1.40
Coke	104.00	2.00	1.40

Light Fuel Oil	78.00	0.20	0.60
Heavy Fuel Oil	78.00	2.00	1.00
Gas oil	75.00	1.20	1.00
Petroleum	78.00	0.20	0.60
Diesel	75.00	0.20	0.60
LPG	64.00	1.50	1.00
Natural Gas	55.00	1.50	0.10
Fuel Wood	⁽¹⁾ 100.00	2.00	4.00
Wood Waste ⁽²⁾	⁽¹⁾ 110.00	2.00	4.00
Black Liquor	⁽¹⁾ 110.00	2.00	1.40
Biogas	⁽¹⁾ 112.00	1.50	1.00
Landfill Gas	⁽¹⁾ 112.00	1.50	1.00
Industrial Waste	⁽³⁾ 10.00	12.00	1.40

⁽¹⁾ Reported as CO2 emissions from biomass

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

Emissions from electricity autoproducers of pulp, paper and print industry so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.

3.2.2.8 1 A 2 e Food Processing, Beverages and Tobacco

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 e Food Processing, Beverages and Tobacco enfolds emissions from fuel combustion in food processing, beverages and tobacco industry. The share in total GHG emissions from sector 1 A is 1.5% for the year 1990 and 1.8% for the year 2003.

Table 49: Greenhouse gas emissions from Category 1 A 2 e.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	834	0.018	0.005	836
1991	906	0.020	0.005	908
1992	848	0.018	0.005	850
1993	863	0.016	0.005	864
1994	916	0.019	0.005	918
1995	925	0.019	0.005	927
1996	870	0.019	0.003	872

⁽²⁾ Including sewage sludge from paper mills

⁽³⁾ According to IPCC guidelines non fossil CO2 emissions of "other fuels" are not reported.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1997	1 104	0.023	0.004	1 106
1998	971	0.021	0.004	973
1999	930	0.024	0.009	934
2000	1 153	0.028	0.005	1 155
2001	1 072	0.026	0.005	1 074
2002	1 241	0.031	0.005	1 243
2003	1 262	0.030	0.005	1 264
Trend 1990-2003	51.3%	67.3%	12.1%	51.2%

As can be seen in Table 50, natural gas combustion is increasing and is the main source of CO_2 emissions from category 1 A 2 e. The share of liquid fossil fuel combustion in total CO_2 emissions decreased since 1990.

Table 50: Share of fuel types in total CO₂ emissions from Category 1 A 2 e.

	Liquid	Solid	Gaseous
1990	39%	1%	60%
1991	42%	2%	56%
1992	38%	4%	58%
1993	43%	2%	55%
1994	38%	3%	59%
1995	36%	1%	64%
1996	28%	0%	71%
1997	30%	1%	69%
1998	28%	1%	71%
1999	22%	1%	77%
2000	17%	4%	79%
2001	20%	3%	77%
2002	14%	3%	83%
2003	20%	1%	79%

Methodology

CORINAIR simple methodology is applied.

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

 N_2O emission factors are taken from a national study [BMUJF, 1994].

Emission factors for 2003 are presented in Table 51.

4.00

1.00

1.40

 CO_2 N_2O Fuel [kg / TJ] [t / TJ] [kg / TJ] Light Fuel Oil 78.00 0.20 0.60 Medium Fuel Oil 78.00 2.00 1.00 Heavy Fuel Oil 78.00 2.00 1.00 Gas oil 75.00 1.20 1.00 Petroleum 78.00 0.20 0.60 Diesel 75.00 0.20 0.60 LPG 64.00 1.50 1.00 Hard Coal 94.00 5.00 1.40 Lignite and brown coal 97.00 7.00 1.40 **Brown Coal Briquettes** 97.00 7.00 1.40 Coke 104.00 2.00 1.40 **Natural Gas** 55.00 1.50 0.10 ⁽¹⁾100.00 Fuel Wood 2.00 4.00 ⁽¹⁾110.00 Wood Waste

Table 51: Emission factors of Category 1 A 2 e for 2003.

⁽¹⁾112.00

⁽²⁾10.00

Activity data

Biogas

Industrial Waste

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

2.00

1.50

12.00

Changes in allocation of emissions

Emissions from electricity autoproducers of food processing, beverages and tobacco industry so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under this category.

3.2.2.9 1 A 2 f Manufacturing Industries and Construction – Other

Key Source: Yes (CO₂: 1 A 2 gaseous/ solid/ liquid-stationary)

Category 1 A 2 f Other enfolds emissions from fuel combustion in industry which are not reported under categories 1 A 2 a, 1 A 2 b, 1 A 2 c, 1 A 2 d and 1 A 2 e. It also includes emissions from mobile sources (off road machinery) of total industry. For the stationary sources cement industry is considered separately.

The share in total GHG emissions from sector 1 A is 8% for the year 1990 and 6.6% for the year 2003. N₂O emissions mainly arise from off road activity.

⁽¹⁾ Reported as CO2 emissions from biomass

⁽²⁾ According to IPCC guidelines non fossil CO2 emissions of "other fuels" are not reported.

Table 52: Greenhouse gas emissions from Category 1 A 2 f.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	4 249	0.177	0.389	4 374
1991	4 471	0.196	0.407	4 601
1992	4 432	0.199	0.408	4 563
1993	4 545	0.198	0.399	4 673
1994	4 715	0.204	0.419	4 849
1995	4 775	0.206	0.407	4 905
1996	5 049	0.217	0.408	5 180
1997	5 388	0.222	0.431	5 526
1998	4 957	0.218	0.433	5 095
1999	4 285	0.197	0.430	4 422
2000	4 311	0.209	0.418	4 445
2001	4 319	0.225	0.425	4 455
2002	4 313	0.219	0.409	4 444
2003	4 439	0.203	0.377	4 560
Trend 1990-2003	4.5%	15.1%	-3.1%	4.3%

As can be seen from Table 53, natural gas and liquid fossil fuel combustion is the main source of CO_2 emissions from category 1 A 2 f. The share of fossil fuel types on total CO_2 emissions is quite constant over the years.

Table 53: Share of fuel types in total CO₂ emissions from Category 1 A 2 f.

	Liquid	Solid	Gaseous	Other
1990	49%	10%	37%	5%
1991	49%	11%	36%	4%
1992	45%	13%	36%	6%
1993	52%	11%	35%	2%
1994	49%	9%	39%	3%
1995	45%	9%	43%	3%
1996	44%	11%	43%	2%
1997	52%	11%	34%	3%
1998	52%	12%	34%	3%
1999	51%	11%	33%	6%
2000	47%	12%	35%	7%
2001	45%	10%	36%	9%
2002	46%	7%	37%	9%
2003	51%	6%	35%	7%

1 A 2 f Manufacturing Industries and Construction - Other - stationary sources

In the following the methodology of estimating emissions from stationary sources of category *1* a 2 f Other is described. The share in total GHG emissions from sector *1* A is 5.9% for the year 1990 and 4.9% for the year 2003.

Table 54: Greenhouse gas emissions from Category 1 A 2 f stationary sources.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	3 234	0.10	0.03	3 246
1991	3 414	0.12	0.04	3 428
1992	3 364	0.12	0.04	3 378
1993	3 511	0.12	0.04	3 526
1994	3 654	0.13	0.04	3 668
1995	3 738	0.13	0.03	3 752
1996	4 041	0.15	0.04	4 057
1997	4 363	0.15	0.05	4 381
1998	3 916	0.15	0.04	3 932
1999	3 238	0.13	0.06	3 259
2000	3 250	0.15	0.06	3 271
2001	3 243	0.17	0.07	3 269
2002	3 221	0.16	0.06	3 244
2003	3 334	0.15	0.06	3 357
Trend 1990-2003	3.1%	47.8%	81.0%	3.4%

As can be seen in Table 55, natural gas and liquid fossil fuel combustion is the main stationary source of CO_2 emissions from category 1 A 2 f. The share of natural gas and liquid fuels in total CO_2 emissions is still at the level of 1990. Solid fuels got less important but CO_2 emissions from combustion of industrial waste are increasing.

Table 55: Share of fuel types on total CO₂ emissions from Category 1 A 2 f stationary sources.

	Liquid	Solid	Gaseous	Other
1990	33%	13%	48%	6%
1991	33%	14%	48%	5%
1992	28%	17%	48%	8%
1993	37%	14%	46%	3%
1994	34%	12%	51%	4%
1995	30%	12%	55%	4%
1996	30%	13%	54%	3%
1997	41%	14%	41%	4%
1998	40%	15%	43%	3%
1999	35%	14%	44%	7%
2000	29%	16%	46%	9%
2001	26%	14%	48%	12%

	Liquid	Solid	Gaseous	Other
2002	28%	10%	50%	12%
2003	35%	8%	47%	9%

1 A 2 f Manufacturing Industries and Construction - Cement Clinker Production (NACE 26.51)

This category enfolds emissions from fuel combustion in cement clinker kilns. The capacity of the 10 Austrian plants is about 4 mio t cement clinker / year. Yearly clinker production is about 80% of total capacity. Further information about yearly clinker production is provided in the methodology chapter of category 2 A 1 cement production.

Methodology

Information about CO_2 emissions due to fuel combustion for cement production is taken from four studies of the Austrian cement industry [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2003]. The data presented in these studies include fuel consumption and emission data for emissions from combustion processes and from calcination processes (process specific emissions, see category 2A1) separately. The studies cover the years 1988 to 2002.

For the studies mentioned above CO_2 emissions from all cement production plants in Austria were investigated. The determination of the emission data took place by inspection of every single plant, recording and evaluation of plant specific records and also plant specific measurements and analysis carried out by independent scientific institutes. Using this data (single measurement data or half-hourly mean values from continuous measurements) yearly mean values for concentration of CO_2 in the waste gas flow were calculated. With the average flow of dry waste gas the plant specific CO_2 emission mass stream and consequently the plant specific emission factors (normalized to ton clinker and/ or ton cement) were calculated.

CO₂ emissions 1990 to 2002

Emissions for the years 1990 to 2002 are taken from industry [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2003].

For solid, liquid and gaseous fuels CO_2 emissions are calculated by multiplying activity data with national default emission factors (for sources of emission factors see relating chapter). The remaining CO_2 emissions are allocated to industrial waste, which does not always lead to an reliable implied emission factor. Rationales are given in the following chapter *Activity data*.

CO₂ emissions 2003

For the year 2003 CO₂ emissions from coal, fuel oil and natural gas are calculated by multiplying activity data with national default emission factors, whereas for industrial waste the implied emission factor the averaged implied emission factor of 2000 to 2002 is used.

CH₄ and N₂O emissions

Are calculated with the simple CORINAIR methodology.

Emissions

The following table present greenhouse gas emissions from fuel combustion for cement clinker production.

CO₂ CO₂ [Gg] CH₄ [Gg] N₂O [Gg] equiv. [Gg] 1990 1 055 0.05 0.01 1 059 1991 1 038 0.05 1 043 0.01 1992 1 107 0.05 0.01 1 112 0.06 1993 1 038 0.01 1 044 1994 1 089 0.06 0.01 1 095 1995 867 0.05 0.01 872 0.06 1996 861 0.01 867 1997 958 0.06 0.01 963 1998 888 0.06 0.01 894 1999 871 0.06 0.01 876 0.07 2000 938 0.01 944 2001 954 0.08 0.01 959 2002 0.08 976 0.01 982 2003 878 0.06 0.01 882 Trend 1990--16.8% 2003 36.0% -14.5% -16.7%

Table 56: Greenhouse gas emissions from Category 1 A 2 f - cement clinker production.

Activity data

Hard Coal, Brown Coal, Petrol Coke and Industrial Waste

In [IEA JQ 2004] the category *Non-metallic Mineral Products* enfolds fuel consumption of NACE Division 26. As within this NACE division industrial branches other than cement industry do not use coal, petrol coke and industrial waste for fuel combustion, 100% of those fuels are allocated to the cement industry. It has to be noted that for industrial waste [IEA JQ 2004] uses about 25% lower calorific values than [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2003]. By keeping activity data consistent with [IEA JQ 2004] this leads to a rather high implied emission factor for CO₂.

Natural Gas

For the period 1990 to 2002 natural gas consumption is taken from [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2003] and converted into the unit TJ by applying the calorific values reported in [IEA JQ 2004].

For the year 2003 the natural gas consumption of 2002 is used.

Fuel Oil

For the period 1990 to 2002 fuel oil consumption is taken from [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2003] and converted into the unit TJ by applying the calorific values reported in [IEA JQ 2004].

For the year 2003 30% of fuel oil consumption of NACE Division 26 as reported in [IEA JQ 2004] is selected which is the same ratio as for the year 2002.

Emission factors

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

Recalculations

CO₂ emissions 2000 to 2002: Emission factors and activity data are now taken from [HACKL & MAUSCHITZ, 2003] whereas in the previous submission CO₂ emissions were estimated using the 1999 emission factors and activity data from [HACKL & MAUSCHITZ, 2001].

From 1990 on the energy balance is updated according to information from [HACKL & MAUSCHITZ, 1995, 1997, 2001 and 2003], especially for industrial waste.

1 A 2 f Manufacturing Industries and Construction - Other (NACE 17, 18, 19, 20, 25, 26.1, 26.2, 26.3, 26.4, 26.6, 26.7, 26.8, 33, 34, 35, 36, 37, 45)

This category enfolds emissions due to fuel combustion of the industrial branches as specified in NACE 17, 18, 19, 20, 25, 26.1, 26.2, 26.3, 26.4, 26.6, 26.7, 26.8, 33, 34, 35, 36, 37, 45.

Methodology

The CORINAIR simple methodology is applied.

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4, fuel consumption of cement industry is subtracted as it is considered separately (see above).

Emission factors

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

The emission factors for 2003 are presented in Table 51.

Table 57: Emission factors of Category 1 A 2 f stationary sources for 2003.

Fuel	CO ₂ [t / TJ]	CH₄ [kg / TJ]	N₂O [kg / TJ]
Hard Coal	94.00	5.00	1.40
Lignite and brown coal	97.00	7.00	1.40
Brown Coal Briquettes	97.00	7.00	1.40
Coke	104.00	2.00	1.40
Light Fuel Oil	78.00	0.20	0.60
Medium Fuel Oil	78.00	2.00	1.00
Heavy Fuel Oil	78.00	2.00	1.00
Gas oil	75.00	1.20	1.00
Diesel	75.00	0.20	0.60
Petroleum	78.00	0.20	0.60
LPG	64.00	1.50	1.00
Petrol Coke	100.88	0.00	0.00
Natural Gas	55.00	1.50	0.10
Fuel Wood	(1)100.00	2.00	4.00
Wood Waste	(1)110.00	2.00	4.00

Black Liquor	(1)110.00	2.00	1.40
Biogas	(1)112.00	1.50	1.00
Sewage Sludge Gas	(1)112.00	1.50	1.00
Landfill Gas	(1)112.00	1.50	1.00
Industrial Waste- unspecified	(2)10.00	12.00	1.40
Industrial Waste- Cement industry	(3)81.15	12.00	1.40

⁽¹⁾ Reported as CO2 emissions from biomass

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

Emissions from electricity autoproducers other than NACE 17, 18, 19, 20, 25, 26.1, 26.2, 26.3, 26.4, 26.6, 26.7, 26.8, 33, 34, 35, 36, 37 and 45 so far reported under this category are now reported under the respective IPCC categories 1 A 1 b, 1 A 1 c, 1 A 2 a, 1 A 2 b, 1 A 2 c, 1 A 2 d, 1 A 2 e, 1 A 4 a.

1 A 2 f Manufacturing Industries and Construction - Other - mobile sources

In the following the methodology of estimating emissions from mobile sources of category 1 A 2 f Other is described. The share in total GHG emissions from sector 1 A is 1.4% for the year 1990 and 1.3% for the year 2003. All GHGs emissions originate from liquid fossil fuel combustion.

Table 58: Greenhouse gas emissions from Category 1 A 2 f mobile sources.

	CO ₂	CH₄	N_2O	CO2-equ
	[Gg]	[Gg]	[Gg]	[Gg]
1990	1 015.95	0.07	0.35	1 126.13
1991	1 056.85	0.08	0.37	1 171.44
1992	1 068.10	0.08	0.37	1 183.89
1993	1 034.04	0.08	0.36	1 146.16
1994	1 061.28	0.08	0.38	1 180.05
1995	1 036.24	0.07	0.37	1 152.30
1996	1 007.95	0.07	0.37	1 121.98
1997	1 024.94	0.07	0.38	1 143.72
1998	1 040.13	0.07	0.39	1 162.58
1999	1 046.85	0.06	0.37	1 162.39
2000	1 060.59	0.06	0.36	1 173.27
2001	1 075.61	0.06	0.35	1 186.00
2002	1 091.70	0.06	0.35	1 200.13
2003	1 104.68	0.05	0.31	1 202.66

⁽²⁾ According to IPCC guidelines non fossil CO2 emissions of "other fuels" are not reported.

⁽³⁾ Implied emission factor as cited in chapter methodology, see Page 87

Trend					
1990 - 2003	9%	-30%	-11%	7%	

Combustion of liquid fossil fuels is the only mobile source of CO_2 emissions from category 1 A 2 f.

Methodology

In 2001 a study on off road emissions in Austria was finished [PISCHINGER, 2000]. The study was prepared to improve the poor data quality in this sector. The following categories were taken into account:

- 1 A 2 f Industry
- 1 A 3 c Railways
- 1 A 3 d Navigation
- 1 A 4 b Household and Gardening
- 1 A 4 c Agriculture and Forestry
- 1 A 5 Military Activities

Depending on the fuel consumption of the engine the ratio power of the engine was calculated, emissions were calculated by multiplying ratio power and emission factors. To improve data quality the influence of the vehicle age on the operating time was taken into account.

With this method all relevant effects on engine emissions could be covered:

- Emissions according to the engine type
- · Emissions according to the effective engine performance
- · Emissions according to the engine age
- Emissions depending on the engine operating time
- · Engine operating time according to the engine age

The used methodology conforms to the requirements of the IPCC tier 3 methodology.

Emission factors

Emission factors were defined for four categories of engine type depending on the year of construction. Emission factors are listed in Table 59 to Table 62. The emission factors present fuel consumption and emissions according to the engine power output. Total emissions are calculated by multiplying emission factors with average motor capacity and activity data. With this method national total fuel consumption and total emissions are calculated with a bottom-up method. Calculated total fuel consumption of off-road traffic is summed up with total fuel consumption of road transport and is compared with national total sold fuel: due to uncertainties of the bottom-up method the values differ by about 5%. To be consistent with the national energy balance, activity data in the bottom-up approaches for both road transport and off-road transport is adjusted so that finally the calculated total fuel consumption equals the figure of fuel sold in the national energy balance.

Table 59: Emission Factors for diesel engines > 80 kW

Year	CO_2	CH ₄	N_2O
I Gai	[t/TJ]	[kg	/TJ]
1993	247.2	13.89	88.89
1997	239.2	11.11	97.22
2000	231.7	8.33	61.11

Table 60: Emission Factors for diesel engines < 80 kW

Year	CO ₂	CH₄	N_2O
- Cai	[t/TJ]	[kg/	TJ]
1993	259.7	27.78	88.89
1997	251.1	19.44	97.22
2000	243.3	16.67	61.11

Table 61: Emission Factors for 4-stroke-petrol engines

Year	CO ₂	CH ₄	N_2O
ı cai	[t/TJ]	[k	g/TJ]
1993	481.7	600.00	11.11
1997	455.6	533.33	11.11
2000	438.1	494.44	11.11

Table 62: Emission Factors for 2-stroke-petrol engines

Year	CO ₂	CH₄	N ₂ O
l Cal	[t/TJ]	[kg/	ΓJ]
1993	613.1	833.33	2.78
1997	591.1	750.00	2.78
2000	573.6	666.67	2.78

Activity data

Activity data, vehicle stock and specific fuel consumption for vehicles and machinery (e.g. leader, digger, ...) were taken from:

- STATISTIK AUSTRIA
- Questionnaire to vehicle and machinery user
- Information from vehicle and machinery manufacturer
- Interviews with experts
- Expert judgment

Activities used for estimating emissions of $1\ A\ 2\ f$ as well as the implied emission factors (national total emissions divided by total fuel consumption in TJ) are presented in the following table.

Table 63: Implied emission factors and activities for industrial off-road traffic 1990–2003

		Implied Emission Factors			
	Activity	CO_2	CH₄	N_2O	
	TJ	t/TJ	kg/TJ	kg/TJ	
1990	13 724	74.02	5.4	25.8	

1	7	s	١
ſ	Ш	П	
١	Ľ		į,

1991	14 277	74.03	5.5	25.8
1992	14 429	74.03	5.5	25.8
1993	13 971	74.02	5.5	25.8
1994	14 339	74.02	5.3	26.6
1995	14 033	73.84	5.3	26.6
1996	13 650	73.84	5.2	26.8
1997	13 880	73.84	5.0	27.5
1998	14 086	73.84	4.9	27.9
1999	14 210	73.67	4.4	26.1
2000	14 396	73.67	4.2	25.1
2001	14 600	73.67	4.0	24.3
2002	14 819	73.67	3.7	23.5
2003	14 995	73.67	3.5	21.0
Trend 1990 - 2003	9%	-0.5%	-35%	-19%

Recalculation

Due to results from a new study on tank tourism (which has not been published yet), the split of diesel consumption into road and off-road traffic has been recalculated; as the study shows, in the past years more diesel flow in the road traffic than in the off-road sector (and vice versa in the early 90-ties): for the base year about 7% more fuel has been allocated to road transport, and for the year 2002 it was about 2% less diesel that has been reallocated from road transport to off-road transport in forestry (1 A 4 mobile – agriculture and forestry) and industry (1 A 2 f).

3.2.2.10 1 A 3 a Civil Aviation

Key Source: No

Greenhouse gas emissions from aviation are low in comparison to emissions from the transport sector but show a strong increase from 1990 to 2003. However, the trend for the different GHGs varies due to different methodologies of emission estimation.

The category 1 A 3 a Civil Aviation contains flights according to Visual Flight Rules (VFR) and Instrument Flight Rules (IFR) for national LTO and national cruise. International LTO and international cruise is considered in I B Av International Bunkers Aviation. Military Aviation is allocated in 1 A 3 e Other. For VFR only CO₂ emissions were considered.

Table 64: CO₂ and N₂O emissions from 1 A 3 a Civil Aviation by subcategories 1990-2003

	CO ₂	CO ₂			N_2O	
	nat. LTO	VFR	nat. cruise	nat. LTO	nat. cruise	nat. LTO
	[Gg]	[Gg]	[Gg]	[Gg]	[Gg]	[Gg]
1990	10.0	7.8	14.2	0.0006	0.0005	0.0022
1991	10.8	8.1	18.7	0.0007	0.0006	0.0021
1992	11.6	8.3	23.2	0.0007	0.0007	0.0021
1993	12.4	8.6	27.6	0.0008	0.0009	0.0020
1994	13.2	8.8	32.1	0.0008	0.0010	0.0019
1995	14.0	7.1	36.6	0.0009	0.0012	0.0018

1996	16.2	6.8	40.6	0.0010	0.0013	0.0029
1997	18.4	7.6	44.5	0.0011	0.0014	0.0039
1998	20.6	8.2	48.5	0.0012	0.0015	0.0050
1999	21.1	8.7	51.3	0.0012	0.0016	0.0052
2000	21.6	6.4	54.1	0.0014	0.0017	0.0054
2001	17.2	6.4	43.1	0.0011	0.0014	0.0043
2002	19.7	6.4	49.1	0.0013	0.0016	0.0049
2003	17.2	6.4	43.1	0.0013	0.0014	0.0043
Trend 1990 2003	72%	-18%	204%	117%	180%	95%

Methodological Issues

A country-specific methodology was applied.

The calculations are based on a study commissioned by the Umweltbundesamt finished in 2002 [KALIVODA et. al, 2002].

For the air transport class IFR (Instrument Flight Rules) the very detailed methodology from the CORINAIR guidebook in an advanced version (based on the [MEET, 1999] model) has been used. It is based on air traffic movement data ¹⁸ (flight distance and destination per aircraft type), aircraft/ engine performance data and emission factors.

Activity Data

Fuel consumptions for the different transport modes IFR national LTO, IFR international LTO, IFR national cruise and IFR international cruise as obtained from the MEET model were summed up to a total fuel consumption figure. This value was compared by the Umweltbundesamt with the total amount of kerosene sold in Austria of the national energy balance: a difference was observed (lower fuel consumption in the energy balance). Therefore the fuel consumption of IFR international cruise was adjusted so that the total fuel consumption of the calculations according to the MEET model is consistent with national fuel sales figures from the energy balance. The reason for choosing IFR international cruise for this adjustment is that this mode is assumed to have the highest uncertainty.

Fuel consumption for VFR flights were directly obtained from the energy balance, as total fuel consumption for this flight mode is represented by the total amount of aviation gasoline sold in Austria.

The number of LTO cycles performed was obtained by disaggregating total LTOs obtained from STATISTIK AUSTRIA according to the ratio of fuel used for IFR domestic LTO and IFR international LTO respectively as obtained from the study (assuming equal fuel consumption for domestic and international LTO).

The study only delivers values until 2000, for the years 2001 to 2003 the fuel allocation was based on the values and shares for 2000. The splitting of the energy data of 2003 into national and international aviation has been done according to the flight numbers of arrival and departure flights (Statistic Austria).

Fuel consumption in [t] was transformed into [GJ] using the heating values as presented in Annex 4.

¹⁸ This data is also used for the split national/ international aviation.

Table 65: Number of national LTO cycles and fuel consumptions as obtained from the MEET model 1990-2003

		Activity		national
	nat. LTO	VFR	nat. cruise	LTO
	Kerosene	Gasoline	Kerosene	LIO
	[Mg]	[Mg]	[Mg]	[-]
1990	3 164	2 487	4 508	6 220
1991	3 417	2 563	5 929	6 644
1992	3 670	2 641	7 351	7 450
1993	3 924	2 722	8 773	7 947
1994	4 177	2 805	10 195	8 219
1995	4 430	2 241	11 616	8 923
1996	5 128	2 153	12 877	10 233
1997	5 827	2 417	14 137	11 013
1998	6 525	2 602	15 398	12 025
1999	6 697	2 771	16 279	12 210
2000	6 868	2 039	17 161	13 551
2001	5 474	2 039	13 677	13 045
2002	6 242	2 039	15 596	13 084
2003	5 474	2 040	13 677	13 652
Trend 1990 - 2003	73%	-18%	203%	119%

CO₂

CO₂ emissions covered in this subcategory were calculated separately for VFR-flights and IFR-flights, for national LTO and national cruise.

For calculation of CO₂ emissions an emission factor of 3 150 kg CO₂/ Mg fuel has been used for all subcategories (IFR and VFR), was taken from the study [KALIVODA et. al, 2002].

N_2O

CORINAIR simple methodology was used.

For N_2O emissions VFR flights are not considered as the applied emission factors only refers to an "average international fleet with large aircraft" which is not true for this subcategory.

The applied emission factors for national/international cruse and national/international LTO were taken from the CORINAIR guidebook, they are based on LTO cycles and fuel used for cruise (0.1 kg N_2O / LTO for LTO and 0.1 kg N_2O / Mg fuel for cruise).

CH₄

Following the simple methodology of the CORINAIR Guidebook, CH_4 emissions for national and international cruise are assumed to be Zero. Furthermore, for calculating CH_4 emissions VFR aviation was not considered.

For calculation of CH_4 emissions an emission factor of 0.53 g/GJ kerosene (IFR national/international LTO) taken from the study [KALIVODA et. al, 2002] has been applied.

Recalculations

The splitting of the energy data into national and international aviation of 2001 and 2002 has been updated according to the energy balance.

3.2.2.11 1 A 3 b Road Transport

Key Source: Yes (CO₂: diesel/ gasoline; N₂O: gasoline)

Emissions from road transportation are covered in this category.

Table 66: Greenhouse gas emissions from Category 1 A3 b Road Transport

	CO ₂	CH₄	N_2O	Total GHG
	[Gg]	[Gg]	[Gg]	[Gg CO2e]
1990	11 924	2.88	0.52	12 144
1991	13 509	2.85	0.73	13 794
1992	13 454	2.58	0.84	13 770
1993	13 636	2.37	0.95	13 979
1994	13 588	2.16	0.99	13 941
1995	13 965	1.97	0.99	14 312
1996	15 544	1.79	0.97	15 883
1997	14 466	1.60	0.91	14 781
1998	16 548	1.53	0.96	16 877
1999	15 843	1.36	0.88	16 143
2000	16 879	1.25	0.85	17 171
2001	18 114	1.16	0.84	18 399
2002	20 138	1.10	0.87	20 430
2003	21 883	1.04	0.87	22 173
Trend 1990 -2003	83.5%	-64.0%	68.0%	82.6%

Table 67: GHG emissions from Road Transport, differentiated by means of transportation

	Passen petrol	ger cars diesel	light duty vehicles	heavy duty vehicles	moped	motorcycle
	[Gg CO₂e]	[Gg CO₂e]	[Gg CO₂e]	[Gg CO ₂ e]	[Gg CO ₂ e]	[Gg CO₂e]
1990	7 514	1 471	1 135	1 970	22	34
1991	8 372	1 685	1 172	2 509	21	35
1992	8 047	1 803	1 207	2 655	20	37
1993	7 761	1 948	1 224	2 987	19	39
1994	7 505	2 202	1 269	2 904	19	42
1995	7 262	2 427	1 283	3 275	18	46
1996	6 707	2 678	1 304	5 123	19	50
1997	6 355	2 938	1 327	4 088	18	54
1998	6 690	3 404	1 364	5 341	18	59
1999	6 189	3 610	1 409	4 853	17	65
2000	5 986	3 941	1 423	5 734	17	68

2001	6 043	4 353	1 408	6 505	17	72
2002	6 531	5 183	1 404	7 220	17	75
2003	6 697	5 933	1 400	8 047	17	79
Trend 1990 - 2003	-10.9%	303.4%	23.4%	308.5%	-23.6%	133.0%

Even more than a third of the greenhouse gas emissions of the road sector are caused by heavy duty vehicles. In comparison with the emissions of 1990 the emissions of diesel cars and heavy duty vehicles tripled.

Methodology

Mobile combustion is differentiated into the categories *Passenger Cars*, *Light Duty Vehicles*, *Heavy Duty Vehicles* and *Buses, Mopeds and Motorcycles*.

In order to apply the CORINAIR methodology a split of the fuel consumption of different vehicle categories is needed. Calculations of emissions from *Mobile Combustion* are based on the GLOBEMI study [HAUSBERGER, 1998].

For road transportation, energy consumption and emissions of the different categories are calculated by multiplying the yearly road performance (km/vehicle and year) and the specific energy use with emission factors. The emissions from cold starts are calculated separately – taking into account temperature, interception periods and driving distances.

Emission factors

Implied emission factors for the different means of road transportation are listed in the following tables. The IEFs change over time due to new technologies and changes in the fleet composition.

Table 68: Implied emission factors of passenger cars 1990 - 2003

		Implied Emission Factors				
	Activity	CO_2	CH₄	N_2O		
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]		
1990	135 720	87.86	21.2	3.8		
1991	151 924	88.92	18.8	4.8		
1992	150 382	89.47	17.2	5.6		
1993	152 804	89.24	15.5	6.2		
1994	156 013	87.09	13.8	6.4		
1995	158 961	87.85	12.4	6.2		
1996	158 512	98.06	11.3	6.1		
1997	160 981	89.86	9.9	5.6		
1998	177 926	93.01	8.6	5.4		
1999	177 158	89.43	7.7	5.0		
2000	183 537	91.97	6.8	4.7		
2001	195 568	92.62	5.9	4.3		

2002	224 320	89.77	4.9	3.9
2003	246 813	88.66	4.2	3.5
Trend 1990 - 2003	82%	1%	-80%	-8%

The increase of the implied emission factor of N_2O is due to the implementation of three-way-catalytic converters in petrol passenger cars in the year 1987, because since then the share of vehicles with these converters increased. As N_2O is produced within the catalytic converter at adequate temperature, the implied emission factors of N_2O (and the sum of emissions of petrol cars) increased too.

The catalytic converter of former generation (EURO 1) had an higher N_2O -niveau than the catalysts of the newer generation (as of EURO 2). Therefore, since 1996 (implementation of EURO 2) the implied emission factor of N_2O is decreasing steadily.

The decrease of the IEF for CH₄ is also due to the increasing share of vehicles with catalytic converters and improved combustion technologies.

The change of the implied emission factors of CO₂ over time is caused by the different split of diesel and petrol. The implied emission factors of light duty vehicles show the same effect.

Table 69: Implied emission factors of light duty vehicles 1990 - 2003

		Implied Emission Factors				
	Activity	CO_2	CH ₄	N_2O		
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]		
1990	15 079	74.73	7.9	1.6		
1991	15 596	74.67	7.0	1.6		
1992	16 078	74.61	6.1	1.6		
1993	16 425	74.07	5.4	1.6		
1994	17 026	74.06	4.7	1.5		
1995	17 242	73.93	4.1	1.5		
1996	17 535	73.92	3.6	1.5		
1997	17 843	73.92	3.1	1.5		
1998	18 339	73.91	2.7	1.5		
1999	18 981	73.76	2.3	1.5		
2000	19 180	73.75	2.0	1.5		
2001	18 985	73.74	1.8	1.5		
2002	18 927	73.74	1.5	1.4		
2003	18 874	73.73	1.3	1.4		
Trend 1990 - 2003	25%	-1%	-83%	-16%		

Table 70: Implied emission factors of heavy duty vehicles 1990 - 2003

	Implied Emission Factors			
Activity	CO_2	CH ₄	N_2O	
[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]	

1990	26 409	74.01	2.5	1.5
1991	33 653	74.01	2.2	1.5
1992	35 617	74.01	2.1	1.5
1993	40 078	74.01	2.0	1.5
1994	38 972	74.01	1.9	1.5
1995	44 073	73.84	1.9	1.4
1996	68 959	73.84	1.7	1.4
1997	55 025	73.84	1.6	1.4
1998	71 910	73.84	1.4	1.4
1999	65 496	73.67	1.4	1.3
2000	77 387	73.67	1.3	1.3
2001	87 817	73.67	1.2	1.3
2002	97 488	73.67	1.2	1.2
2003	108 680	73.67	1.1	1.2
Trend 1990 - 2003	312%	0%	-56%	-20%

Table 71: Implied emission factors of Mopeds 1990 - 2003

		Implied Emission Factors		
	Activity	CO_2	CH ₄	N_2O
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]
1990	271	75.75	1 790.5	0.4
1991	254	75.74	1 771.0	0.4
1992	243	75.78	1 717.3	0.4
1993	238	74.16	1 632.3	0.4
1994	230	74.14	1 571.4	0.4
1995	224	74.15	1 506.9	0.4
1996	219	74.21	1 444.2	0.5
1997	215	74.15	1 378.3	0.5
1998	213	74.18	1 308.0	0.5
1999	210	74.12	1 249.0	0.5
2000	204	74.23	1 204.5	0.5
2001	199	74.09	1 157.0	0.5
2002	195	74.18	1 112.5	0.5
2003	192	74.24	1 061.4	0.5
Trend 1990 - 2003	-29%	-2%	-41%	-20%

Implied Emission Factors Activity CO_2 CH₄ N_2O [TJ] [t/TJ] [kg/TJ] [kg/TJ] 75.83 1990 310 67.2 0.6 1991 75.83 330 66.3 0.6 1992 368 75.82 62.5 8.0 0.7 1993 416 74.21 57.7 1994 465 74.16 54.4 0.6 1995 528 74.17 50.7 8.0 1996 587 74.19 47.9 0.7 1997 645 74.18 45.8 8.0 1998 721 74.20 43.3 0.7 1999 799 74.18 413 0.8 2000 849 74.19 40.0 0.7 2001 896 74.15 38.3 8.0 2002 74.19 945 36.7 0.7 2003 998 74.19 35.1 8.0 Trend 1990 -2003 222% -2% -48% 33%

Table 72: Implied emission factors of Motorcycles 1990 - 2003

Activity data

Calculation of the activity data is based on the GLOBEMI study [HAUSBERGER, 1998]. Information on the number of new vehicles is published yearly by STATISTIK AUSTRIA. Information on the yearly road performance of the vehicles is supplied by the Austrian automobile clubs throughout the annual vehicle inspection system.

The yearly road performance of the vehicle categories for different street categories is calculated as a function of vehicle size and vehicle age. The extrapolation of the yearly vehicle stock- and performance share (by vehicle age, motor type and vehicle size) is based on a dynamic, vehicle specific drop out- and road performance function.

Based on the GLOBEMI model total fuel consumption and total emissions for road transport are calculated with a bottom-up approach. Calculated total fuel consumption of road transport is summed up with total fuel consumption of off road traffic and is compared with national total sold fuel: to be consistent with the national energy balance, activity data in the bottom-up approach is adjusted so that finally the calculated total fuel consumption equals the figure of fuel sold in the national energy balance.

Uncertainties

Uncertainty estimates are based on [Winiwarter & Rypdal, 2001]:

- the uncertainty of activity data (total fuel sold) for road transport is considered to be low (0.5%), and also the uncertainty of CO₂ emission factors is estimated to be 0.5%.
- N₂O emissions are calculated not only on the basis of the amount of total fuel sold but also
 on vehicle km per vehicle type, that's why the uncertainty of activity data for N₂O emissions
 is estimated to be higher than for CO₂ (10%).

- N₂O emission factors are determined in vehicle emission tests, mostly carried out on test benches. Therefore emission factors are prone to uncertainties for the following reasons:
 - test driving cycles cannot fully reflect real driving behaviour
 - uncertainties of test equipment and emission measurement equipment
 - emission factor varies over time because of chemical characteristics of the fuels
 - the influence of aging and maintenance of the vehicle stock

Due to these reasons the uncertainty for the N_2O emission factor is relatively high, it is estimated to be 50%.

Recalculation

As already mentioned under "recalculations" in Chapter 1 A 2 f Manufacturing industries and construction - mobile sources, the split of diesel allocated to the road and off-road sector respectively has been recalculated;

Furthermore, emission factors for CH_4 and N_2O used in the inventory for the whole time series have been updated using the updated handbook of emission factors (version 2.1). The handbook is the result of new measurements.

3.2.2.12 1 A 3 c Railways

Key Source: No

In this category emissions from diesel railcars and steam engines are considered.

Table 73: Greenhouse gas emissions from Category 1 A 3 c Railways.

	CO ₂	CH ₄	N ₂ O
	[Gg]	[Gg]	[Gg]
1990	173.91	0.007	0.022
1991	180.21	0.007	0.023
1992	179.83	0.007	0.022
1993	175.24	0.007	0.021
1994	176.77	0.007	0.021
1995	165.03	0.006	0.019
1996	149.27	0.006	0.017
1997	148.24	0.005	0.017
1998	145.98	0.005	0.017
1999	179.92	0.006	0.020
2000	179.41	0.006	0.020
2001	178.88	0.006	0.019
2002	176.54	0.006	0.019
2003	174.05	0.005	0.018
Trend 1990 - 2003	0.1%	-27.2%	-15.4%

The applied methodology is described in the subchapter on mobile sources of $1\ A\ 2\ f$ (see Chapter 3.2.2.9 1 A 2 f Manufacturing Industries and Construction — Other). Activities used for estimating the emissions and the implied emission factors are presented in the following table.

Table 74: Emission factors and activity data for railway 1990–2003

		Implied Emission Factors		
	Activity	CO_2	CH ₄	N_2O
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]
1990	2 330	74.6	3.1	9.3
1991	2 417	74.6	3.1	9.3
1992	2 411	74.6	3.0	9.2
1993	2 351	74.5	3.0	9.1
1994	2 372	74.5	2.9	8.9
1995	2 217	74.4	2.8	8.8
1996	2 004	74.5	2.8	8.6
1997	1 998	74.2	2.7	8.5
1998	1 968	74.2	2.6	8.4
1999	2 433	73.9	2.5	8.3
2000	2 428	73.9	2.4	8.1
2001	2 421	73.9	2.4	8.0
2002	2 389	73.9	2.3	7.9
2003	2 355	73.9	2.3	7.8
Trend 1990 - 2003	1%	-1%	-26%	-16%

3.2.2.13 1 A 3 d Navigation

Key Source: No

In this category emissions from diesel and gas fuelled ships are considered.

Table 75: Greenhouse gas emissions from Category 1 A 3 d Navigation.

	CO ₂	CH ₄	N ₂ O
	[Gg]	[Gg]	[Gg]
1990	52.07	0.013	0.012
1991	47.26	0.013	0.011
1992	46.28	0.013	0.011
1993	46.64	0.013	0.011
1994	55.56	0.013	0.013
1995	53.91	0.013	0.012
1996	53.97	0.013	0.012
1997	61.81	0.013	0.014
1998	62.42	0.013	0.014
1999	63.03	0.012	0.014

-			
2000	63.63	0.012	0.014
2001	72.73	0.012	0.016
2002	79.57	0.012	0.017
2003	84.25	0.012	0.018
Trend 1990 - 2003	61.8%	-4.9%	44.8%

The applied methodology is described in the subchapter on mobile sources of 1 A 2 f (see Chapter 3.2.2.9 1 A 2 f Manufacturing Industries and Construction — Other). Activities used for estimating the emissions and the implied emission factors are presented in the following table.

Table 76: Emission factors and activity data for the sector Navigation 1990–2003

		Implied Emission Factors		
	Activity	CO_2	CH₄	N_2O
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]
1990	701	74.33	18.44	17.76
1991	636	74.36	20.10	17.52
1992	622	74.37	20.45	17.19
1993	630	74.05	20.18	16.89
1994	750	74.04	17.17	17.19
1995	730	73.90	17.46	16.84
1996	730	73.90	17.31	16.60
1997	836	73.89	15.21	16.71
1998	845	73.89	14.91	16.49
1999	855	73.74	14.57	16.22
2000	863	73.74	14.25	16.00
2001	986	73.73	12.50	16.02
2002	1 079	73.73	11.42	15.93
2003	1 143	73.72	10.75	15.77
Trend 1990 - 2003	63%	-1%	-42%	-11%

3.2.2.14 1 A 3 e Other Transportation

Key Source: Yes (CO₂: gaseous)

Category 1 A 3 e Other Transportation enfolds emissions from pipeline transport by gas turbine driven compressors. The share in total GHG emissions from sector 1 A is 0.4% for the year 1990 and 0.7% for the year 2003. The increase of emissions is caused by the increase of natural gas transfer through Austria.

Table 77: Greenhouse gas emissions from Category 1 A 3 e.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	223	0.006	0.0004	223
1991	224	0.006	0.0004	224
1992	218	0.006	0.0004	219
1993	213	0.006	0.0004	213
1994	208	0.006	0.0004	208
1995	225	0.006	0.0004	225
1996	232	0.006	0.0004	232
1997	231	0.006	0.0004	231
1998	349	0.010	0.0006	349
1999	429	0.012	0.0008	430
2000	531	0.014	0.0010	531
2001	454	0.012	0.0008	455
2002	505	0.014	0.0009	505
2003	484	0.013	0.0009	485
Trend 1990- 2003	117.5%	117.5%	117.5%	117.5%

Combustion of natural gas is the only source of CO₂ emissions from category 1 A 2 e.

Methodology

The CORINAIR simple methodology is applied.

Activity data (fuel consumption) is taken from [IEA JQ 2004] as presented in Annex 4.

CO₂ and CH₄ emission factors are taken from studies [BMWA-EB, 1996].

N₂O emission factors are taken from a national study [BMUJF, 1994].

Emission factors for 2002 are presented in Table 78.

Table 78: Emission factors of Category 1 A 2 e for all years.

Fuel	CO ₂	CH₄	N₂O
	[t / TJ]	[kg / TJ]	[kg / TJ]
Natural Gas	55.00	1.50	0.10

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

3.2.2.15 1 A 4 Other sectors

Category 1 A 4 Other sectors enfolds emissions from stationary fuel combustion in the small combustion sector. It also includes emissions from mobile sources in households and gardening including snow cats and skidoos as well as from agriculture and forestry.

The share in total GHG emissions from sector 1 A is 27.6% for the year 1990 and 22.2% for the year 2003.

Table 79: Greenhouse gas emissions from Category 1 A 4.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	14 392	18.88	0.95	15 083
1991	15 296	20.21	0.95	16 015
1992	14 710	18.45	0.94	15 388
1993	14 569	18.00	0.94	15 240
1994	13 314	16.21	0.93	13 943
1995	14 459	16.90	0.94	15 106
1996	15 738	17.96	1.03	16 434
1997	14 170	13.63	1.03	14 774
1998	13 953	13.13	0.99	14 537
1999	14 776	13.30	1.01	15 368
2000	13 097	12.38	0.93	13 645
2001	14 883	13.68	1.00	15 480
2002	13 663	12.98	0.96	14 234
2003	14 702	13.96	0.98	15 300
Trend 1990-2003	2.2%	-26.1%	3.6%	1.4%

As can be seen from Table 80, liquid fossil fuels are the main source of CO_2 emissions from category 1 A 4 with a quite constant share over the time series. Since 1990 solid fossil fuels became less important whereas CO_2 emissions from natural gas combustion increased.

Table 80: Share of fuel types on total CO₂ emissions from Category 1 A 4.

	Liquid	Solid	Gaseous
1990	62%	20%	18%
1991	60%	20%	20%
1992	59%	17%	23%
1993	59%	15%	26%
1994	61%	14%	25%
1995	60%	12%	28%
1996	63%	11%	26%
1997	63%	10%	28%
1998	63%	8%	28%
1999	60%	8%	32%
2000	61%	7%	31%
2001	60%	6%	35%
2002	63%	6%	32%
2003	63%	5%	32%

1 A 4 Other sectors - stationary sources

Key Source: Yes (CO₂: gaseous/ liquid/ solid; CH₄: biomass)

Category 1 A 4 Other sectors stationary enfolds emissions from stationary fuel combustion in the small combustion sector.

The share in total GHG emissions from sector 1 A is 24.6% for the year 1990 and 19.7% for the year 2003.

Table 81: Greenhouse gas emissions from Category 1 A 4 stationary sources.

-				
	CO ₂ [Gg]	CH₄ [Gg]	N ₂ O [Gg]	CO ₂ equiv. [Gg]
1990	12 893	18.59	0.48	13 433
1991	13 937	19.94	0.53	14 520
1992	13 307	18.16	0.50	13 844
1993	13 154	17.71	0.50	13 682
1994	11 818	15.92	0.46	12 294
1995	13 054	16.62	0.50	13 556
1996	14 214	17.67	0.54	14 751
1997	12 553	13.33	0.49	12 986
1998	12 391	12.85	0.48	12 809
1999	13 191	13.02	0.50	13 620
2000	11 599	12.13	0.46	11 995
2001	13 317	13.44	0.52	13 759
2002	12 057	12.75	0.48	12 473
2003	13 100	13.75	0.52	13 550
Trend				
1990- 2003	1.6%	-26.0%	8.4%	0.9%
			-···,•	

As can be seen in Table 82, liquid fossil fuels are the main stationary source of CO_2 emissions from category 1 A 4 with quite constant share over the total time series. Since 1990 solid fossil fuels became less important whereas CO_2 emissions from natural gas combustion increased.

Table 82: Share of fuel types in total CO₂ emissions from Category 1 A 4 stationary sources.

	Liquid	Solid	Gaseous	Other
1990	57%	23%	20%	0.2%
1991	56%	22%	22%	0.1%
1992	55%	19%	26%	0.2%
1993	55%	17%	29%	0.1%
1994	56%	16%	28%	0.1%
1995	56%	14%	31%	0.1%
1996	59%	12%	28%	0.2%
1997	58%	11%	31%	0.2%
1998	59%	10%	32%	0.1%
1999	55%	9%	36%	0.2%
2000	56%	8%	35%	0.1%
2001	55%	6%	39%	0.0%

	Liquid	Solid	Gaseous	Other
2002	58%	6%	36%	0.1%
2003	59%	5%	36%	0.1%

Methodology

The CORINAIR simple methodology is applied.

There are three technology dependent subcategories (heating types) for this category:

- 1. Central Heatings (CH)
- 2. Apartment Heatings (AH)
- 3. Stoves (ST)

1 A 4 a Commercial/Institutional; 1 A 4 b Agriculture/Forestry/Fishing

There is no information about the structure of devices within this categories. Therefore it is assumed that the whole fuel consumption reported in [IEA JQ 2004] is combusted in devices similar to central heatings.

1 A 4 b Residential

For category 1 A 4 b Residential the disaggregation of the fuel consumption to each of the heating types is performed by the means of building- and habitation-statistics which were surveyed for the years 1991 and 2000 by STATISTIK AUSTRIA.

Emission factors

 CO_2 , CH_4 and VOC emission factors are taken from studies [BMWA-EB, 1990], [BMWA-EB, 1996]. N_2O emission factors are taken from a national study [BMUJF, 1994]. CO_2 emission factors are identical for the three different heating types. The studies provide VOC and C_{org} emission factors for different fuels and heating types.

The C_{org} (Organic Carbon) emission factors provided in [BMWA-EB, 1996] are converted into VOC emission factors with the formula VOC = 1.3 * C_{org} . The factor of 1.3 is an expert judgement by Umweltbundesamt as no factor was available from literature. It is based on analytical data of the composition of VOC emissions from the combustion of fuel wood for residential heating.

CH₄ emission factors are determined assuming that a certain percentage of VOC emissions is methane as listed in Table 83. The split follows closely [STANZEL et. al, 1995].

Table 83: Share of CH₄ and NMVOC on VOC for small combustion devices.

	CH₄	NMVOC	VOC
Coal	25%	75%	100%
Gas oil; Petroleum	20%	80%	100%
Residual Fuel Oil	25%	75%	100%
Natural Gas; LPG	80%	20%	100%
Biomass	25%	75%	100%

The selected emission factors for 2003 are presented in Table 84.

 N_2O CH₄ CO_2 [kg / TJ] [kg / TJ] Fuel [t / TJ] CH and AH Stove CH and AH Stove Hard Coal 93.00 90.00 110.00 2.00 1.00 Hard Coal Briquettes 93.00 90.00 110.00 2.00 1.00 90.00 110.00 4.00 Lignite and brown coal 108.00 1.00 **Brown Coal Briquettes** 97.00 90.00 110.00 4.00 4.00 Coke 92.00 90.00 110.00 2.00 2.00 Peat 90.00 106.00 1.00 Light Fuel Oil 77.00 0.25 0.60 Medium Fuel Oil 78.00 2.00 1.00 Heavy Fuel Oil 78.00 2.00 1.00 75.00 0.20 0.50 1.00 1.00 Gas oil Petroleum 78.00 0.20 0.60 LPG 64.00 1.50 0.10 **Natural Gas** 55.00 0.80 0.80 1.00 1.00 Fuel Wood ⁽¹⁾100.00 150.00 220.00 3.00 7.00 ⁽¹⁾110.00 Wood Waste 150.00 220.00 3.00 7.00 Landfill Gas ⁽¹⁾112.00 1.50 1.00 ⁽²⁾10.00 Industrial Waste 12.00 _ 1.40 _

Table 84: Emission factors of Category 1 A 4 for the year 2003.

Activity data

Fuel consumption is taken from [IEA JQ 2004] as presented in Annex 4.

Recalculations

Changes of activity data are based on energy balance recalculation as described in Annex 2.

Changes in allocation of emissions

Emissions from electricity autoproducers in the commercial sector so far reported under category 1 A 2 f Manufacturing Industries and Construction-Other are now reported under category 1 A 4 a Commercial/Institutional.

1 A 4 Other sectors - mobile sources

1 A 4 b Household and Gardening

Key Source: No

The applied methodology is described in the subchapter on mobile sources of 1 A 2 f (see Chapter 3.2.2.9 1 A 2 f Manufacturing Industries and Construction – Other). Activities used for estimating the emissions and the implied emission factors are presented in the following table.

⁽¹⁾ Reported as CO2 emissions from biomass.

⁽²⁾ According to IPCC guidelines non fossil CO2 emissions of "other fuels" are not reported.

Table 85: Greenhouse gas emissions from mobile sources of household and gardening 1990–2003

	CO ₂	CH₄	N ₂ O
	[Gg]	[Gg]	[Gg]
1990	141.81	0.11	0.02
1991	142.23	0.11	0.02
1992	143.63	0.11	0.02
1993	144.52	0.11	0.02
1994	143.47	0.11	0.03
1995	144.26	0.10	0.03
1996	143.31	0.10	0.03
1997	142.30	0.10	0.03
1998	141.40	0.10	0.03
1999	140.62	0.10	0.02
2000	140.45	0.09	0.02
2001	140.42	0.08	0.02
2002	140.49	0.07	0.02
2003	140.22	0.06	0.02
Trend 1990 - 2003	-1%	-40%	-21%

Table 86: Emission factors and activity data for mobile sources of household and gardening 1990–2003

		Implied Emission Factors		
	Activity	CO_2	CH ₄	N_2O
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]
1990	1 891.2	74.98	0.056	0.013
1991	1 896.8	74.98	0.056	0.013
1992	1 915.6	74.98	0.055	0.013
1993	1 950.0	74.11	0.055	0.013
1994	1 935.9	74.11	0.055	0.013
1995	1 948.7	74.03	0.054	0.013
1996	1 935.8	74.03	0.053	0.013
1997	1 922.1	74.03	0.053	0.013
1998	1 910.0	74.03	0.053	0.013
1999	1 901.5	73.95	0.051	0.012
2000	1 899.1	73.96	0.046	0.012
2001	1 899.1	73.94	0.042	0.012
2002	1 899.3	73.97	0.037	0.011
2003	1 895.7	73.97	0.033	0.010
Trend 1990 - 2003	0.2%	-1.3%	-41%	-23%

1 A 4 c Agriculture and Forestry

Key Source: Yes (CO₂: mobile-diesel)

In this category emissions from off-road machinery in agriculture and forestry (mainly tractors) are considered.

The applied methodology is described in the subchapter on mobile sources of 1 A 2 f (see Chapter 3.2.2.9 1 A 2 f Manufacturing Industries and Construction — Other). Activities used for estimating the emissions and the implied emission factors are presented in the following tables.

Table 87: Greenhouse gas emissions for mobile sources of Agriculture and Forestry

		Agriculture		Forestry		
	CO_2	CH₄	N_2O	CO ₂	CH ₄	N_2O
	[Gg]	[Gg]	[Gg]	[Gg]	[Gg]	[Gg]
1990	821.35	0.12	0.27	536	0.08	0.18
1991	822.87	0.12	0.27	394	0.06	0.13
1992	832.86	0.12	0.27	426	0.06	0.14
1993	839.26	0.12	0.28	431	0.06	0.14
1994	843.89	0.12	0.28	509	0.07	0.17
1995	767.93	0.11	0.26	493	0.07	0.17
1996	836.50	0.11	0.28	544	0.07	0.19
1997	932.84	0.12	0.32	542	0.07	0.19
1998	898.22	0.12	0.31	523	0.07	0.18
1999	915.48	0.11	0.31	529	0.06	0.18
2000	857.65	0.10	0.28	500	0.06	0.17
2001	917.18	0.10	0.29	509	0.06	0.17
2002	902.51	0.10	0.28	563	0.06	0.18
2003	813.77	0.09	0.24	648	0.06	0.21
Trend 1990 - 2003	-1%	-25%	-11%	21%	-16%	17%

Table 88: Emission factors and activity data for mobile sources of Agriculture and Forestry 1990–2003

	Agriculture					For	estry	
		Implied	Emission	Factors		Implie	d Emission F	actors
	Activity	CO_2	CH₄	N_2O	Activity	CO_2	CH ₄	N_2O
	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]	[TJ]	[t/TJ]	[kg/TJ]	[kg/TJ]
1990	11 088	74.1	10.5	24.3	7 234	74.1	10.4	24.3
1991	11 108	74.1	10.5	24.3	5 318	74.1	10.4	24.3
1992	11 243	74.1	10.5	24.3	5 758	74.1	10.3	24.3
1993	11 338	74.0	10.5	24.3	5 826	74.0	10.3	24.3
1994	11 401	74.0	10.4	24.4	6 883	74.0	10.2	24.6
1995	10 398	73.9	10.5	24.5	6 678	73.9	10.0	24.8
1996	11 327	73.9	10.1	24.9	7 371	73.9	9.7	25.1
1997	12 631	73.9	9.6	25.3	7 340	73.9	9.5	25.4

_	
Œ	D
Ú	Z

1998	12 162	73.9	9.5	25.2	7 076	73.9	9.4	25.7
1999	12 424	73.7	9.0	24.7	7 174	73.7	8.9	25.3
2000	11 639	73.7	8.8	24.2	6 784	73.7	8.5	24.8
2001	12 448	73.7	8.2	23.5	6 905	73.7	8.0	24.4
2002	12 248	73.7	7.9	22.6	7 642	73.7	7.6	24.0
2003	11 043	73.7	7.9	21.6	8 801	73.7	7.2	23.3
Trend 1990 - 2003	-0.4%	-0.5%	-25%	-11%	22%	-0.5%	-31%	-4%

Recalculation

Activity data for agriculture and forestry have been recalculated based on results from a new study, which estimates the usage of diesel in the Austrian agriculture [Handler, 2003]; furthermore, as already mentioned under "recalculations" in Chapter 1 A 2 f Manufacturing industries and construction - mobile sources, the split of diesel allocated to the road and offroad sector respectively has been recalculated.

Activity decreased by about 13% in 1990 and decreased by 14% in 2002, compared to the previous submission.

3.2.2.16 1 A 5 Other

In this category emissions of military transport (road and aviation) are reported.

Military Aviation

The following table presents GHG emissions from military aviation.

Table 89: Greenhouse gas emissions from military aviation

	CO ₂	CH₄	N ₂ O	Activity
	[Gg]	[Gg]	[Gg]	[TJ]
1990	32.9	0.0021	0.0011	455.1
1991	35.0	0.0022	0.0011	484.0
1992	31.6	0.0020	0.0010	436.8
1993	37.3	0.0024	0.0012	516.2
1994	39.5	0.0025	0.0013	546.2
1995	30.5	0.0019	0.0010	418.8
1996	36.8	0.0023	0.0012	507.1
1997	35.0	0.0021	0.0011	482.6
1998	40.3	0.0024	0.0013	556.0
1999	39.5	0.0023	0.0013	543.6
2000	42.9	0.0027	0.0014	589.5
2001	34.2	0.0021	0.0011	469.8
2002	39.0	0.0026	0.0013	535.7
2003	34.2	0.0025	0.0011	469.7
Trend 1990 - 2003	4.0%	19.0%	0%	3%

Methodological Issues

Fuel consumption for military flights were reported by the Ministry of Defence. Calculation of emissions from military aviation did not distinguish between LTO and cruise.

For calculation of CO₂ emissions an emission factor of 3 150 kg CO₂ / Mg fuel has been used, it was taken from [KALIVODA et. al, 2002].

CH₄ emissions have been calculated with an emission factor of 0.53 g/GJ. The emission factor is assumed to be the same as the emission factor of national LTO.

As recommended in the IPCC GPG, for calculation of N_2O emissions of military flights the IEF of civil aviation domestic LTO was applied as no military specific emission factor was available.

Military Off-Road (without aviation)

The applied methodology is described in the subchapter on mobile sources of 1 A 2 f (see Chapter 3.2.2.9 1 A 2 f Manufacturing Industries and Construction – Other).

Emission estimates for military activities were taken from [PISCHINGER, 2000]. Information on the fleet composition was taken from official data presented in the internet as no other data were available. Also no information on the road performance of military vehicles was available, that's why emission estimates only present rough estimations, which were obtained making the following assumptions: for passenger cars and motorcycles the yearly road performance as calculated for civil cars was used. For tanks and other special military vehicles the emission factors for diesel engines > 80kW was used (see Table 59; for these vehicles an power of 300kW was assumed). The yearly road performance for such vehicles was estimated to be 30 h / year (as a lot of vehicles are old and many are assumed not to be in actual use anymore).

Activities used for estimating the emissions and the emissions are presented in the following table.

Table 90: Greenhouse gas emissions from Military (Off-Road without Aviation)

	CO_2	CH₄	N_2O	Activity
	[Gg]	[Gg]	[Gg]	[TJ]
1990	2.14	0.0001	0.0008	1 990.0
1991	2.14	0.0001	0.0008	1 991.0
1992	2.14	0.0001	0.0008	1 992.0
1993	2.14	0.0001	0.0008	1 993.0
1994	2.14	0.0001	0.0008	1 994.0
1995	2.13	0.0001	0.0008	1 995.0
1996	2.12	0.0001	0.0008	1 996.0
1997	2.11	0.0001	0.0008	1 997.0
1998	2.10	0.0001	0.0008	1 998.0
1999	2.08	0.0001	0.0008	1 999.0
2000	2.07	0.0001	0.0007	2 000.0
2001	2.06	0.0001	0.0007	2 001.0
2002	2.03	0.0001	0.0006	2 002.0
2003	2.01	0.0001	0.0006	2 003.0

Trend 1990 - 2003	-6%	-33%	-24%	1%	_
----------------------	-----	------	------	----	---

3.2.2.17 International Bunkers - Aviation

Emissions from aviation assigned to international bunkers include the transport modes international LTO and international cruise for IFR-flights (International Flight Rules).

Table 91: Emissions and Activity from International Aviation 1990-2003

	С	O_2	N	₂ O	CH ₄	Act	ivity
Year	int. LTO	int. cruise	int. LTO	int. cruise	int. LTO	int. LTO	int. cruise
i Cai	Kerosene	Kerosene	Kerosene	Kerosene	Kerosene	Kerosene	Kerosene
	[Gg]	[Gg]	[Gg]	[Gg]	[Gg]	TJ	TJ
1990	90.3	795.7	0.006	0.025	0.015	1 249	11 014
1991	103.0	890.8	0.006	0.028	0.016	1 426	12 330
1992	115.8	961.6	0.007	0.031	0.017	1 603	13 310
1993	128.6	1 011.4	0.008	0.032	0.018	1 780	13 998
1994	141.4	1 044.2	0.009	0.033	0.019	1 957	14 453
1995	154.2	1 173.2	0.010	0.037	0.020	2 120	16 127
1996	164.8	1 301.6	0.010	0.041	0.023	2 270	17 927
1997	175.4	1 350.2	0.011	0.043	0.027	2 417	18 605
1998	186.0	1 392.3	0.011	0.044	0.030	2 563	19 187
1999	190.1	1 351.6	0.011	0.043	0.029	2 613	18 583
2000	194.2	1 480.8	0.012	0.047	0.029	2 669	20 356
2001	191.0	1 456.5	0.012	0.046	0.028	2 625	20 021
2002	176.9	1 349.2	0.012	0.043	0.026	2 432	18 548
2003	168.3	1 283.6	0.012	0.041	0.025	2 313	17 643
Trend							
1990 - 2003	86.4%	61.3%	100%	64%	67%	85.2%	60%

Methodological Issues

Emissions have been calculated using the methodology and emission factors as described in Chapter 1 A 3 a Civil Aviation.

3.2.3 Quality Assurance and Quality Control and Verification

For general QA/QC see Chapter 1.6.

At present STATISTIK AUSTRIA works on a written documentation for the national energy balance. Additionally a document which covers a more actual quantification of uncertainty is expected. Both documents will be presented to the Umweltbundesamt in 2005.

Concerning activity data for sectors 1 A 1 and 1 A 2 there are specific regulations in the Austrian legislation:

- BGBI II 1997/ 331 Feuerungsanlagen-Verordnung
- BGBI 1989/ 19 Luftreinhalteverordnung für Kesselanlagen

- BGBI 1988/ 380 Luftreinhaltegesetz für Kesselanlagen

Extracts of the relevant paragraphs are provided in Annex 6.

As already mentioned in the sub chapter on road transport, total calculated fuel consumption is adjusted to equal total fuel sold in Austria. The difference between calculated fuel consumption and observed fuel consumption is mainly due to tank tourism as in Austria fuel prices are lower than in most neighbouring countries¹⁹.

3.2.4 Recalculations of Category 1 A

The revision of the national energy statistics for the time series 1990-2002 by STATISTIC AUSTRIA results changes for category 1 A for all GHGs from 1990 onwards. For details see Annex 2 and the respective chapters of the subsectors of 1 A.

Description of reasons for recalculation for each GHG is given in the relevant subchapters. The tables below show the recalculation difference of emissions from Sector 1 A Fuel Combustion and its sub categories with respect to the previous submission.

CO₂ emissions

Table 92 shows the recalculations of CO₂ emissions for the subcategories of sector 1 A Fuel Combustion.

Table 92: Recalculation difference of CO ₂ emission	ons in [Gg] for Category 1 A Fuel Combustion with
respect to previous submission.	

	1 A	1 A 1	1 A 2	1 A 3	1 A 4	1 A 5
1990	308.22	147.28	-61.92	-354.33	577.18	0.00
1991	236.50	150.01	-9.34	-174.65	270.48	0.00
1992	282.15	201.71	-123.10	-156.98	360.52	0.00
1993	615.45	459.62	-199.22	-105.57	460.61	0.00
1994	528.97	365.53	63.48	-245.56	345.52	0.00
1995	674.11	239.37	99.24	47.82	287.68	0.00
1996	406.49	66.38	253.34	-21.40	108.17	0.00
1997	814.11	-303.76	1 110.21	-36.43	44.08	0.00
1998	393.48	50.34	428.15	88.97	-173.99	0.00
1999	301.66	-538.35	238.00	44.69	557.31	0.00
2000	310.15	-225.05	592.15	298.10	-355.05	0.00
2001	286.59	-1 088.93	1 143.94	180.52	58.23	-7.16
2002	605.03	-1 665.31	1 890.65	367.36	12.07	0.26

CH₄ emissions

-

Results from a recent study on tank tourism [BMLFUW, 2004] show that for 2003 about 30% of total fuel sold in Austria was not driven in Austria; the share of fuel sold abroad increased since 1997, where it was negligible. In 1990 it was the other way round: about 4% of the fuel used in Austria was bought abroad.

Table 93 shows the recalculations of CH_4 emissions for the subcategories of sector 1 A Fuel Combustion.

Table 93: Recalculation difference of CH₄ emissions in [Gg] for Category 1 A Fuel Combustion with respect to previous submission.

	1 A	1 A 1	1 A 2	1 A 3	1 A 4	1 A 5
1990	0.10	0.00	-0.01	0.05	0.06	0.00
1991	-0.05	0.00	0.00	-0.08	0.02	0.00
1992	-0.12	0.00	0.01	-0.16	0.02	0.00
1993	-0.19	0.00	0.02	-0.22	0.02	0.00
1994	-0.28	0.00	0.02	-0.31	0.02	0.00
1995	-0.27	0.00	0.02	-0.30	0.00	0.00
1996	-0.20	0.01	0.02	-0.26	0.03	0.00
1997	-0.29	-0.01	0.02	-0.28	-0.03	0.00
1998	-0.30	0.01	0.03	-0.35	0.01	0.00
1999	-0.04	-0.01	0.00	-0.32	0.29	0.00
2000	-0.02	0.00	0.03	-0.32	0.27	0.00
2001	-0.30	-0.01	0.03	-0.35	0.03	0.00
2002	-0.42	-0.05	0.12	-0.42	-0.06	0.00

N₂O emissions

Table 94 shows the recalculations of N_2O emissions for the subcategories of sector 1 A Fuel Combustion.

Table 94: Recalculation difference of N_2 O emissions in [Gg] for Category 1 A Fuel Combustion with respect to previous submission.

	1 A	1 A 1	1 A 2	1 A 3	1 A 4	1 A 5
1990	-0.88	0.00	0.07	-1.02	0.06	0.00
1991	-1.26	0.00	0.07	-1.33	0.01	0.00
1992	-1.45	0.00	0.06	-1.52	0.01	0.00
1993	-1.61	0.00	0.06	-1.67	0.00	0.00
1994	-1.71	0.00	0.06	-1.78	0.01	0.00
1995	-1.68	0.00	0.05	-1.70	-0.03	0.00
1996	-1.56	0.00	0.04	-1.59	-0.01	0.00
1997	-1.43	0.00	0.04	-1.45	0.00	0.00
1998	-1.51	0.00	0.03	-1.49	-0.05	0.00
1999	-1.33	0.00	0.04	-1.32	-0.04	0.00
2000	-1.32	0.00	0.01	-1.25	-0.09	0.00
2001	-1.26	0.00	0.01	-1.20	-0.07	0.00
2002	-1.36	0.00	0.03	-1.33	-0.07	0.00

Emissions in Gg CO₂ equivalent

Table 95 shows the recalculations in [Gg CO_2 equivalent] for the subcategories of sector 1 A Fuel Combustion.

Table 95: Recalculation difference of GHG emissions in [Gg CO₂ equivalent] for Category 1 Energy with respect to previous submission.

	1 A	1 A 1	1 A 2	1 A 3	1 A 4	1 A 5
1990	36.21	146.57	-40.68	-668.03	598.35	0.00
1991	-154.88	149.53	12.02	-589.23	272.80	0.00
1992	-170.18	201.79	-103.55	-631.79	363.38	0.00
1993	111.21	459.70	-180.87	-628.60	460.99	0.00
1994	-6.92	365.79	81.44	-803.82	349.67	0.00
1995	148.47	239.71	114.76	-484.24	278.24	0.00
1996	-81.92	66.44	266.71	-519.45	104.38	0.00
1997	366.18	-304.91	1 122.17	-493.11	42.03	0.00
1998	-80.36	51.21	436.49	-380.25	-187.80	0.00
1999	-110.12	-538.92	248.98	-372.63	552.44	0.00
2000	-100.67	-223.83	596.80	-94.98	-378.66	0.00
2001	-111.21	-1 088.37	1 147.59	-199.75	36.62	-7.31
2002	174.45	-1 665.27	1 902.47	-53.57	-9.44	0.25

3.2.5 Planned Improvements

Energy Balance

A new inquiry of energy demand in the commercial sector and housholds (Mikrozenzus) was performed by STATISTIK in 2004 and will be considered in future energy statistics.

3.3 Comparison of the Sectoral Approach with the Reference Approach

3.3.1 Comparison of CO₂ emissions

 CO_2 emissions from the sectoral and reference approach are compared and explanations for the differences are provided.

Table 96 compares the results of the two approaches.

Table 96: Comparison of CO₂ emissions of the two approaches

		Reference	Approach			Sec	ctoral Appro	ach	
Year	Liquid [Gg CO ₂]	Solid [Gg CO ₂]	Gaseous [Gg CO ₂]	Total [Gg CO₂]	Liquid [Gg CO ₂]	Solid [Gg CO ₂]	Gaseous [Gg CO ₂]	Other [Gg CO ₂]	Total [Gg CO ₂]
1990	28 565	15 914	12 238	56 716	28 051	13 907	11 088	379	53 425
1991	30 984	16 770	12 939	60 693	30 551	14 515	11 686	373	57 126
1992	30 072	12 952	12 705	55 729	29 323	10 683	11 749	551	52 306
1993	31 114	11 649	13 399	56 163	30 742	9 563	12 250	371	52 926
1994	30 359	11 808	13 782	55 950	30 114	9 488	12 868	430	52 900
1995	30 919	13 496	15 048	59 463	30 315	10 844	13 957	423	55 540
1996	33 392	13 665	16 017	63 073	32 941	10 827	15 109	482	59 359
1997	32 869	14 446	15 437	62 752	32 147	11 416	14 573	542	58 677
1998	35 144	12 634	15 848	63 626	34 290	9 022	14 887	467	58 666
1999	33 179	12 678	16 125	61 982	32 332	9 325	15 038	535	57 229
2000	32 305	14 240	15 388	61 934	31 689	10 685	14 461	617	57 452
2001	34 704	14 765	16 309	65 778	33 863	11 305	15 371	754	61 292
2002	35 534	15 048	16 494	67 076	35 013	11 272	15 340	754	62 420
2003	38 645	15 684	17 834	72 163	38 166	12 131	16 569	754	67 624

Table 97 presents the percentual difference of the two approaches.

Table 97: Difference of CO₂ emissions of the two approaches.

Year	Liquid	Solid	Gaseous	Total
1990	1.8%	14.%	10.4%	6.2%
1991	1.4%	15.5%	10.7%	6.2%
1992	2.6%	21.2%	8.1%	6.5%
1993	1.2%	21.8%	9.4%	6.1%
1994	0.8%	24.5%	7.1%	5.8%
1995	2.0%	24.5%	7.8%	7.1%
1996	1.4%	26.2%	6.0%	6.5%
1997	2.3%	26.6%	5.9%	6.9%
1998	2.5%	40.0%	6.5%	8.5%
1999	2.6%	36.0%	7.2%	8.3%
2000	1.9%	33.3%	6.4%	7.8%
2001	2.5%	30.6%	6.1%	7.3%

2002	1.5%	33.5%	7.5%	7.5%	
2003	1.3%	29.3%	7.6%	6.7%	

Reasons for deviation of CO₂ emissions:

- In the reference approach the IPCC default net calorific values are used. In the sectoral approach country specific net calorific values are taken to calculate the energy consumption.
- The selected emission factors (carbon content) of the two approaches are different.
- Liquid Fuels: Energy balance is mass balanced but not carbon balanced. Fuel category Other Oil is an aggregation of several fuel types and therefore it is difficult to quantify a reliable carbon emission factor for the reference approach. The reference approach considers a share of feed stocks used for plastics production and solvent production as non-carbon-stored. In the sectoral approach a share of emissions from waste incineration of plastics is included in category 1 A 1 a Public Electricity and Heat Production. Emissions from solvents use are included in category 3 Solvent an Other Products Use. In the sectoral approach a share of municipal solid waste without energy recovery is considered in category 6C for the years 1990 and 1991.
- Solid fuels: Reference Approach includes process emissions from blast furnaces and steel production which are included in category 2 C Metal Production as well as process emissions from carbide production which are included in category 2 B 4 Carbide Production.
- Gaseous fuels: National approach uses sector specific carbon contents and heating values different to IPCC default factors. Process emissions from ammonia-production are included in category 2 B 1 Ammonia Production.
- Other fuels: The sectoral approach considers waste as an additional fuel type (e.g. municipal solid waste, hazardous waste and industrial fuel waste)

Simple approach of quantifying the deviation:

By quantifying the deviation between the two approaches with a simple approach it can be seen that the resulting remaining difference of total CO_2 emissions is less than -3 % for all years (see Table 98). Note that this may be interpreted that the sectoral approach plus process emission would be even higher than the reference approach.

At the moment is not possible to quantify the amount of solvents and plastics products which are imported or exported by products, bulk or waste. Furthermore it is known that petrol coke is imported and used for carbide production but not considered in the energy balance.

Table 98: Quantification of deviation between the two approaches

Year	Natural Gas	2 B Chemical Industry ⁽³⁾	2 C Metal Production	3 Solvent Use	Total	Remaining total deviation ⁽²⁾
1990	376	427	3 725	283	4 811	-2.7%
1991	422	436	3 688	237	4 783	-2.0%
1992	418	409	3 158	188	4 173	-1.3%
1993	374	437	3 143	187	4 141	-1.6%
1994	420	404	3 398	172	4 394	-2.4%

(u)	

1996 383 484 3 694 173 4 734 -1.6% 1997 343 475 4 083 190 5 091 -1.6% 1998 449 521 3 887 172 5 029 -0.1% 1999 571 492 3 749 158 4 970 -0.4% 2000 416 484 4 185 181 5 266 -1.3% 2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%							
1997 343 475 4 083 190 5 091 -1.6% 1998 449 521 3 887 172 5 029 -0.1% 1999 571 492 3 749 158 4 970 -0.4% 2000 416 484 4 185 181 5 266 -1.3% 2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%	1995	576	489	3 908	190	5 163	-2.1%
1998 449 521 3 887 172 5 029 -0.1% 1999 571 492 3 749 158 4 970 -0.4% 2000 416 484 4 185 181 5 266 -1.3% 2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%	1996	383	484	3 694	173	4 734	-1.6%
1999 571 492 3 749 158 4 970 -0.4% 2000 416 484 4 185 181 5 266 -1.3% 2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%	1997	343	475	4 083	190	5 091	-1.6%
2000 416 484 4 185 181 5 266 -1.3% 2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%	1998	449	521	3 887	172	5 029	-0.1%
2001 154 462 4 144 194 4 954 -0.7% 2002 350 469 4 637 194 5 650 -1.5%	1999	571	492	3 749	158	4 970	-0.4%
2002 350 469 4 637 194 5 650 -1.5%	2000	416	484	4 185	181	5 266	-1.3%
	2001	154	462	4 144	194	4 954	-0.7%
2003 390 518 4 532 194 5 634 -1.5%	2002	350	469	4 637	194	5 650	-1.5%
	2003	390	518	4 532	194	5 634	-1.5%

⁽¹⁾ Deviation due to the use of different carbon emissions factors, losses and statistical differences.

3.3.2 Comparison of energy consumption

Table 99 compares the energy consumption of the two approaches.

Table 99: Comparison of Energy Consumption of the two approaches

		Reference	Approach			Se	ctoral Approa	ach	
Year	Liquid [TJ]	Solid [TJ]	Gaseous [TJ]	Total [TJ]	Liquid [TJ]	Solid [TJ]	Gaseous [TJ]	Other [TJ]	Total [TJ]
1990	432 880	168 733	219 239	820 853	376 785	140 856	201 600	8 990	728 231
1991	467 037	177 293	231 794	876 124	409 455	149 226	212 477	10 079	781 237
1992	457 286	137 560	227 610	822 456	393 684	112 099	213 616	13 270	732 669
1993	465 569	123 581	240 044	829 194	414 609	98 208	222 735	10 917	746 469
1994	457 133	125 300	246 908	829 341	406 726	97 604	233 968	11 709	750 007
1995	462 169	142 849	269 583	874 601	409 130	112 752	253 772	12 040	787 693
1996	501 056	145 218	286 941	933 215	445 358	113 817	274 712	15 209	849 095
1997	500 301	153 621	276 551	930 474	433 886	118 589	264 963	14 624	832 062
1998	529 927	134 632	283 920	948 478	462 594	103 398	270 664	13 641	850 297
1999	502 235	134 660	288 876	925 770	435 357	101 521	273 414	14 445	824 736
2000	490 877	150 904	275 681	917 462	428 967	117 085	262 921	14 171	823 143
2001	526 665	156 589	292 169	975 423	458 103	121 866	279 473	15 457	874 900
2002	537 421	159 232	295 485	992 138	474 081	119 650	278 905	18 380	891 017
2003	580 291	166 443	319 491	1 066 225	516 004	131 134	301 261	18 855	967 253

Energy consumptions are lower in the sectoral approach because

- (i) non–energy use of fuels is not considered in the sectoral approach except the share that is considered in fuel waste and reported as "Other Fuels",
- (ii) transformation and distribution losses are not considered in the sectoral approach and
- (iii) net calorific values for the different fuel types in the two approaches are different.

⁽²⁾ Negative numbers indicate that CO₂ emissions from the reference approach are lower than emissions from the sectoral approach.

⁽³⁾ Excluding carbide production.

For solid fuels the difference is additionally caused by transformation losses from coking coal to coke oven coke and from coke oven coke and fuel oil to blast furnace gas which are not considered in the sectoral approach.

3.4 Feedstocks

Non-energy use of fuels is considered in the national energy balance. Below explanations for the reported non-energy use is provided together with information on where CO_2 emissions due to the manufacture, use and disposal of carbon containing products are considered.

For fraction of carbon stored the IPCC default values are applied for all fuels except for coke oven coke, of which the amount carbon stored in steel was calculated. Efforts are still ongoing to ensure completeness, to avoid double counting in the national inventory and to ensure consistency with the national energy balance.

Lubricants:

manufacture: emissions are assumed to be included in total emissions from category 1 A 1 b petroleum refinery.

<u>use</u>: emissions from the use of motor oil are included in CO_2 emissions from transport. VOC emissions from lubricants used in rolling mills are considered in category 2 C 1. It is assumed that other uses of lubricants do not result in VOC or CO_2 emissions due to the low vapour pressure of lubricants.

<u>disposal</u>: emissions from incineration of lubricants (waste oil) are either included in categories 1 A 1 a and 1 A 2 if waste oil is used as fuels or in category 6 C respectively if energy is not recovered.

Bitumen:

<u>manufacture</u>: emissions from the production of bitumen are assumed to be included in total emissions of category 1 A 1 b petroleum refinery.

<u>use</u>: CO₂ emissions from the use of bitumen for road paving and roofing are currently not estimated (categories 2 A 5, 2 A 6). However, VOC emissions are estimated.

<u>disposal</u>: CO_2 emissions from the disposal from bitumen are assumed to be negligible. Recycling is not considered.

Natural Gas:

<u>manufacture</u>: emissions from the use of natural gas as a feedstock in ammonia production are accounted for in the industrial processes sector (category 2 B 1).

use/disposal: not applicable, no CO₂ emissions result from the use or disposal of ammonia.

Coke oven coke:

manufacture: emissions from the production of coke are considered in category 1 A 2 a.

use: CO₂ emissions from coke used in iron and steel industry are reported under 2 C.

disposal: not applicable.

Other bituminous coal:

In [IEA JQ 2004] non energy use is reported for the manufacture of electrodes.

<u>manufacture</u>: No information about emissions from manufacture of electrodes is currently available. Therefore it is not clear if emissions are not estimated or not applicable.

<u>use</u>: Emissions from the use of electrodes are considered in category 2 B 4 carbide production and 2 C metal production.

disposal: not applicable.

Other oil products:

<u>manufacture</u>: emissions from the production of ethylene and propylene are included in total emissions of category 1 A 1 b petroleum refinery. CO₂ emissions from solvent use are considered in sector 3 solvent and other product use.

use: CO₂ emissions from solvent use are considered in sector 3.

<u>disposal</u>: emissions from the disposal of plastics in landfills are considered in 6 A and from the use of plastic waste as a fuel in 1 A 2; emissions from the incineration of plastic in waste without energy recovery is included in 6 C; emissions from incineration of plastics in waste with energy recovery are considered in 1 A 1 a.

3.5 Fugitive Emissions (CRF Source Category 1 B)

3.5.1 Source Category Description

In the year 2003 0.6% of national total emissions arose from IPCC Category 1 B Fugitive Emissions. No key sources have been identified within this category.

3.5.1.1 Emission Trends

Table 100 presents GHG emissions arising from this category, their share and trend from 1990 to 2003.

Table 100: Greenhouse gas emissions from Category 1 B Fugitive Emissions

Sector/			(GHG emi	ssions [C	Gg CO₂ e	quivalent	:]			Share 2003	Trend 1990-
Gas	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003	2003
TOTAL	379.69	420.15	384.32	431.72	452.56	485.67	470.76	492.36	479.55	554.22	100%	+46%
CO ₂	102.03	127.03	71.03	120.51	141.83	170.53	164.53	182.73	167.03	233.04	36%	+128%
CH ₄	277.67	293.13	313.29	311.21	310.73	315.13	306.23	309.62	312.51	321.19	64%	+16%

3.5.1.2 Completeness

Table 101 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated.

As can be seen in the table, emissions from solid fuel transformation (production of coke oven coke) are included in the energy sector (sub category *Iron and Steel*), because the only solid fuel transformation occurring in Austria is one coking plant as part of an integrated iron and steel site.

Furthermore, emissions from oil and from gas exploration and production are reported together under oil production (as oil and gas are extracted together at most sites) except CO₂ emissions from sour gas processing, which is reported separately under gas extraction.

Regarding petroleum refining, all CO_2 emissions, thus including flaring, are reported in the Energy Sector, as these are emissions due to combustion. Fugitive CO_2 losses are considered negligible. In category 1 B only CH_4 and NMVOC emissions, included venting, are considered.

Table 101: Overview of subcategories of Category 1 B Fugitive Emissions: transformation into SNAP Codes and status of estimation

IDCC Catagony	SNAP	Status	
IPCC Category	SNAF	CO ₂	CH ₄
1 B 1 a Coal Mining and Hand	ling		
i Underground Mines	050102 Underground mining	NO	NO
ii Surface Mines	050101 Open cast mining	NA	✓
1 B 1 b Solid Fuel Transforma	ition	IE ⁽¹⁾	IE ⁽¹⁾

	_
П	П
	"

IDOO October	ONAR	Sta	tus
IPCC Category	SNAP	CO ₂	CH ₄
1 B 2 a Oil			
i Exploration	0502 Extraction, 1 st treatment and loading of	IE ⁽²⁾	IE ⁽²⁾
ii Production	liquid fossil fuels	✓	✓
iii Transport	050502 Transports and Depots	NE	NE
vi Refining/ Storage	0401 Processes in Petroleum Industries	NA ⁽³⁾	✓
v Distribution of oil products	0504 Liquid fuel distribution 0505 Petrol distribution	NA	NA ⁽⁴⁾
1 B 2 b Natural Gas			
Exploration	0503 Extraction, 1 st treatment and loading of	√ (2)	IF ⁽²⁾
i Production/Processing	gaseous fossil fuels	• • •	IE` ′
ii Transmission	050601 Pipelines	✓	✓
Distribution	050602 Distribution Networks	✓	✓
iii Other Leakage	·	NE	NE
1 B 2 c Venting/Flaring		IE ⁽⁵⁾	IE ⁽⁶⁾

⁽¹⁾ included in 1 A 2 a Iron and Steel

3.5.2 Methodological issues

3.5.2.1 1 B 1 a Fugitive Emissions from Fuels – Coal Mining

This category covers methane emissions from one brown coal surface mine. CH_4 emissions from this category decreased by more than 50% from 1990 to 1999 due to lower mining activities, in the last years coal mining increased again (see Table 102). The overall trend from the base year to 2003 is plus 25%.

Emissions are calculated by multiplying the amount of brown coal produced (= activity data) with the CORINAIR default emission factor of 214 g CH_4 / Mg coal (Emission Factor Data Base #11378²⁰). Activity data are taken from the national energy balance, for 2003 no up-to-date activity data was available, that's why the value of 2002 was also used for 2003.

^{(2) 1} B 2 a i Oil Exploration, 1 B 2 b Natural Gas Exploration and 1 B 2 b I Natural Gas Production/Processing, except CO2 emissions from processing of sour gas, are included in 1 B 2 a ii.

⁽³⁾ CO₂ emissions due to combustion are included in 1 A 1 b Petroleum Refining, fugitive CO₂ emissions are assumed to be negligible

⁽⁴⁾ also includes storage in storage tanks and refinery dispatch station - only NMVOC emissions are estimated as CH₄ emissions are assumed to be negligible.

⁽⁵⁾ included in 1 A 1 b Petroleum Refining

⁽⁶⁾ included in 1 B 2 a vi Petroleum Refining

²⁰ http://www.ipcc-nggip.iges.or.jp/EFDB/main.php

Table 102: Activity data (brown coal produced) and CH₄ emissions for Fugitive Emissions from Fuels- Coal Mining 1990-2003

-		
Year	Coal Mined [Mg]	CH ₄ emissions [Gg]
1990	2 447 710	0.52
1991	2 080 726	0.52
1992	1 746 756	0.45
1993	1 691 675	0.37
1994	1 369 217	0.36
1995	1 297 919	0.29
1996	1 108 558	0.28
1997	1 130 839	0.24
1998	1 140 651	0.24
1999	1 137 888	0.24
2000	1 254 605	0.27
2001	1 193 970	0.26
2002	1 811 824	0.39
2003	1 811 824	0.39

3.5.2.2 1 B 2 a Fugitive Emissions from Fuels – Oil

In this category fugitive emissions from oil refining (CH₄) and CO₂ and CH₄ emissions from combined oil and gas production are considered. CO₂ emissions from the refinery resulting from combustion processes (including flaring) are included in 1 A 1 b Petroleum Refining.

For transport, distribution and storage only NMVOC emissions were estimated, the CH₄ content of the NMVOC emissions is assumed to be negligible.

Refining

Methane emissions from refining are calculated using IPCC Tier 1 methodology (reference manual chapter 1.8).

Emissions are calculated by multiplying the amount of crude oil input (= activity data) with an emission factor. Activity data are taken from the national energy balance (see Table 103).

The implied emission factor of 31.66 CH_4 g/ t crude oil resulted from multiplying an average value of 745 kg CH_4/PJ crude oil input for methane emissions from this category (selected from table 1-58 of the IPCC Reference Manual) with the net calorific value of 42.5 GJ/t oil (taken from the national energy balance).

Production

The amount of gas produced was reported by the Association of the Austrian Petroleum Industry (see Table 103).

Methane emissions for the years 1992 to 2003 from combined oil and gas production was also reported by the *Association of the Austrian Petroleum Industry*, they were calculated according to "SHELL Paper Environment / Storage - References 1) USA EPA1986, AP-42 and 2) E&P Forum 1994, Report 2.59/197".

As can be seen in the table, the implied emission factor decreased by about 45% for the period from 1990 to 2003 due to improved production techniques resulting in lower production losses.

 CO_2 emissions from production were also reported by the *Association of the Austrian Petroleum Industry*, they have been calculated according to the composition of the raw gas (the reported CO_2 emissions refer to CO_2 that has been separated from the raw gas).

Table 103: Activity data (Crude Oil Refined and Gas Produced, respectively) and emissions for Fugitive Emissions from Fuels- Oil Refining and Production 1990-2002

			П				
Refining					Production		
Year	Crude Oil Refined [Gg]	CH₄ [Gg]	Gas Produced [Mio m³]	CH₄ [Gg]	IEF CH ₄ [kg/ 1000m³]	CO₂ [Gg]	IEF CO ₂ [kg/ 1000m³]
1990	7 952	0.25	1 288	4.56	3.54	43	33.39
1991	8 273	0.26	1 326	4.56	3.44	43	32.43
1992	8 732	0.28	1 437	4.56	3.17	40	27.84
1993	8 522	0.27	1 488	4.54	3.05	37	24.87
1994	8 898	0.28	1 355	4.50	3.32	48	35.06
1995	8 619	0.27	1 482	4.41	2.97	38	25.64
1996	8 754	0.28	1 492	4.47	3.00	41	27.48
1997	9 374	0.30	1 428	4.55	3.18	31	21.76
1998	9 190	0.29	1 568	4.39	2.80	61	38.90
1999	8 635	0.27	1 741	4.15	2.38	90	51.69
2000	8 240	0.26	1 805	4.03	2.23	72	39.89
2001	8 799	0.28	1 954	4.10	2.10	88	45.04
2002	8 945	0.28	2 014	4.18	2.08	84	41.71
2003	8 874	0.28	2 030	3.92	1.93	133	65.52

3.5.2.3 1 B 2 b Fugitive Emissions from Fuels – Natural Gas

In this category CO₂ emissions from sour gas processing, CH₄ emissions from gas distribution and CO₂ and CH₄ emissions from gas transmission and storage are reported.

 CO_2 emissions from this category mainly arise from sour gas processing, the trend is increasing emissions due to increasing gas production. Gas transmission is only a minor source of CO_2 emissions.

Sour Gas Processing

 CO_2 emissions from natural gas production (sour gas processing) are reported by the *Association of the Austrian Petroleum Industry* (see Table 104) and were calculated from sour gas composition. Activity data for natural gas production are reported by the *Association of the Austrian Petroleum Industry* (see Table 104).

Distribution

Emissions from natural gas distribution are calculated using an average of the CORINAIR default emission factor for the CORINAIR simpler method (20.9 t/ PJ), the heat calorific value for natural gas (35.85 GJ/m³) was taken from the national energy balance²¹.

Activity data for natural gas distribution corresponds to the gross inland consumption taken from the energy balance.

Transmission, Storage

Pipeline lengths and natural gas stored were taken from annual reports of the *Association of the Austrian Petroleum Industry* (if no value was available for a certain year, the value of the year before or after was used).

Emission factors were taken from the IPCC GPG Table 2.16 (for transmission sum of lower values for venting and fugitives).

Table 104: Activity data and emissions for Fugitive Emissions from Fuels – Natural Gas Distribution and Sour Gas Processing 1990-2003

	Natural Gas	s Distribution	Sour Gas	Processing
Year	Gas Consumption [Mm³]	CH₄ Emissions [Gg]	Sour Gas Prod. [1000m³]	CO ₂ Emissions [Gg]
1990	6 090	4.25	248 090	59
1991	6 439	4.49	285 901	68
1992	6 323	4.41	357 135	80
1993	6 668	4.65	321 653	75
1994	6 859	4.79	363 582	80
1995	7 488	5.23	405 638	89
1996	7 971	5.56	136 737	30
1997	7 682	5.36	406 177	89
1998	7 887	5.50	367 195	81
1999	8 058	5.62	352 318	81
2000	7 690	5.37	358 357	93
2001	8 150	5.69	393 492	95
2002	8 242	5.75	347 513	83
2003	8 912	6.22	408 198	100

Table 105: Activity data and emissions for Fugitive Emissions from Fuels – Natural Gas Transmission and Storage 1990-2003

-	Natural Gas Tra	Natural G	Sas Storage		
Year	Pipelines [km]	CH₄ Emissions [Gg]	CO ₂ Emissions [Gg]	Natural Gas Stored [Mm³]	CH₄ Emissions [Gg]
1990	1 032	2.99	0.03	1 500	0.65
1991	1 032	2.99	0.03	1 500	0.65

²¹ Due to an error in the calculation sheet, the IEF now corresponds to about 19.5 t/ PJ, this will be corrected for the next submission.

	Natural Gas Tra	nsmission (Pipelines	Fugitive & Venting)	Natural G	Gas Storage
Year	Pipelines [km]	CH₄ Emissions [Gg]	CO ₂ Emissions [Gg]	Natural Gas Stored [Mm³]	CH₄ Emissions [Gg]
1992	1 032	2.99	0.03	1 625	0.70
1993	1 032	2.99	0.03	1 980	0.85
1994	1 032	2.99	0.03	1 329	0.57
1995	1 032	2.99	0.03	1 820	0.78
1996	1 238	3.59	0.03	1 820	0.78
1997	1 238	3.59	0.03	1 820	0.78
1998	1 238	3.59	0.03	1 820	0.78
1999	1 358	3.94	0.03	1 820	0.78
2000	1 358	3.94	0.03	1 665	0.72
2001	1 358	3.94	0.03	1 132	0.49
2002	1 358	3.94	0.03	789	0.34
2003	1 430	4.15	0.04	789	0.34

3.5.3 Recalculations

Activity data for 1 B 1 a Coal Mining and 1 B 2 b ii Natural Gas Distribution for 2002 have been updated.

For 1 B 2 a Refining/ Storage and 1 B 2 b Distribution activity data have been updated for the whole time series, data is now consistent with the national energy balance.

The recalculations only affected CH4 emissions, the resulting difference with respect to values reported last year is presented in Table 106.

Table 106: Recalculation difference of emissions in [Gg] for Category 1 B Fugitive Emissions with respect to the previous submission.

	CH₄
1990	-0.001
1991	-0.006
1992	-0.004
1993	-0.004
1994	-0.002
1995	-0.004
1996	-0.011
1997	-0.009
1998	-0.016
1999	-0.015
2000	-0.015
2001	-0.027
2002	0.431

4 INDUSTRIAL PROCESSES (CRF SECTOR 2)

4.1 Sector Overview

This chapter includes information on and descriptions of methodologies used for estimating greenhouse gas emissions as well as references for activity data and emission factors reported under IPCC Category 2 *Industrial Processes* for the period from 1990 to 2003.

Emissions from this category comprise emissions from the following sub categories: *Mineral Products*, *Chemical Industry*, *Metal Production* and *Consumption of Halocarbons and SF*₆.

Only process related emissions are considered in this Sector; emissions due to fuel combustion in manufacturing industries are allocated in IPCC Category 1 A 2 Fuel Combustion - Manufacturing Industries and Construction (see Chapter 3).

Categories where emissions are not occurring because there is no such production in Austria, and categories that are not estimated or included elsewhere are summarized in Table 115.

4.1.1 Emission Trends

In the year 2003, 12.1% of national total greenhouse gas emissions (without LULUCF) originated from industrial processes, compared to 12.9% in the base year (for CO_2 , CH_4 and N_2O the base year is 1990; for HFCs, PFCs and SF_6 the year 1995 has been selected as base year, since the data are considered to be more reliable than those of 1990).

Greenhouse gas emissions from the industrial processes sector fluctuated during the period, they reached a minimum in 1993 which was mainly due to termination of primary aluminium production in Austria in 1992 which was an important source for PFC emissions. Since then emissions are increasing again, mainly due to increasing emissions from consumption of fluorinated compounds.

In 2003, greenhouse gas emissions from Category 2 *Industrial Processes* amounted to 11 046 Gg CO₂ equivalent compared to 10 115 Gg in the base year. Figure 9 shows the trend of GHG emissions from this category for 1990-2003.

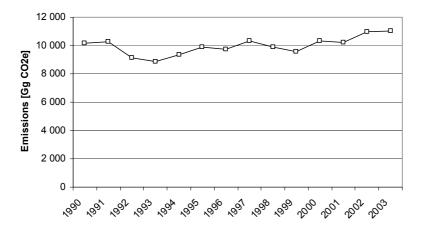


Figure 9: GHG emissions from IPCC Sector 2 Industrial Processes 1990-2002

Emission trends by gas

Table 107 presents greenhouse gas emissions of the industrial processes sector as well as their share in total greenhouse gas emissions from that sector in the base year and in 2003.

Table 107: Greenhouse gas emissions from 2 Industrial Processes by gas in the base year and in 2003.

CHC	Base year*	2003	Base year*	2003
GHG	CO ₂ equivale	nt [Gg CO₂e]	[%]
Total	10 114.82	11 046.05	100.00%	100.00%
CO ₂	7 432.16	8 151.09	73.5%	73.8%
CH ₄	7.48	7.30	0.1%	0.1%
N ₂ O	912.02	883.38	9.0%	8.0%
HFCs	555.26	1 308.22	5.5%	11.8%
PFCs	68.74	102.54	0.7%	0.9%
SF ₆	1 139.16	593.52	11.3%	5.4%

^{*1990} for CO₂, CH₄ and N₂O and 1995 for F-Gases

The major GHG of the industrial processes sector is carbon dioxide with 73.8% of emissions from this category in 2003, followed by HFCs with 11.8%, N_2O with 8.0%, SF_6 with 5.4%, PFCs with 0.9% and finally CH_4 with 0.1%. Emissions by gas and their trends are presented in Table 108.

Table 108: Emissions from IPCC Category 2 Industrial Processes by gas from 1990-2003 and their trend

Gas	GHG emissions [Gg CO2e]								Trend BY*-		
Gas	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
Total	10 153	9 876	9 752	10 345	9 897	9 591	10 329	10 234	10 964	11 046	9.2%
CO ₂	7 432	7 248	6 949	7 529	7 227	7 045	7 645	7 600	8 203	8 151	9.7%
CH ₄	7.48	7.06	7.27	7.49	8.11	7.25	7.32	6.77	7.47	7.30	-2.4%
N ₂ O	912	857	874	863	897	923	952	786	807	883	-3.1%
HFCs	219	555	637	730	813	867	1 019	1 122	1 219	1 308	135.6%
PFCs	1 079	69	66	97	45	65	72	82	87	103	49.2%
SF ₆	503	1 139	1 218	1 120	908	684	633	637	641	594	-47.9%

^{*} BY: 1990 for CO_2 , CH_4 and N_2O and 1995 for F-Gases

CO' emissions

As can be seen in Figure 10, CO_2 emissions from the industrial processes sector fluctuated during the period from 1990 to 2003, showing no clear trend. In 2003 CO_2 emissions from Industrial Processes amounted to 8 151 Gg CO_2 equivalent, which corresponds to an increase of 9.7% compared to base year emissions (7 248 Gg).

About 50% of CO_2 emissions originate from *Metal Production (mainly Iron and Steel Production)* and about 40% from *Mineral Products (Cement Production)*. The rest originates from *Chemical Industry (mainly Ammonia Production)*.

CH₄ emissions

As can be seen in Figure 10, CH_4 emissions from Industrial Processes fluctuated over the period from 1990 to 2003, they reached a maximum in 1998 and now are 2.3% below the level of the base year.

 CH_4 emissions from this sector mainly arise from *Chemical Industry (Ammonia Production and Production of Urea and Fertilizers)*, a minor source for CH_4 emissions is *Metal Production (Electric Furnace Steel Plants, Rolling Mills)*.

N₂O emissions

 N_2 O emissions from this sector arise from *Nitric Acid Production (Chemical Industry)*. As can be seen in Figure 10, N_2 O emissions from the industrial processes sector first showed a decreasing trend, and then increased until 2001. From 2000 to 2001 emissions dropped by 17%, which is due to the introduction of a new catalyst in the nitric acid plant. Since 2001 emissions increased again due to an increase of nitric acid production.

In 2003, N₂O emissions from *Industrial Processes* were 3.1% below the level of the base year.

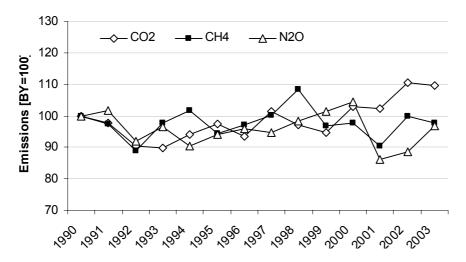


Figure 10: CO_2 , CH_4 and N_2O emissions from Industrial Processes 1990-2002 in index form (base year = 100)

HFC emissions

As can be seen in Figure 11, HFC emissions increased remarkably during the period from 1990 to 2003. In 2003 HFC emissions amounted to 1 308 Gg CO₂ equivalent. This was 136% above the level of the base year (1995).

HFC emissions arise from *Refrigeration and Air Conditioning Equipment*, *Foam Blowing* and *XPS/PU plates*.

PFC emissions

As can be seen in Figure 11, PFC emissions decreased remarkably during the period from 1990 to 2003. In 1990 PFC emissions amounted to 1 079 Gg CO₂ equivalent, they decreased until 1993 to around 50 Gg CO₂ equivalent due to the termination of primary aluminium production in 1993 which was the major source for PFC emissions. Since then PFC emissions

increased, in the year 2003 they amounted to 103 Gg CO_2 equivalent, this was 49.2% above the level of the base year (1995).

PFC emissions now only arise from semiconductor manufacture.

SF6 emissions

As can be seen in Figure 11, SF_6 emissions increased at the beginning of the period and reached a maximum in 1996, since then SF_6 emissions are decreasing again. In 2003 SF_6 emissions amounted to 594 Gg CO_2 equivalent. This was 47.9% below the level of the base year (1995).

SF₆ emissions arise mainly from semiconductor manufacture, magnesium production and filling of noise insulate glasses.

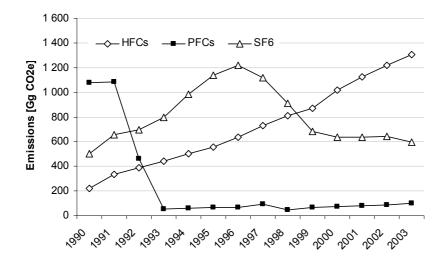


Figure 11: HFC, PFC and SF₆ emissions from Industrial Processes 1990-2003

Emission trends by sources

The main sources of greenhouse gas emissions in the industrial processes sector are *Metal Production* and *Mineral Products*, which caused 41.0% and 27.7% of emissions from this sector in 2003 (see Table 109).

Emissions from processes in *Iron and Steel Production* are the most important single source of the industry sector. It is also one of the ten most important sources of Austria's greenhouse gas inventory (see below and Chapter 1.5.1 Austria's Key Source Categories).

Table 109: Greenhouse gas emissions from IPCC Category 2 Industrial Processes by sector, their share and trend for the base year and 2002.

	Emissions	[Gg CO2e]	Shar	Trend	
	BY*	2003	BY*	2003	BY - 2003
2 Industrial Processes	10 114.82	11 046.05	100%	100%	+0%
A Mineral Products	3 242.73	3 060.20	32.1%	27.7%	-5.6%
B Chemical Industry	1 383.92	1 449.49	13.7%	13.1%	+4.7%
C Metal Production	4 168.12	4 532.08	41.2%	41.0%	+8.7%
F Consumption of Halocarbons and SF6	1 320.05	2 004.28	13.1%	18.1%	+51.8%

^{*1990} for CO₂, CH₄ and N₂O and 1995 for F-Gases

Figure 12 and Table 110 present greenhouse gas emissions from IPCC Category 2 *Industrial Processes* by sub category for the years 1990 to 2003.

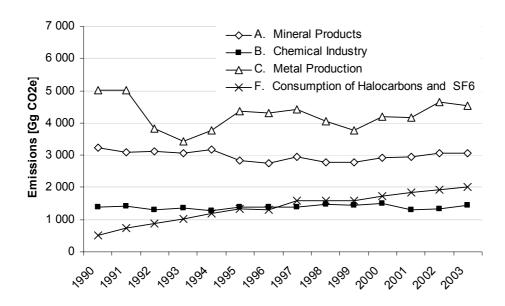


Figure 12: Emissions from IPCC Category 2 Industrial Processes per sub sector 1990-2003

Table 110: Total greenhouse gas emissions from 1990–2003 by subcategories of Category 2 Industrial Processes

				GHO	3 emissio	ns [Gg C	O ₂ equiva	alent]			
	BY	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003
2	10 115	10 153	9 876	9 752	10 345	9 897	9 591	10 329	10 234	10 964	11 046
2 A	3 243	3 243	2 826	2 738	2 938	2 785	2 771	2 928	2 947	3 055	3 060
2 B	1 384	1 384	1 379	1 398	1 378	1 460	1 456	1 491	1 302	1 325	1 449
2 C	4 168	5 029	4 351	4 304	4 432	4 051	3 772	4 192	4 152	4 645	4 532
2 F	1 320	497	1 320	1 311	1 597	1 601	1 593	1 717	1 833	1 939	2 004

^{*1990} for CO₂, CH₄ and N₂O and 1995 for F-Gases

2 A Mineral Products

For the source *Mineral Products* greenhouse gas emissions decreased by 5.6% from 1990 to 2003. This was mainly due to decreasing CO_2 emissions from cement production due to a decrease in cement production.

Only CO₂ emissions arise from this source category.

2 B Chemical Industry

For the source *Chemical Industry* greenhouse gas emissions remained quite stable over the period from 1990 to 2003, in 2003 emissions were 4.7% above the level of the base year.

The main sources of this sub sector are N_2O emissions from nitric acid production and CO_2 emissions from ammonia production.

2 C Metal Production

Greenhouse gas emissions from *Metal Production* fluctuated over the period, which is mainly a result of a drop in PFC emissions from primary aluminium production which was terminated in 1993 and an increase in CO₂ emissions from *Iron and Steel Production*. The overall trend is a decrease by 9.9% related to emissions of the year 1990. Related to emissions of the base year, emissions increased by 8.7%.

The main source of this sector are CO₂ emissions from pig iron production.

2 F Consumption of Halocarbons and SF₆

For the source Consumption of Halocarbons and SF_6 greenhouse gas emissions increased by 51.8% compared to base year emissions (1995 for PFCs, HFCs and SF_6). In 2003 emissions were about four times higher than in 1990. This was mainly due to strongly increasing emissions from the use of HFCs as substitutes for ozone depleting substances (ODS Substitutes).

4.1.2 Key Sources

The methodology and results of the key source analysis is presented in Chapter 1.5, below the key sources in the IPCC Sector 2 *Industrial Processes* are presented (see Table 111).

Table 111: Key categories of Sector 2 Industrial Processes

IPCC	Source Categories	Key Source	es
Category	Source Categories	GHG	KS-Assessment
2 A 1	Cement Production	CO ₂	All
2 A 2	Lime Production	CO ₂	All LA, TA00
2 A 7 b	Magnesia Sinter Plants	CO_2	All
2 B 1	Ammonia Production	CO_2	All LA
2 B 2	Nitric Acid Production	N_2O	All LA, TA96-97, TA01-03
2 C 1	Iron and Steel Production	CO ₂	All

IPCC	Source Categories	Key Source	s
Category	Source Categories	GHG	KS-Assessment
2 C 3	Aluminium production	PFCs	LA90-92
2 C 4	SF ₆ used in Al and Mg Foundries	SF ₆	LABY-97, TA96-02
2 F 1/2/3	ODS Substitutes	PFCs	All LA except LA90, TA97-03
2 F 6	Semiconductor Manufacture	FCs	LABY, LA92-03, TA96, TA00- 01
2 F 8	Other Sources of SF6	SF ₆	LA97-01

LA90 = Level Assessment 1990

LA00 = Level Assessment 2000

TA91 = Trend Assessment BY-1991

TA00 = Trend Assessment BY-2000

In the base year, 12.1% of total greenhouse gas emissions in Austria originated from the 11 key sources of the industrial processes sector compared to 11.5% in 2002. The most important key source is *Iron and Steel Production* which had a share of 4.9% in total emissions in 2003. The second important is *Cement Production*: 1.9% of total emissions 2003 originated from this category. Another 1.4% of total emissions originated from *ODS Substitutes*. All other key sources of the industrial processes sector had a share of less than 1% in national total greenhouse gas emissions in 2003 (see Table 112).

Table 112: Level Assessment for the base year and 2003 for the key sources of Category 2 Industrial Processes

IPCC	Source Categories	GHG	Level Assessment	
Category	Category Source Categories		BY	2003
2 A 1	Cement Production	CO ₂	2.6%	1.9%
2 A 2	Lime Production	CO ₂	0.5%	0.6%
2 A 7 b	Magnesia Sinter Plants	CO ₂	0.6%	0.4%
2 B 1	Ammonia Production	CO ₂	0.5%	0.5%
2 B 2	Nitric Acid Production	N ₂ O	1.2%	1.0%
2 C 1	Iron and Steel Production	CO ₂	4.5%	4.9%
2 C 3	Aluminium production	PFCs	NO	NO
2 C 4	SF ₆ used in Al and Mg Foundries	SF ₆	0.6%	NO
2 F 1/2/3	ODS Substitutes	PFCs	0.7%	1.4%
2 F 6	Semiconductor Manufacture	FCs	0.6%	0.5%
2 F 8	Other Sources of SF ₆	SF ₆	0.3%*	0.2%*

^{*}Level Assessment does not meet the 95% threshold of that year

4.1.3 Methodology

The general method for estimating emissions for the industrial processes sector, as recommended by the IPCC, involves multiplying production data for each process by an emission factor per unit of production.

In some categories emission and production data were reported directly by industry or associations of industries and thus represent plant specific data. For IPCC key source categories, methodologies are described in more detail.

4.1.4 Uncertainty Assessment

In this year's submissions uncertainty estimates for all key sources based on the IPCC GPG, on the uncertainty study cited in Chapter 1.7 Uncertainty Assessment and on expert judgement by Umweltbundesamt are provided (see Table 112, explanations see respective subchapters).

Table 113: Uncertainty assessment for key sources of Sector 2 Industrial Processes

IPCC		Uncertainty [%]			
Category	Source Categories	Activity data	Emission factor	Emission estimate	
2 A 1	Cement Production	5	5	7	
2 A 2	Lime Production	5	5	7	
2 A 7 b	Magnesia Sinter Plants	5	5	7	
2 B 1	Ammonia Production	-	-	5	
2 B 2	Nitric Acid Production	-	-	3	
2 C 1	Iron and Steel Production	5	5	7	
2 C 3	Aluminium production	5	2	5	
2 C 4	SF ₆ used in Al and Mg Foundries	20	0	20	
2 F 1/2/3	ODS Substitutes	20	50	54	
2 F 6	Semiconductor Manufacture	5	10	11	
2 F 8	Other Sources of SF ₆	25	50	56	

4.1.5 Quality Assurance and Quality Control (QA/ QC)

For the Austrian Inventory an internal quality management system has been established, for further information see Chapter 1.6.

Concerning measurement and documentation of emission data there are also specific regulations in the Austrian legislation as presented in Table 114. This legislation also addresses verification. Some plants that are reporting emission data have quality management systems according to the ISO 9000–series or according similar systems.

Table 114: Austrian legislation with specific regulations concerning measurement and documentation of emission data

Austrian legislation
BGBI 1993/ 63 Verordnung für Anlagen zur Zementerzeugung
BGBI 1994/ 498 Verordnung für Anlagen zur Glaserzeugung
BGBI 1994/ 447 Verordnung für Gießereien

2 C 1	BGBI II 1997/ 160 Verordnung für Anlagen zur Erzeugung von Eisen und Stahl
2 C 1	BGBI II 1997/ 163 Verordnung für Anlagen zum Sintern von Eisenerzen
2 A / 2 B /2 C / 2 D	BGBI II 1997/ 331 Feuerungsanlagen-Verordnung
2 C 2 / 2 C 3 / 2 C 5	BGBI II 1998/ 1 Verordnung zur Erzeugung von Nichteisenmetallen
2 A / 2 B /2 C / 2 D	BGBI 1988/ 380 Luftreinhaltegesetz für Kesselanlagen
2 A / 2 B /2 C / 2 D	BGBI 1989/ 19 Luftreinhalteverordnung für Kesselanlagen

Extracts of the applicable paragraphs are provided in Annex 6.

4.1.6 Recalculations

Compared to last year's inventory one source has been added, emissions from two sources have not been reported anymore because they have been double counted, and data for several sources have been updated. A summary of the changes made since the last submission is presented below:

Addition of source categories:

2 C 2 Ferroalloys (CO₂) has been added to the inventory.

Changes in the use of Notation Keys:

2 A 5 Asphalt Roofing and 2 A 6 Road Paving with Asphalt:

emissions are now reported as "IE", as emissions are already included in the Solvents Sector.

2 A 4 Soda Ash Production and Use:

 CO_2 Emissions from Soda Ash Production are now reported as "IE", as coke used in the process is already considered as fuel in the Energy Sector (1 A 2 c Chemical Industries).

Update of activity data:

2 B 5 Chemical Industries - Other:

 ${\rm CO_2}$ emissions from fertilizer production for 1992-1994 have been updated using information from Industry. Emissions from 1990-1991 were recalculated using the average EF from 1993-2003.

2 A 1 Cement Production:

activity and emission data for CO2 emissions from *Cement Production* 1998-2002 have been updated using data from a study based on plant specific data.

2 A 7 a Bricks:

activity data for 2002 has been updated.

2 C 1 Iron and Steel:

Activity data for 2002 has been updated.

Improvements of methodologies and emission factors:

2 B 5 Chemical Industries - Other:

As indicated in the NIR 2004, there had been an inconsistency of the time series for CH_4 emissions from urea production; now the time series has been recalculated to improve time series consistency.

2 C 1 Iron and Steel:

For calculating CO₂ emissions electric arc furnaces now a country specific emission factor is used (previously an emission factor taken from a Swiss publication was applied).

Process specific CO_2 emissions from pig iron production have been recalculated as the underlying activity data used for the calculation (non-energy use of coke) has been updated in the national energy balance.

2 C 3 Aluminium Production:

Activity data used for calculation of PFC and CO₂ emissions from *Aluminium Production* has been harmonized.

2 F Consumption of Halocarbons and SF₆:

During an internal audit several mistakes and inconsistencies were identified and corrected and the data quality could be improved for some sub-sectors using information from industry. Furthermore emissions from 2001 and 2002 were updated using extrapolation techniques (following recommendations from the ERT) and data from industries, previously the same estimated as for 2000 was used for these years.

For further information see the recalculation sections of the respective subchapters of this chapter and the tables presented in Chapter 8.

4.1.7 Completeness

Table 115 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated, the grey shaded cells are those also shaded in the CRF.

Table 115: Overview of subcategories of Category 2 Industrial Processes: transformation into SNAP Codes and status of estimation

IDCC Catagory		egory SNAP		Status		
	IPCC Category		SNAF	CO ₂	CH₄	N_2O
2 A	MINERAL PRODUCTS					
2 A 1	Cement Production	040612	Cement (decarbonising)	✓		
2 A 2	Lime Production	040614	Lime (decarbonising)	✓		
2 A 3	Limestone and Dolomite Use	040618	Limestone and Dolomite Use	✓		
2 A 4	Soda Ash Production and Use	040619	Soda Ash Production and Use	✓		
2 A 5	Asphalt Roofing	040610	Roof covering with asphalt materials	IE ⁽¹⁾		
2 A 6	Road Paving with Asphalt	040611	Road paving with asphalt	IE ⁽¹⁾		
2 A 7	Other					

	2 A 7 a Bricks	040613	Bricks (decarbonising)	✓		
	2 A 7 b Magnesit Sinter	040617	Other - Magnesia Sinter Plants	✓		
2 B	CHEMICAL INDUSTRY					
2 B 1	Ammonia Production	040403	Ammonia	✓	✓	
2 B 2	Nitric Acid Production	040402	Nitric acid	✓		✓
2 B 3	Adipic Acid Production	040521	Adipic acid			NO ⁽²⁾
2 B 4	Carbide Production	040412	Calcium carbide production	✓	NE	
2 B 5	Other	040407 040408		✓	✓	
2 C	METAL PRODUCTION					
2 C 1	Iron and Steel Production ⁽³⁾	040202 040206 040207 040208	Basic oxygen furnace steel plant Electric furnace steel plant	✓	✓	
2 C 2	Ferroalloys Production	040302	Ferro alloys	✓	NE	
2 C 3	Aluminium Production	040301	Aluminium production (electrolysis) – except SF ₆	√ / NO ⁽³⁾	√ / NO ⁽³⁾	
2 C 4	SF ₆ Used in Aluminium and Magnesium Foundries		Secondary Aluminium Production Aluminium Production – SF_6 only Magnesium Production – SF_6 only		SF ₆ ✓	
2 C 5	Other					
2 D	OTHER PRODUCTION					
2 D 1	Pulp and Paper					
2 D 1	Food and Drink			NA ⁽⁴⁾		
				Н	FCs, PFC	s,
					SF ₆	
2 E	PRODUCTION OF HALOCARBONS AND SULPHUR HEXAFLUORIDE	0408	Production of halocarbons and sulphur hexaflouride		NO ⁽⁵⁾	
2 F	CONSUMPTION OF HALOCARBONS AND SULPHUR HEXAFLUORIDE ⁽⁶⁾					
2 F 1	Refrigeration and Air Conditioning Equipment				✓	
2 F 2	Foam Blowing				✓	
2 F 3	Fire Extinguishers				✓	
2 F 4	Aerosols				✓	
2 F 5	Solvents				✓	
2 F 6					✓	
	Semiconductor Manufacture				•	
2F7					√	

⁽¹⁾ Emissions are included in Sector 3 Solvent and Other Product Use

⁽²⁾ There is no adipic acid production in Austria.

⁽³⁾ Primary aluminium production was terminated in 1992.

 $^{^{(4)}}$ CO $_2$ emissions from this source are of biogenic origin.

⁽⁵⁾ There is no production of halocarbons or SF₆ in Austria.

4.1.8 Planned Improvements

For the last year of the inventory, no data was available for some important sub-categories of this Sector. One reason is that national statistical data are not available in time to be considered in the inventory. On the other hand, industry is not obliged to report data for the national inventory.

The data availability problem will be solved for most key sources of this Sector from the years 2005 onwards, because the ordinance that regulates monitoring and reporting in the context of the EU Emissions Trading scheme in Austria also regulates that data reported from the plant operators can be used for the inventory (see Chapter 1.2).

This ensures data availability for the following key sources:

- 2 A 1 Cement Production
- 2 A 2 Lime Production
- 2 A 7 b Magnesia Sinter Plants
- 2 C 1 Iron and Steel,

and the non-key sources

- 2 A 3 Limestone and Dolomite Use
- 2 A 4 Soda Ash Use
- 2 A 7 a Bricks production
- 2 B 4 Carbide Production.

Until data is available from the EU Emissions Trading scheme²², mainly national statistical data will be used to estimate emissions where data from plant operators is not available.

Furthermore, it is planned to incorporate results from a new study concerning emissions from ODS Substitutes for the next submission.

4.2 Mineral Products (CRF Source Category 2 A)

4.2.1 Cement Production (2 A 1)

4.2.1.1 Source Category Description

Emissions: CO₂

Key Source: Yes (CO₂)

CO₂ emissions from production of cement are a key source because of the contribution both to the level of all years of the greenhouse gas inventory and to the trend from the base year to all

⁽⁶⁾ No corresponding SNAP category is presented here as the actual estimation is based on IPCC Categories.

²² the first year for which data will be available is 2005, this data will be reported in the submission 2007

years. In 2003 CO₂ emissions from cement production contributed 1.9% to total greenhouse gas emissions in Austria (see Table 112).

In this category process specific CO2 emissions are reported, emissions due to combustion are reported in the energy sector (category 1 A 2 f).

Process specific CO_2 is emitted during the production of clinker (calcination process) when calcium carbonate ($CaCO_3$) is heated in a cement kiln up to temperatures of about 1 300°C. During this process calcium carbonate is converted into lime (CaO - Calcium Oxide) and CO_2 .

Table 116 presents the process-related CO_2 emissions from the production of cement for the period from 1990 to 2003.

Year	Process specific CO ₂ emissions [Gg]	Clinker [t/a]	IEF [kg/t _{Ci}]
1990	2 033	3 693 539	550.53
1991	2 005	3 635 462	551.51
1992	2 105	3 820 397	550.99
1993	2 032	3 678 293	552.39
1994	2 102	3 791 131	554.52
1995	1 631	2 929 973	556.77
1996	1 634	2 915 956	560.45
1997	1 761	3 103 312	567.43
1998	1 599	2 869 035	557.22
1999	1 607	2 891 785	555.84
2000	1 712	3 052 974	560.62
2001	1 720	3 061 338	561.82
2002	1 736	3 118 227	556.62
2003	1 736	3 118 227	556.62

Table 116: CO₂ emissions from decarbonising from cement production 1990–2003

 CO_2 emissions (see Table 116) have been quite constant from 1990 to 1994, then dropped by 21.7% compared to the previous year, due to a drop in cement production of almost 20%. Since then emissions as well as production of cement remained on this lower level with only minor fluctuations. The overall trend from 1990 to 2002 was minus 15%. For the year 2003 the value of 2002 was used, as no up to date value was available.

4.2.1.2 Methodological Issues

Emissions were estimated using the IPCC Tier 2 methodology.

Activity data (clinker production) as well as emission data were taken from studies on emissions from the Austrian cement production industry [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2004]. The studies cover the years 1988 to 2002. As data for 2003 was not available in time, the value of 2002 was used for 2003 as a first estimate.

In these studies process-specific CO_2 emissions and CO_2 emissions due to combustion are presented separately. In the course of these studies all cement production plants in Austria were investigated. The determination of the emission data took place by inspection of every

single plant, recording and evaluation of plant specific records and also plant specific measurements and analysis carried out by independent scientific institutes.

CO₂ emissions from the raw meal calcination (decarbonising) were calculated from the raw meal composition:

$$M_{(CO2 calc)} = \sum_{k} (m_{(raw meal)})_k \cdot x_{(CaCO3)k} \cdot (44.0088/100.0892)$$

Whereas:

m mass stream [kg/a]

x mass portion

k for the kth cement plant

The raw meal composition was determined at every Austrian plant, based on this data and plant specific production data total emissions from this source were calculated.

No cement kiln dust (CKD) correction factor was considered because cement kiln dust is returned back into the raw material.

Table 116 presents activity data and implied emission factors for process-specific CO_2 emissions from cement production as reported in the studies [HACKL, MAUSCHITZ, 1995, 1997, 2001 and 2004].

4.2.1.3 Uncertainty Assessment

As the applied methodology is based on plant specific data, the uncertainty of both activity data and emission factors (basically the raw meal composition as the uncertainty for the stochiometric emission factor is negligible) is assumed to be low (5%). This results in a combined uncertainty of 7% (according to the IPCC GPG Table 3.2, the uncertainty for emissions using Tier 2 methodology (based on clinker production data) is 5-10%).

4.2.1.4 Recalculations

Activity data and emission data for 1998 onwards have been updated (previously the estimate of 1998 was used for the years after). The recalculation difference resulting from the update of data is presented in the following table.

Table 117: Recalculation difference for CO2 emissions from Cement Production with respect to submission 2004

	1998	1999	2000	2001	2002
Recalculation Difference [Gg]	19.06	19.80	124.00	132.36	148.10

4.2.2 Lime Production (2 A 2)

4.2.2.1 Source Category Description

Emissions: CO₂

Key Source: Yes (CO₂)

 CO_2 emissions from lime production was a key source because of its contribution to the total inventory's level in all inventory years and to the trend of emissions of the total greenhouse gas inventory from the base year to 2000. In the year 2003 emissions from this category contributed 0.6% to the total amount of greenhouse gas emissions in Austria (see Table 112).

 CO_2 is emitted during the calcination step of lime production. Calcium carbonate (CaCO₃) in limestone and calcium/ magnesium carbonates in dolomite rock (CaCO₃•MgCO₃) are decomposed to form CO_2 and quicklime (CaO) or dolomite quicklime (CaO•MgO) respectively.

Table 118 presents activity data for this category (lime produced) as well as CO₂ emissions from lime production for the period from 1990 to 2002.

Table 118: Activity data and CO₂ emissions for Lime production 1990–2002

Year	Lime Produced [t/a]	CO ₂ emissions [Gg]	CO ₂ IEF [kg/Mg]
1990	512 610	396	772.84
1991	477 135	361	757.16
1992	462 392	355	768.00
1993	479 883	365	760.96
1994	518 544	390	753.06
1995	522 934	395	754.60
1996	505 189	383	757.59
1997	549 952	412	749.99
1998	594 695	454	763.03
1999	595 978	453	760.34
2000	654 437	498	760.26
2001	666 633	507	759.97
2002	719 246	547	759.97

The overall trend for CO_2 emissions from this category was increasing emissions, in the year 2002 emissions were 38% higher than 1990 (see Table 118).

4.2.2.2 Methodological Issues

Emissions were estimated using a country specific method based on detailed production data.

Activity data and emission values were reported by the *Association of the Stone & Ceramic Industry*, except the emission value for 2002, which was calculated using the IEF of 2001.

The reported CO_2 emission data is based data of each lime production plant in Austria, considering the CaO and MgO content of limestone used at the different plants and calculating CO_2 emissions from the stoichiometric ratios (using IPCC default emission factors).

Activity data for lime production for the period from 1990 to 2002 is presented in Table 118. For 2003 no data were available, that's why the data of 2002 was reported for 2003 also.

4.2.2.3 Uncertainty Assessment

Uncertainties for activity data are considered to be low as it is based on plant specific data of all Austrian plants and is therefore considered the same as for cement production (5%). The uncertainty of the emission factor is assumed to be 5% based on the same assumptions as for cement production.

4.2.3 Limestone and Dolomite Use (2 A 3)

4.2.3.1 Source Category Description

Emissions: CO₂
Key Source: No

In this category CO_2 emissions from decarbonising of limestone and dolomite in the glass industry and in the iron and steel industry is considered. This category was not rated a key source in the key source analysis of the submission 2005. In 2003 emissions from this category contributed 0.3% to national total emissions.

Emissions from this category increased by 35% mainly due to increased limestone use in iron and steel industries.

Table 119: Activity data and CO₂ emissions for Limestone and Dolomite U	Use 1990–2003
---	---------------

Year	Limestone Used [t/a]	Dolomite Used [t/a]	CO ₂ emissions [Gg]
1990	430 729	24 020	200
1991	433 122	27 646	203
1992	386 650	24 463	181
1993	386 186	24 485	181
1994	417 440	26 212	195
1995	485 610	26 225	225
1996	430 890	26 225	201
1997	494 406	24 457	228
1998	516 957	24 457	238
1999	476 446	26 826	222
2000	545 077	22 624	250
2001	530 453	26 573	245
2002	577 853	23 477	265
2003	582 132	30 368	270

4.2.3.2 Methodological Issues

Emissions were estimated using the methodology and the default emission factor of the IPCC guidelines.

Activity data for limestone and dolomite used in glass industry were reported by the Association of Glass Industry for the year 2002 and 2003, for the years before activity data was estimated

using a constant ratio of limestone and dolomite used per ton of glass produced (glass production was reported by the *Association of Glass Industry* for all years).

Activity data for limestone used in blast furnaces for the years 1998 to 2002 was reported directly by the plant operator of the two integrated iron and steel production sites that operate blast furnaces. For the years before and after activity data was estimated using the average ratio of limestone used per ton of pig iron produced of the years 1998-2002.

For calculation of CO_2 emissions the IPCC default emission factors of 440 kg CO_2 / t limestone and 447 kg CO_2 / t dolomite were used.

4.2.4 Soda Ash Use (2 A 4)

4.2.4.1 Source Category Description

Emissions: CO₂ Key Source: No

In this category CO_2 emissions from decarbonising of soda used in glass industry is considered. In 2003 emissions from this category contributed 0.02% to total emissions in Austria. The following table presents CO_2 emissions from this category.

Table 120: Activity data and CO₂ emissions for Soda Use 1990–2003

Year	Soda Used [t/a]	CO ₂ emissions [Gg]
1990	46 690	19
1991	53 737	22
1992	47 551	20
1993	47 593	20
1994	50 950	21
1995	50 975	21
1996	50 975	21
1997	47 539	20
1998	47 539	20
1999	52 144	22
2000	43 976	18
2001	51 652	21
2002	45 633	19
2003	45 263	19

4.2.4.2 Methodological Issues

Emissions were estimated using the methodology and the default emission factor of the IPCC guidelines.

Activity data for soda used in glass industry were reported from the *Association of Glass Industry* for the year 2002 and 2003, for the years before activity data was estimated using a constant ratio of soda used per ton of glass produced, taken from the data reported for 2002 (glass production was reported by the *Association of Glass Industry* for all years). Activity data is presented in Table 120.

For calculation of CO_2 emissions the IPCC default emission factor of 415 kg CO_2 / t soda was used.

4.2.5 Asphalt Roofing (2 A 5) and Road Paving with Asphalt (2 A 6)

Emissions previously reported under these categories resulted from asphalt roofing production and bitumen production as well as pre-painting before the asphalt roofing or road paving. However, these emissions are already accounted for in the solvents sector, that's why emissions are now reported as "IE".

4.2.6 Mineral Products – Other (2 A 7)

4.2.6.1 Source Category Description

In this category bricks (decarbonising) and magnesia sinter production are addressed.

4.2.6.2 Bricks Production

Emissions: CO₂
Key Source: No

This category includes CO₂ emissions from the production of bricks where CO₂ is generated through decomposition of the carbonate content of the raw materials.

Table 121 presents CO_2 emissions from bricks production for the period from 1990 to 2003. CO_2 emissions from bricks production had a maximum in 1995/1996, following brick production. In 2003 emissions from this category were 6% above the level of 1990.

Methodological Issues

No IPCC methodology is available for this source.

Emission values for the years 1998-2001 were reported by the *Association of the Stone & Ceramic Industry*. The reported CO_2 emission data is based on data of the different brick production sites in Austria, considering the carbonate contents of raw materials used for bricks production at the different plants and calculating CO_2 emissions from the stoichiometric ratios (using IPCC default emission factors).

Activity data for the production of bricks was taken from national statistics (STATISTIK AUSTRIA), for 1996 the value of 1995 was used due to lack of data. From the IEF for 1998 emissions of the years before 1998 were calculated. For 2003 the value of 2002 was used.

Table 121 presents activity data for production of bricks and CO₂ emissions for this category for the period from 1990 to 2003.

Table 121: Activity data and CO₂ emissions for Bricks Production 1990-2003

Year	Bricks [t/a]	CO ₂ emissions [Gg]	CO ₂ IEF
1990	2 230 000	112	50.35
1991	2 333 852	118	50.35
1992	2 412 902	121	50.35
1993	2 593 236	131	50.35
1994	2 675 473	135	50.35

Year	Bricks [t/a]	CO ₂ emissions [Gg]	CO ₂ IEF
1995	2 848 716	143	50.35
1996	2 848 716	143	50.35
1997	2 625 046	132	50.35
1998	2 557 448	129	50.35
1999	2 184 773	117	53.43
2000	1 954 855	112	57.16
2001	1 959 395	119	60.88
2002	1 904 142	116	60.88
2003	1 904 142	116	60.88

Recalculations

Activity data for 2002 has been updated with national statistical data.

4.2.6.3 Magnesia Sinter Production

Emissions: CO₂

Key Source: Yes (CO₂)

This category includes CO_2 emissions from the production of magnesia sinter. CO_2 emission from magnesia sinter production is a key source both due to the contribution to total emissions of all inventory years and also with regard to all trend assessments. In 2003 it contributed 0.41% to the total amount of greenhouse gas emissions in Austria (see Table 112).

During production of magnesia sinter CO_2 is generated during the calcination step, when magnesia (MgCO₃) is roasted at high temperatures in a kiln to produce MgO. Magnesia sinter is processed in the refractory industry.

Table 122 presents CO₂ emissions from production of magnesia sinter for the period from 1990 to 2002.

 CO_2 emissions from magnesia sinter plants varied over the period from 1990 to 2002 with an overall decreasing trend. In 2002 emissions were 22% less than in 1990. For 2003 no data was available.

Methodological Issues

No IPCC methodology is available for this source.

Emission values were directly reported by the only company in Austria sintering magnesia. Emissions have been calculated based on the carbonate content of the raw material.

Table 122 presents CO_2 emissions from this category for the period from 1990 to 2002. For 2003 no data was available.

Table 122: CO₂ emissions from Magnesia Sinter Production 1990-2002

Year	CO ₂ Emissions [Gg]
1990	481
1991	392
1992	336

325
323
410
355
384
345
350
339
334
374

Uncertainty Assessment

Emissions were calculated based on stochiometric ratios and this is a fixed number, therefore the uncertainty of the emission factor is the uncertainty of raw material composition which is estimated to be about 5%. The uncertainty of activity data is assumed to be low (5%) as there is only one plant in Austria and data is obtained from this plant.

4.3 Chemical Industry (CRF Source Category 2 B)

4.3.1 Ammonia Production (2 B 1)

4.3.1.1 Source Category Description

Emissions: CO_2 and CH_4 Key source: Yes (CO_2)

 CO_2 emissions from production of ammonia are a key source due to the contribution to the level of total emissions of the Austrian greenhouse gas inventory of all years from 1990 to 2003. In 2003 it contributed 0.54% to the total amount of greenhouse gas emissions in Austria (see Table 112).

Ammonia (NH_3) is produced by catalytic steam reforming of natural gas or other light hydrocarbons (e.g. liquefied petroleum gas, naphtha). CO_2 is produced by stoichiometric conversion and is mainly emitted during the primary reforming step.

One half of the methane introduced in the synthesis is CH_4 that is generated in the so called methanator: small amounts of CO and CO_2 , remaining in the synthesis gas, are poisonous for the ammonia synthesis catalyst and have to be removed by conversion to CH_4 in the methanator. The other half is recycled methane that has not been converted in the reforming step. Only a small part of the methane is actually emitted, the main part is used as a fuel in the primary reformer.

Table 123 presents CO₂ and CH₄ emissions from ammonia production as well as production of ammonia for the period from 1990 to 2003.

Emissions varied during the period and followed closely the trend in ammonia production. From 1990 to 1994 emissions remained quite stable and then increased and reached a maximum in 1998. Since then emissions were decreasing again. In 2003 CO_2 emissions increased by 12%, CH_4 emissions by 31%. The implied emission factors vary depending on the plant utilization and on how often the production process was interrupted, e.g. because of change of the catalyst.

4.3.1.2 Methodological Issues

Following the IPCC Guidelines plant specific measurement data was collected.

Activity data since 1990 and emission data from 1994 onwards were reported directly to the UMWELTBUNDESAMT by the only ammonia producer in Austria and thus represent plant specific data. From emission and activity data an implied emission factor was calculated (see Table 123). The implied emission factor that was calculated from activity and emission data from 1994 was applied to calculate emissions of the years 1990 to 1993 as no emission data was available for these years.

Emissions are measured regularly at the only ammonia producer in Austria, using spot sampling and extrapolation to annual loads. The measurements are performed 2 to 12 times per year for both CO_2 and CH_4 .

 CO_2 and CH_4 emission factors of ammonia plants depend largely on the number of shutdowns and start ups during the year. Especially a start up after a turn around with exchange of catalyst in some of the reactors of the plant (as in 1998) needs a prolonged start up procedure. This causes an increase of emissions without production of ammonia.

Table 123: Activity data, emissions and implied emission factors for CO₂ and CH₄ emissions from ammonia production 1990–2003

Year	Ammonia Produced [t]	CO ₂ Emissions [Gg]	CH ₄ Emissions [Gg]	IEF CO ₂ [kg/t]	IEF CH₄ [g/t]
1990	461 000	396	0.062	859	135
1991	475 000	408	0.064	859	135
1992	432 000	371	0.058	859	135
1993	469 000	403	0.063	859	135
1994	444 000	381	0.060	859	135
1995	473 000	468	0.061	990	129
1996	484 772	465	0.059	960	122
1997	479 698	457	0.081	953	169
1998	484 449	501	0.102	1 035	211
1999	490 493	472	0.055	963	112
2000	482 333	463	0.060	960	124
2001	448 176	442	0.051	986	114
2002	464 028	445	0.069	959	148
2003	510 887	494	0.047	966	93

4.3.1.3 Uncertainty assessment

As data was obtained from the only ammonia plant in Austria and data is based on actual measurement data the quality of emission estimates is rated as "high" (5% uncertainty).

4.3.2 Nitric Acid Production (2 B 2)

4.3.2.1 Source Category Description

Emission: N_2O , CO_2 Key Source: Yes (N_2O)

Nitric acid (HNO₃) is manufactured via the reaction of ammonia (NH₃) whereas in a first step NH_3 reacts with air to NO and NO_2 and is then transformed with water to HNO_3 .

Ammonia used as feedstock (gaseous or liquid) in the nitric acid plant always contain a small amount of methane, which is solved in the ammonia and is a byproduct. By burning ammonia on an alloy catalyst - which is the basis of the nitric acid process - a small amount of CO_2 is produced and leads to a CO_2 emission in the tail gas.

In Austria there is only one producer of HNO₃.

Table 124 presents N_2O and CO_2 emissions from production of nitric acid for the period from 1990 to 2003.

 N_2O emissions fluctuated during the period from 1990 to 2003, they increased from 1993 to 2000 and then decreased. This drop in emissions since 2001 was due to efforts made by the company to reduce their N_2O emissions, the IEF decreased from an average of 5.7 kg N_2O / t nitric acid, to about 5.0 kg N_2O / t nitric acid.

 CO_2 emissions also varied over the period from 1990-2002 following the trend of nitric acid production closely until 1999. Specific emissions decreased since 2000 due to efforts made by the plant owner to reduce greenhouse gas emissions (also see implied emission factors in Table 124). In 2003 emissions were 7% lower than in 1990.

4.3.2.2 Methodological Issues

Following the IPCC Guidelines plant specific measurement data was collected.

Activity and emission data of N_2O emissions was obtained directly from the plant operator. Since 1998, emissions are measured continuously. Based on the analysed emission data of 1998 and due to the fact that the production technology has not changed between 1990 and 1998 emission factors per ton of product were calculated for the used technologies (nitric acid is produced at one site in up to five plants with different technologies; some of the plants where closed since 1990, two are still in operation). With these (conservative) estimate of emission factors and the production volume of the individual plants the total emission of N_2O per year was calculated.

Activity and emission data of CO_2 emissions from the years 1994 onwards have been reported directly to the UMWELTBUNDESAMT by the plant operator and thus represent plant specific data. The implied emission factor that was calculated from activity and CO_2 emission data from 1994 was applied to calculate CO_2 emissions of the years 1990 to 1993 as no CO_2 emission data was available for these years.

Table 124: Activity data, emissions and implied emission factors for CO₂ and CH₄ emissions from Nitric Acid Production 1990-2003

Year	Nitric Acid Produced [t]	CO ₂ Emissions [Gg]	N ₂ O Emissions [Gg]	IEF CO ₂ [kg/t]	IEF N₂O [kg/t]
1990	529 998	0.41	2 942	0.78	5.55
1991	534 910	0.42	2 991	0.78	5.59
1992	484 731	0.38	2 702	0.78	5.57
1993	513 224	0.40	2 835	0.78	5.52
1994	467 391	0.36	2 662	0.78	5.70
1995	484 016	0.37	2 765	0.76	5.71
1996	495 738	0.38	2 820	0.76	5.69
1997	489 376	0.36	2 783	0.73	5.69
1998	504 977	0.38	2 893	0.75	5.73
1999	512 797	0.40	2 979	0.78	5.81
2000	533 715	0.37	3 070	0.69	5.75
2001	510 800	0.36	2 537	0.71	4.97
2002	522 410	0.37	2 604	0.70	4.98
2003	558 226	0.41	2 850	0.73	5.10

4.3.2.3 Uncertainty assessment

As data was obtained from the only nitric acid plant in Austria where emissions are measured continuously the quality of emission estimates was rated as "high" (5% uncertainty).

4.3.3 Calcium Carbide Production (2 B 4)

4.3.3.1 Source Category Description

Emission: CO₂
Key Source: No

Calcium carbide is made by heating calcium carbonate and subsequently reducing CaO with carbon – both steps lead to emissions of CO₂.

This source is only a minor source of CO_2 emissions in Austria: in 2003, emissions from this source contributed 0.04% to national total emissions.

4.3.3.2 Methodological Issues

Emissions were estimated using a country specific methodology.

Activity data was directly reported by the plant operator of the only carbide production plant in Austria. For 2003 no data was available, that's why the value of 2002 was used as a first estimate.

An emission factor of 1.2957 t / t carbide obtained from industry was applied. It was obtained by summing the emission factors for the carbonate and coke step up:

production of lime needed for calcium carbide production: 0.7153 t / t carbide

calcium carbide production: 0.5804 t / t carbide

Table 125: Activity data and emissions for CO₂ emissions from Calcium Carbide Production 1990-2002

Year	Calcium Carbide [t]	CO ₂ Emissions [Gg]
1990	28 951	38
1991	27 159	35
1992	31 896	41
1993	25 374	33
1994	19 406	25
1995	20 236	26
1996	25 324	33
1997	25 313	33
1998	27 043	35
1999	25 047	32
2000	37 130	48
2001	36 026	47
2002	31 488	41

4.3.4 Chemical Industry – Other: Production of Fertilizers and Urea (2 B 5)

4.3.4.1 Source Category Description

Emission: CH₄, CO₂

Key Source: No

This category includes CH_4 emissions from the production of urea (CO_2 emissions are negligible) and CH_4 and CO_2 emissions from the production of fertilizers (NPK as well as calcium ammonium nitrate).

There is only one producer of urea in Austria, it is also the main producer of fertilizers in Austria.

 CO_2 emissions from the production of fertilizers varied over the period following closely the trend of fertilizer production. They first decreased, reaching a minimum in 1998 and since then increased again. In 2003 emissions from this category were 13% lower than in 1990 (see Table 126).

4.3.4.2 Methodological Issues

No IPCC methodology is available for these sources.

Data for urea production were directly reported by the Austrian producer of urea and thus represent plant-specific data.

Data for fertilizer production for 1990 to 1994 were taken from national statistics (STATISTIK AUSTRIA), for 1995 to 2003 production data were reported directly by the main producer of fertilizers in Austria.

Emission data for CO₂ emissions from the production of fertilizers for 1994 to 2003 were directly reported by industry and thus represent plant-specific data. With the emission and activity data

from 1994 an implied emission factor for 1994 was calculated and applied for the years 1993 to 1990. However, there is an inconsistency in the time series (see subchapter on time series consistency below).

CO₂ emissions from fertilizer production were calculated by industry using a mass balance approach.

 CH_4 emissions from the production of fertilizers and urea were reported for the years 2002 and 2003, this data became available due to a measurement program for CH_4 at the plant starting in 2002. For the years before no data is available, that's why the implied emission factor for the year 2002 was used for all years.

Table 126 presents activity data, emissions and implied emission factors for CH₄ and CO₂ emissions from *Fertilizer Production* and CH₄ emissions from *Urea Production* for the period from 1990 to 2003.

Table 126: Activity data, emissions and implied emission factors for CO₂ and CH₄ emissions from NPKfertilizer Production and Urea Production 1990-2003

	Urea Production			F	ertilizer Pro	duction	
Year	Urea Production [t]	CO ₂ [Gg]	CH₄ [Gg]	Fertilizer Production [t]	CO ₂ [Gg]	IEF CO ₂ [kg/t]	CH₄ [Gg]
1990	282 000	0.27	0.11	1 388 621	27.14	19.55	0.184
1991	295 000	0.29	0.11	1 273 467	24.89	19.55	0.168
1992	259 000	0.25	0.10	1 182 595	23.12	19.55	0.156
1993	305 000	0.30	0.12	1 250 804	24.45	19.55	0.165
1994	360 000	0.35	0.14	1 222 578	23.90	19.55	0.162
1995	393 000	0.40	0.15	916 265	19.55	21.34	0.121
1996	417 705	0.30	0.16	940 313	18.07	19.22	0.124
1997	392 017	0.35	0.15	924 856	17.22	18.62	0.122
1998	395 288	0.29	0.15	977 212	18.68	19.12	0.129
1999	408 386	0.24	0.16	988 662	19.65	19.88	0.131
2000	390 185	0.22	0.15	1 022 983	20.59	20.13	0.135
2001	367 218	0.26	0.14	959 698	19.75	20.58	0.127
2002	389 574	0.35	0.15	1 013 767	23.61	23.29	0.134
2003	447 450	0.18	0.16	1 073 040	24.07	22.41	0.134

4.3.4.3 Recalculation

As indicated in the previous NIR, there had been a time series inconsistency for CH₄ emissions from urea production, this was corrected in this submission.

4.3.4.4 Time Series Consistency / Planned Improvements

The time series of fertilizer production is not consistent with respect to activity data. Whereas the date obtained from STATISTIK AUSTRIA for the period from 1990 to 1994 cover data for the total production in Austria the data for the period 1995 to 2002 reflect only the production of the largest Austrian producer. It is planned to prepare a consistent time series.

4.4 Metal Production (CRF Source Category 2 C)

4.4.1 Iron and Steel (2 C 1)

4.4.1.1 Source Category Description

Emissions: CO₂, CH₄
Key Category: Yes (CO₂)

In Austria iron and steel production is concentrated mainly at two integrated sites operated by the same company. This company is the only company operating blast furnaces in Austria. Additionally there are some companies operating electric arc furnaces, contributing about 10% to total steel production in Austria.

In this category only process specific CO_2 emissions are reported, emissions due to combustion in iron and steel industry are reported in the energy sector (Category 1 A 2 a).

Process specific CO₂ emissions result from the use of reducing agent in pig iron production in blast furnaces and steel production in electric arc furnaces (use of electrodes) as well as from steel production (lowering the carbon content of steel compared to pig iron in electric arc furnaces and basic oxygen furnaces respectively).

Also CH₄ emissions from rolling mills and from electric arc furnaces are reported in this category.

CO₂ emissions from iron and steel production is an important key category of the Austrian greenhouse gas inventory because of its contribution to the total inventory level for all years of the inventory (ranking between seven to nine) and because of its contribution to the trend.

In the year 2003, CO_2 emissions from production of iron and steel contributed 4.9% to total greenhouse gas emissions in Austria (see Chapter 1.5.1).

 CH_4 emissions from this category are negligible, the contribution to national total emissions in 2003 was 0.0001%.

Table 128 presents total CO_2 and CH_4 emissions from the production of iron and steel for the period from 1990 to 2003. CO_2 emissions from *Iron and Steel Production* decreased from 1990 to 1993 and then increased steadily following the trend of steel production. In 2003 emissions were 27% above the level of 1990.

4.4.1.2 Methodological Issues

General Remark

Total CO_2 emissions from the two main integrated iron and steel production sites in Austria are reported directly by industry until 2002. They are calculated by applying a very detailed mass balance approach for carbon. Process specific emissions²³ are calculated by the Umweltbundesamt according to the IPCC good practice guidance, these emissions are subtracted from total CO_2 emissions reported by the company. The remaining emissions are

Process specific emissions considered are CO2 emissions resulting from the use of reducing agent in pig iron production in blast furnaces and CO2 emissions from steel production resulting from the lowering of the carbon content of steel compared to pig iron in basic oxygen furnaces as well as CO2 emissions from limestone use in blast furnaces.

reported in the energy sector as emissions due to combustion in category 1 A 2 a Iron and Steel.

Thus some shortcomings of the methodology applied for calculating process specific CO₂ emissions do not have an effect on national total emissions but only on the split between process specific and combustion specific emissions (for example only carbonatious ore was considered for calculating the split of process specific and combustion specific CO₂ emissions from blast furnaces whereas the carbon content of other ore used was not considered; however, the detailed mass balance approach used by the operator does consider all carbon introduced to the process, thus also considering ore other than carbonatious ore).

For the year 2003 total CO_2 emissions were not reported by industry, thus they were estimated using information from the national energy balance and from the years before (see below and description of category 1 A 2 a).

CO₂ emissions from pig iron production

CO₂ emissions were calculated following closely the IPCC GPG guidelines Tier 2 approach, applying the default emission factor of table 3.6 of the IPCC GPG:

 CO_2 Emissions = Mass of reducing agent * 3.1 t CO_2 / t reducing agent + (Mass of Carbon in the Ore – Mass of Carbon in the Crude Iron) * 44/12

The mass of reducing agent (coke) was taken from the national energy balance (see Annex 4). According to a national study [Hiebler/Gamsjäger/God] 56.3% of coke used in blast furnaces is actually needed as reducing agent, this part is reported as non-energy use in the national energy balance²⁴.

This non-energy use is used for calculating CO_2 emissions from pig iron production in blast furnaces with the equation presented above, as this is assumed to be more accurate than the approach of the GPG where total mass of reducing agent is considered as non-energy use and the resulting emissions as process specific emissions.

Only carbonatious ore was considered for the calculation as no statistical data was available for the amount of other ore 25 (however, the carbon content of iron oxide is only small). Carbon content of the ore was calculated assuming pure ore, thus the factor used for calculating the mass of carbon in the ore was based on the stochiometric ratio of carbon in FeCO₃:

Mass of Carbon in the Ore = Mass of ore * 12/116

Mass of ore used in pig iron production for the years 1990 to 1995 was taken from national statistics (statistical yearbook of STATISTIK AUSTRIA), the value of 1995 was also used for 1996 and 1997. From 1998 –2002 the mass of ore was directly reported by industry, for 2003 the value of 2002 was used.

Mass of carbon in pig iron was calculated by applying the IPCC default value of 4% carbon in crude steel.

Pig iron production data for 1990 and 1995 to 2001 was taken from national statistics (statistical yearbook of STATISTIK AUSTRIA), data for 1991 to 1994 was taken from www.worldsteel.org, for 2002 and 2003 it was directly reported by industry.

²⁴ Because of the methodology of the energy balance, the reported amount of non-energy use is not always exactly 56.3%, that's why for calculating emissions total coke use in blast furnaces was taken from the energy balance and from this amount 56.3% was considered as non-energy use.

²⁵ Carbonatious ore is mined in Austria, thus it is reported in the statistical yearbook.

For the year 2003 total emissions were not reported by industry. To calculate process specific CO_2 emissions from pig iron production for the year 2003, the average IEF of the three years before was used.

Activity data, calculated CO₂ emission data as well as the implied emission factor for CO₂ emissions from pig iron production are presented in Table 127.

Table 127: Activity data, emissions and implied emission factors for CO₂ emissions from pig iron production 1990–2003

Year	Coke [kt]	Ore [kt]	Pig Iron [kt]	CO₂ [Gg]	IEF CO ₂ [t/t Pig Iron]
1990	872	2 225	3 444	3 043	883
1991	878	2 092	3 442	3 010	874
1992	792	1 629	3 074	2 624	854
1993	808	1 627	3 070	2 671	870
1994	882	1 695	3 320	2 889	870
1995	1 001	2 071	3 888	3 318	853
1996	932	2 071	3 432	3 173	924
1997	1 058	2 071	3 972	3 482	877
1998	1 026	1 810	4 032	3 276	812
1999	991	1 734	3 912	3 157	807
2000	1 114	1 879	4 320	3 532	818
2001	1 101	1 875	4 380	3 483	795
2002	1 255	1 925	4 669	3 936	843
2003	1 142	1 925	4 677	3 828	819

CO₂ emissions from steel production

 CO_2 emissions from steel production (which corresponds to steel production at the two integrated sites operating blast furnaces) were calculated following the IPCC GPG guidelines Tier 2 approach:

CO2 Emissions = (Mass of Carbon in the Crude Iron used for Crude Steel – Mass of Carbon in the Crude Steel) * 44/12

For the years 1990 to 2001 activity data for electric steel production was subtracted from total steel production in Austria taken from national statistics (statistical yearbook of STATISTIK AUSTRIA) to obtain steel production of the two integrated sites operating blast furnaces. For 2002 and 2003 steel production of the two integrated sites operating blast furnaces was directly reported by industry.

The average carbon content of 0.15% for steel was obtained from the operator of the two integrated sites; as mentioned above, the IPCC default value was used for the carbon content of pig iron (4%).

CO₂ and CH₄ emissions from electric steel production

Emissions were estimated using a country specific methodology.

 CO_2 emissions for the year 2003 have been reported by each electric steel site in Austria. The IEF calculated for this year (52 kg/ t steel) was also used to calculate emissions from the years before.

For calculating CH_4 emissions an emission factor of 5 g CH_4 /Mg electric steel was applied. An emission factor for VOC emissions from production of steel in Austria was taken from a study published by the Austrian chamber of commerce, section industry [WINDSPERGER & TURI, 1997]. It was assumed that total VOC emissions are composed of 10% CH_4 and 90% NMVOC (expert judgement UMWELTBUNDESAMT).

Activity data were obtained from the Association of Mining and Steel and thus represent plant specific data.

CH₄ emissions from rolling mills

Emissions were estimated using a country specific methodology.

The emission factor for VOC emissions from rolling mills (1 g VOC/ Mg steel) was reported directly by industry and thus represents plant specific data. It was assumed that VOC emissions are composed of 10% CH₄ and 90% NMVOC (expert judgement UMWELTBUNDESAMT).

Activity data as used for calculating CO₂ emissions from steel production (see above) was applied.

Table 128 presents pig iron, steel and electric steel production, CO₂ and CH₄ emissions and implied emission factors as well as total CO₂ emissions from this sector.

Table 128: Activity data, emissions and implied emission factors for CO₂ and CH₄ emissions from Iron and Steel Production 1990–2003

		Steel	Production		Electric Steel Production			Total	Total
Year	Steel [kt]	CO ₂ [Gg]	IEF CO ₂ [t/t]	CH₄ [Gg]	Electric Steel [kt]	CO ₂ [Gg]	CH ₄ [Gg]	CH₄ [Gg]	CO ₂ [Gg]
1990	3 921	484	123	0.0004	370	19.56	0.002	0.0022	503
1991	3 896	483	124	0.0004	290	15.34	0.001	0.0018	499
1992	3 592	431	120	0.0004	361	19.06	0.002	0.0022	450
1993	3 738	430	115	0.0004	411	21.71	0.002	0.0024	451
1994	3 968	465	117	0.0004	431	22.78	0.002	0.0026	488
1995	4 538	545	120	0.0005	454	23.98	0.002	0.0027	569
1996	4 032	481	119	0.0004	396	20.94	0.002	0.0024	502
1997	4 718	557	118	0.0005	466	24.61	0.002	0.0028	581
1998	4 801	565	118	0.0005	503	26.58	0.003	0.0030	592
1999	4 722	548	116	0.0005	486	25.68	0.002	0.0029	573
2000	5 183	605	117	0.0005	541	28.57	0.003	0.0032	634
2001	5 346	613	115	0.0005	546	28.84	0.003	0.0033	642
2002	5 647	654	116	0.0006	538	28.45	0.003	0.0033	682
2003	5 707	655	115	0.0006	568	30.05	0.003	0.0034	685

4.4.1.3 Uncertainty Assessment

According to the IPCC GPG the uncertainty of the CO₂ emission factor for coke and the carbon content of iron and steel is 5%.

The uncertainty of activity data is assumed to be low (5%) because there are only five production sites with two sites dominating.

However, in the case of CO_2 emissions from iron and steel production (not including electric steel production) the uncertainty of total emissions from the two production sites is relevant (see general remark in Chapter 4.4.1.2). According to the Monitoring and Reporting Guidelines²⁶, uncertainties of emission estimates for process emissions from solid raw materials is 5%.

4.4.1.4 Recalculation

The amount of coke used in blast furnaces has been recalculated, based on the assumption that 56.3% is non-energy use. However, this does not effect national total emissions, as total emissions from the two integrated iron and steel sites were reported from industry and used for preparation of the inventory (see general remark above), only the separation into process-specific and combustion-related emissions has slightly changed.

Previously an emission factor from a swiss study was used to calculate CO₂ emissions from electric arc furnaces, now PS data from all Austrian plants became available, and this information was used to recalculate emissions (see Table 129).

Table 129: Recalculation difference of CO₂ emissions from electric arc furnaces 1990–2002

Year	CO ₂ emissions [Gg]
1990	-17.45
1991	-13.69
1992	-17.00
1993	-19.37
1994	-20.32
1995	-21.39
1996	-18.68
1997	-21.95
1998	-23.71
1999	-22.91
2000	-25.48
2001	-25.73
2002	-26.11

²⁶ COMMISSION DECISION of 29/01/2004 establishing guidelines for the monitoring and reporting of greenhouse gas emissions pursuant to Directive 2003/87/EC of the European Parliament and of the Council

4.4.2 Aluminium Production (2 C 3)

4.4.2.1 Source Category Description

Emissions: PFCs and CO₂
Key Source: Yes (PFCs)

This category includes emissions of CO₂ and PFCs from aluminium production. Primary aluminium production in Austria was terminated in 1992.

The two PFCs, tetrafluoromethane (CF_4) and hexafluoroethane (C_2F_6) are emitted from the process of primary aluminium smelting. They are formed during the phenomenon known as the anode effect (AE).

CO₂ emissions arise from the consumption of the anode in the production process.

This category is a key source for PFC emissions because of the contribution to the total level of greenhouse gas emissions in the years 1990 to 1992 and because of its contribution to the trend from the base year to 1991 and 1992. In the trend assessment for the base year to 1992 also this source was also identified a key category with respect to CO_2 emissions.

Table 130 presents PFC and CO₂ emissions from primary aluminium production for the period from 1990 to 1992.

Table 130: PFC emissions from primary aluminium production from 1990 to 1992

	1990	1991	1992
PFC emission [Gg CO ₂ -equivalent]	1050	1050	418
CO ₂ emissions [Gg]	158	158	63

4.4.2.2 Methodological Issues

 CO_2 emissions were calculated by applying the IPCC default emission factor of 1.8 t CO_2 / t aluminium produced taken from the IPCC guidelines (Table 2.16).

PFC emissions were estimated using the IPCC Tier 1b methodology. The specific CF_4 emissions (and C_2F_6 emissions respectively) of the anode effect were calculated by applying the following formula [BARBER, 1996], [GIBBS, 1996], [TABERAUX, 1996]:

$$kg CF_4/t_{Al} = (1.7 \times AE/pot/day \times F \times AE_{min})/CE$$

Where:

AE/pot/day	=	frequency of occurrence of the anode effect (dependent on type of oxide supply (1,2 / day)
t_Al	=	effective production capacity per year [t]
AE_{min}	=	anode effect duration in minutes (5 min)
F	=	fraction of CF ₄ in the anode gas (13%)
CE	=	current efficiency (85%)
1,7	=	constant resulting from Faraday's law

In Austria so called "Søderberg" anodes were used. The frequency of the anode effect (AE/pot/day) was about 1.2 per day. The duration of the anode effect (AE_{min}) was in the range of 4 to 6 minutes. The average fraction of CF_4 formed in percent of the anode gas (F) can be

determined as a function of the duration of the anode effect. International values are about 10% after two minutes, 12% after three minutes and after that there is only a marginal increase. Therefore for Austrian aluminium production a CF_4 fraction in the anode gas of 13% was assumed.

Because C_2F_6 is formed only during the first minute of the anode effect, the rate of C_2F_6 is the higher the shorter the duration of the anode effect is. For the aluminium production in Austria the rate of C_2F_6 is about 8% and the current efficiency (CE) about 85.4%.

Activity data were taken from national statistics (88 021 t for 1990 – value was also used for 1991, and 35 000 t in 1992).

By inserting these data into the formula mentioned above an emission factor of 1.56 kg CF₄ / t aluminium was calculated.

4.4.2.3 Recalculations

Previously the activity data used for calculating PFC and CO₂ emissions were not consistent, this has been corrected.

4.4.3 SF₆ Used in Aluminium and Magnesium Foundries (2 C 4)

4.4.3.1 Source Category Description

Emissions: SF₆

Key Source: Yes (SF₆)

This category includes emissions of SF₆ from magnesium and aluminium foundries.

This source is a key source because of its contribution to total emissions in the years 1990 to 1997 and to the trend of emissions in the trend assessment of the years 1996 to 2002.

In the base year, SF_6 emission from aluminium and magnesium foundries contributed 0.6% to the total amount of greenhouse gas emissions in Austria, in the year 2003 no emissions arose from this category (see Table 112).

Table 131 presents SF_6 emissions from magnesium and aluminium foundries for the period from 1990 to 2003.

As can be seen in the table below, SF_6 emissions have been fluctuating during the period, but the overall trend has been decreasing SF_6 emissions, from 1990 to 2000 they decreased by 97%. For the years 2001 and 2002 the value of 2000 was used due to lack of more up to date data; since 2003 the use of SF_6 in foundries is prohibited in Austria.

Table 131: SF₆ emissions from magnesium and aluminium foundries 1990–2003

Year	SF ₆ emissions [Gg]
1990	0.0106
1991	0.0116
1992	0.0106
1993	0.0116
1994	0.0156
1995	0.0185
1996	0.0256

Year	SF ₆ emissions [Gg]
1997	0.0146
1998	0.0069
1999	0.0009
2000	0.0003
2001	0.0003
2002	0.0003
2003	0

4.4.3.2 Methodological Issues

Emissions were estimated following the IPCC methodology.

Information about the amount of SF_6 used was obtained directly from the aluminium producers in Austria and thus represent plant-specific data (for verification data was checked against data from SF_6 suppliers). Actual emissions of SF_6 equal potential emissions and correspond to the annual consumption of SF_6 .

4.5 Consumption of Halocarbons and SF₆ (CRF Source Category 2 F)

4.5.1 Source Category Description

This category includes the following emission sources: refrigeration and air conditioning equipment, foam blowing, fire extinguishers, semiconductor manufacture, electrical equipment and other sources (noise insulation windows, tyres and research). The subcategories aerosols and solvents have not been estimated because no data was available (however, it is considered in the improvement plan to try to obtain data).

There is no production of Halocarbons in Austria.

Potential emissions are reported as sums under category 2 F, for estimates of actual emissions please refer to the respective sub-categories.

Emission Trends

For the source *Consumption of Halocarbons and SF* $_6$ greenhouse gas emissions increased by 52% compared to base year emissions (1995 for PFCs, HFCs and SF $_6$). In 2003, emissions were four times higher than in 1990. This was mainly due to strongly increasing emissions from the use of HFCs as substitutes for ozone depleting substance (*ODS Substitutes*).

Potential and actual emissions per substance group is presented in Table 132, emissions by sub sector and gas are presented in Table 133.

Table 132: Potential and actual emissions of IPCC Category 2 F per substance group [Gg CO₂e] 1990-2003

	HF	Cs	PF	Cs	SF	6	Total	
Year	Potential	Actual	Potential	Actual	Potential	Actual	Potential	Actual
1990	439.68	219.16	32.28	29.05	586.57	249.24	1 058.53	497.46
1991	462.31	334.57	40.99	36.89	839.14	376.12	1 342.44	747.58
1992	486.06	386.59	56.70	45.08	903.00	444.51	1 445.75	876.17
1993	584.69	444.24	58.41	52.92	966.86	516.47	1 609.95	1 013.62
1994	620.08	505.20	64.77	58.65	1 127.73	612.86	1 812.58	1 176.70
1995	841.87	555.26	75.99	68.74	1 216.26	696.06	2 134.12	1 320.05
1996	1 112.84	637.15	73.24	66.27	942.80	607.41	2 128.88	1 310.83
1997	1 272.47	729.62	107.20	96.83	1 098.77	770.98	2 478.45	1 597.42
1998	1 347.21	812.53	110.71	44.75	1268.99	743.80	2 726.92	1 601.08
1999	1 476.21	866.99	191.14	64.54	1 027.51	661.74	2 694.86	1 593.27
2000	2 086.77	1 019.00	243.28	72.33	983.99	625.67	3 314.03	1 717.00
2001	2 231.80	1 122.34	285.95	82.15	1 025.89	628.97	3 543.65	1 833.46
2002	2 270.47	1 218.92	316.48	86.87	1 030.86	633.19	3 617.81	1 938.99
2003	2 311.71	1 308.22	380.59	102.54	812.96	593.52	3 505.25	2 004.28

Key Sources

For the key source analysis emission data of this category were aggregated as suggested in the IPCC GPG:

2 F 1/2/3 ODS (Ozone Depleting Substances) Substitutes (HFCs),

2 F 6 Semiconductor Manufacture (HFCs, PFCs and SF₆),

2 F 4 Electrical Equipment (SF₆) and

2 F 8 Other Sources of SF₆.

Three of these sources have been identified as key sources: 2 F 1/2/3 ODS (Ozone Depleting Substances) Substitutes (HFCs), 2 F 6 Semiconductor Manufacture (HFCs, PFCs and SF₆) and 2 F 8 Other Sources of SF_6 (for further information on key sources see Chapter 1.5.1).

4.5.2 Methodological Issues

A study has been contracted out to determine the consumption data and emissions from 1990-2000 for all uses of FCs (study has not been published). In this study, bottum up data for consumption per sector were compared with top-down data from importers and retailers of FCs as well as with data from the national statistics (import/export statistics).

The study also included projections until 2010, these were used to estimate emissions from 2001-2003, except for the subcategories 2 F 6 Semiconductor Manufacture and 2 F 7 Electrical Equipment where data for these years were available. The total consumption (potential emissions) was checked against import/export statistics to verify the trend.

Data about consumption of HFC, PFC and SF₆ were determined from the following sources:

- · data from national statistics
- data from associations of industry
- direct information from importers and end users

Since 2004 there is also a reporting obligation under the Austrian FC-regulation²⁷ for users of FCs in the following applications: refrigeration and air-conditioning, foam blowing, semiconductor manufacture, electrical equipment, fire extinguishers and aerosols. Data is either reported electronically with a system set up by the Umweltbundesamt or per mail (electronic or letter) to the Ministry for Environment (these reports are then forwarded to the Umweltbundesamt to be brought together with data from the electronic system).

The first reporting year is 2003, from this year on the end users of FCs have to report annually about the amounts used and recycled. Theoretically, almost the whole activity data used for inventory preparation is covered by the reporting obligation. However, especially the refrigeration sector is very complex, there are numerous small enterprises, and not all of them are organised in an industry association, they are hard to reach and to inform about the reporting obligation. That's why not all enterprises reported their consumption, and the results of the first reporting round could not be used for these applications; however, for the next submission results will be considered as far as possible.

Emissions for all subcategories were estimated using a country specific methodology, emission factors are based on information of experts from the respective industries.

For most sources emissions are calculated from annual stocks using emission factors. Additionally emissions can occur during production or disposal of Halocarbons or SF_6 containing products.

^{27 &}quot;Industriegas-Verordnung (HFKW-FKW-SF6-VO)" federal law gazette 447/2002

Annual stocks correspond to the amounts of FCs stored in applications in the year before, minus emissions of the year before, plus consumption of the considered year.

Potential emissions correspond to the amounts consumed in the considered year.

The following subchapters present emission factors and data sources used for the respective subcategories.

Table 133: Emissions of IPCC Category 2 F by subsector 1990-2003

185.09	268.04	268.28	265.25	246.36	286.13	256.06	252.21	241.23	222.49	190.58	183.10	179.20	126.56	GgCO2e	
	11.22	11.23	11.10	10.31	11.97	10.71	10.55	10.09	9.31	7.97	7.66	7.50	5.30	23 900 t	SF6
													of SF6	Other Sources of SF6	2 F 8
ĺ	30.05	29.36	29.09	28.86	27.22	27.07	26.91	26.07	24.98	23.89	22.79	21.69	20.59	GgCO2e	
	1.26	1.23	1.22	1.21	1.14	1.13	1.13	1.09	1.05	1.00	0.95	0.91	0.86	23 900 t	SF6
													oment	Electrical Equipment	2 F 7
	425.79	416.90	407.08	453.93	477.80	593.76	403.95	505.68	430.86	360.38	287.79	215.20	133.08	GgCO2e	
	14.02	13.86	13.86	16.17	18.01	20.41	13.74	17.94	15.29	12.64	9.98	7.33	4.27	23 900 t	SF6
	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7 000 t	C4F10
	1.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	7 000 t	C3F8
	4.08	4.42	3.35	3.56	2.91	4.47	3.05	3.22	2.69	2.16	1.63	1.10	0.57	9 200 t	C2F6
	6.40	6.33	6.33	4.83	2.72	8.52	5.82	5.97	5.17	5.03	4.57	4.11	3.66	6 500 t	CF4
0.33	0.36	0.32	0.32	0.28	0.25	0.81	0.83	0.73	0.61	0.50	0.38	0.26	0.16	11 700 t	HFC-23
												ture	Manufac	Semiconductor Manufacture	2 F 6
26.74	23.58	20.54	17.62	14.84	12.15	9.38	7.09	4.83	3.22	1.52	0.35	0.00	0.00	GgCO2e	
	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.05	0.00	0.00	7 000 t	C4F10
	1.08	0.78	0.54	0.35	0.24	0.15	0.05	0.00	0.00	0.00	0.00	0.00	0.00	2 900 t	HFC-227
	1.72	1.53	1.34	1.15	0.95	0.74	0.56	0.38	0.25	0.10	0.00	0.00	0.00	11 700 t	HFC-23
													ers	Fire Extinguishers	2 F 3
814.78	793.31	769.56	743.35	647.53	620.64	580.13	541.45	508.30	487.12	431.87	378.46	328.74	215.48	GgCO2e	
G	507.78	498.42	489.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	140 t	HFC-152a
G	555.55	538.29	519.14	498.10	477.42	446.25	416.50	391.00	374.71	332.21	291.13	252.88	165.75	1 300 t	HFC-134a
														Foam Blowing	2 F 2
4	398.21	328.82	254.60	201.74	177.14	131.02	79.22	33.95	8.03	5.38	3.68	2.75	1.76	GgCO2e	
	26.87	19.98	12.49	8.94	7.92	5.59	2.52	0.39	0.00	0.00	0.00	0.00	0.00	3 800 t	HFC-143a
0.78	0.74	0.70	0.66	0.61	0.72	0.57	0.33	0.06	0.00	0.00	0.00	0.00	0.00	140 t	HFC-152a
_	150.93	133.66	115.66	96.04	81.99	60.57	41.08	21.76	6.11	4.14	2.83	2.12	1.35	1 300 t	HFC-134a
Deleter Co.	34.85	27.62	19.81	15.07	14.26	10.96	5.73	1.47	0.03	0.00	0.00	0.00	0.00	2 800 t	HFC-125
	3.40	2.64	1.86	1.02	0.68	0.39	0.19	0.09	0.02	0.00	0.00	0.00	0.00	650 t	HFC-32
										nent	ng Equipr	onditionir	nd Air Co	Refrigeration and Air Conditioning Equipment	2 F 1
	2002	2001	2000	1999	1998	1997	1996	1995	1994	1993	1992	1991	1990	GWP Unit	GHG

4.5.2.1 2 F 1 Refrigeration and Air Conditioning Equipment

Consumption data was obtained directly from the most important importers of refrigerants. The volume of stocks of the different subcategories were estimated using information from the most important refrigerant retailers/ importers and experts from the refrigeration branch.

The following table describes what kind of refrigeration and air-conditioning equipment has been considered in which subcategory, and which refrigerants have been used in the respective subcategory in Austria.

From the annual stocks emissions are estimated using emission factors based on expert judgement from experts of the refrigeration branch. The emission factors are presented in Table 134. Annual stocks refer to total stock in Austria, thus import and export of pre-filled equipment is considered indirectly (but not separately).

Emissions from disposal have not been estimated but are considered to be low, as cooling devices are recycled in Austria, and the refrigerant is usually recovered²⁸. There is production of fridges and freezers in Austria (equipment filled at the production site), however emissions from production have not been estimated and are considered to be minor (as emissions from larger devices that are filled after installation clearly dominate total emissions from this subcategory).

Table 134: Description of sub-categories of 2 F 1 Refrigeration and Air Conditioning Equipment and emission factors used

Subcategory	Description	Used Refrigerant s	Emission factors [% of stocks]
Domestic Refrigeration	fridges and freezers at homes	134a	1.5%
Commercial Refrigeration	fridges and freezers in shops	134a	1.5%
Transport Refrigeration	chilled loading space of trucks, ships and rail	134a	10%
Industrial Refrigeration	mainly cooling devices for food trade, also including cooling devices for industrial machines (oil-cooling)	134a, 401a, 402a, 404a, 407c	10% until 1999, 8% since 2000
Stationary Air-	industrial cooling in chemical industries, food processing and air-conditioning of office buildings, etc.;	134a.	as industrial
Conditioning	imported "ready to plug in" mobile refrigeration systems;	404a, 407c	6%
	heat pumps;		1%
Mobile Air-Conditioning	mobile air-conditioning in passenger cars,	134a	15%
	busses, freight vehicles and rail.	1014	5%

401a, 402a, 404a and 407c are blends containing HFC-32, HFC-125, HFC-134a, HFC-143a and/or HFC-152a, the two former also contain HCFCs.

²⁸ There is a regulation that old cooling devices have to be taken back by retailes for recycling/recovering ("Verordnung über die Rücknahme von Kühlgeräten" BGBI. Nr. 408/1992 idF BGBI. II Nr. 440/2001

4.5.2.2 2 F 2 Foam Blowing and XPS/PU Plates

Foam blowing

HFC 134a is used as blowing agent for PU foams. The consumption of PU foam cans was estimated using information from the construction industry. An average charge of blowing agent of 85g per can was assumed.

For calculating emissions it is assumed that 50% of the blowing agent is emitted in the first year, 25% in the second year, and the rest within the following three years (8.3% per year). This assumption is based on information from producers.

XPS/PU Plates

Production data and information about the used blowing agent were obtained from Associations of Industry (construction industry) and from producers. Emissions were calculated from the total consumption of XPS/PU plates in Austria - about 75% of the XPS/ PU plates are imported. The consumption per capita of XPS/ PU plates in Austria is higher than in all other European countries.

Based on expert judgement it was assumed that about 5 kg blowing agent per m³ plate are used. About 30% of that amount (1.5 kg) is emitted during production and storage at the place of production. The rest - about 3.5 kg per m³ XPS/ PU plate - is emitted gradually by diffusion.

For HFC 134a it was assumed that 0.6% per year is emitted through diffusion, for HFC 152a it is assumed that 100% is emitted in the first year. year). This assumption is based on information from producers.

Recalculations

Previously HFC use for foam blowing and emissions from this category were only considered from 1995 onwards, in this submission also the use and emissions of the years before are included.

Planned Improvements

A study was contracted out to update data for this category, the results will be incorporated for the 2006 submission.

4.5.2.3 2 F 3 Fire Extinguishers

Consumption data were obtained directly from the producers of fire extinguishers.

From 1992 to 1995 1.000 t of C₄H₁₀ for the use in fire extinguishers in Austria was sold.

HFC-23 and HFC-227ea in fire extinguishers were first introduced to the Austrian market in 1993 and 1996, respectively.

Based on expert judgement it was assumed that actual emissions are 5% of annual stocks, these emissions include leakage and tests.

Recalculations

Previously HFC use for foam blowing and emissions from this category were only considered from 1995 onwards, in this submission also the use and emissions of the years before are included.

4.5.2.4 2 F 6 Semiconductor Manufacture (HFCs, PFCs, SF₆)

All consumption data and data about actual emissions from semiconductor manufacture were based on direct information from industry. Consumption data is not reported in the CRF as it istreated confidential.

4.5.2.5 2 F 7 Electrical Equipment (SF₆)

Information on SF_6 stocks in electrical equipment in 2003 were obtained from energy suppliers and industrial facilities (as mentioned above, there is a reporting obligation for operators of SF_6 filled equipment since 2004). For the time series information on new equipment per year and the average SF_6 content per equipment type was used; this information was obtained from energy suppliers and experts from industry.

 SF_6 emissions were calculated based on the assumption that there are no emissions during first filling on site (furthermore, smaller equipment is already filled during manufacture); based on information from experts from industry, it was thus estimated that emissions during service and leakage are 1% of annual stocks.

4.5.2.6 2 F 8 Other Sources of SF₆

Noise insulating windows

Activity data were estimated based upon information from experts from industry.

The average consumption of SF_6 was calculated by multiplying the area of SF_6 filled insulate glass produced with the average SF_6 consumption per square meter glass (11 litre $SF_6/m^2 - 8$ litre filling plus 3 litre losses). The calculated volume was multiplied with a density of 6.18 g/litre.

The actual emissions are the sum of emissions during production and leakage, which is estimated to be 1% of the original SF_6 filling. Emissions at disposal are not yet relevant, because the average life time is estimated to be 25 years and the first SF6 filled windows were introduced in Austria in 1980.

Tyres

Information on the amount of SF_6 used for filling tyres was obtained from SF_6 retailers. Emissions were calculated as one third per year for the three years following consumption.

Shoes

Emissions from the imported amount of shoes with SF_6 filling was obtained from the producer. It was assumed that all SF_6 is emitted at the end of the lifetime of these shoes, which was estimated to be 3 years.

Research

 SF_6 is used in research in electron microscope and other equipment, the annual consumption was estimated to be 100 kg per year until the total estimated stock of 500 kg was reached (1996), emissions are estimated to be 20 kg per year (after 1996 consumption = emissions).

4.5.3 Uncertainty estimate

For the key sources an uncertainty estimate was made:

2 F 1/2/3 ODS Substitute

Activity data uncertainty is estimated to be 20%, as on the one hand total consumption figures are adjusted with import/export statistics but on the other hand the categories of the statistics do not always distinguish between HFCs and HCFCs for example, resulting in a higher uncertainty.

Apart from the uncertainty of the activity data the following uncertainties occur for emissions from this source:

- i. the uncertainty of disaggregating total consumption to sub sectors (which has an effect on emissions as the emission factors used for the different sub categories differ significantly). However, the foam blowing sub sector is small, there are only a few producers that have to be considered and information was available from most of them.
- ii. the uncertainty of disaggregation from substance groups (eg. from the import/export statistics) into substances (which affects total GHG emissions because the GWPs differ significantly).
- iii. the uncertainty of the emission factors.

The uncertainty of the emission factor is considered to be dominating, it is estimated to be 50%; the other uncertainties were considered to be negligible compared to the emission factor uncertainty.

2 F 6 Semiconductor Manufacture

Acitivty data uncertainty is estimated to be low (5%) because information from all considered producers is used for inventory preparation. The uncertainty for emission factors is estimated to be 10%.

2 F 8 Other Use of SF6

According to emissions, the most important sub source is noise insulating windows. The uncertainty for activity data is estimated to be 25%, emission factor uncertainty is assumed to be relatively high (50%), because it is based on several assumptions.

4.5.4 Recalculations

As already mentioned above, in the previous submission data of 2000 was also used for the years 2001 and 2002; in this submission extrapolation techniques were used to estimate emissions for 2001 to 2003, except for the subcategories 2 F 6 Semiconductor Manufacture and 2 F 7 Electrical Equipment where data for these years were available.

During an audit of the study mentioned above, several calculation errors were identified and corrected. Furthermore, emissions of foam blowing before 1995, that were previously not included in the inventory was included in this submission. Additionally, the consumption of C_4F_{10} in fire extinguishers which was previously not included, was now included.

4.5.5 Planned Improvements

As already mentioned above, for the next submission results from the reporting obligation concerning the use of FCs will be considered as far as possible. Furthermore, results from a study on foam blowing will be incorporated.

5 SOLVENT AND OTHER PRODUCT USE (CRF SOURCE CATEGORY 3)

<u>NOTE:</u> There have been no changes in methodology for this sector since the last submission, and emission data has not been updated for 2003 (the values of 2002 were also reported for 2003 as a first estimate).

5.1 Sector Overview

This chapter describes the methodology used for calculating greenhouse gas emissions from solvent use in Austria. Solvents are chemical compounds, which are used to dissolve substances as paint, glues, ink, rubber, plastic, pesticides or for cleaning purposes (degreasing). After application of these substances or other procedures of solvent use most of the solvent is released into air. Because solvents consist mainly of NMVOC, solvent use is a major source for anthropogenic NMVOC emissions in Austria. Once released into the atmosphere NMVOCs react with reactive molecules (mainly HO-radicals) or high energetic light to finally form CO_2 .

Estimations for N_2O emissions from other product use (anaesthesia and aerosol cans) are also addressed in this chapter.

5.1.1 Emission Trends

In the year 2002 this category had a contribution of 0.5% to total greenhouse gas emissions (not considering CO_2 from LUCF). There has been a decrease of 17% in greenhouse gas emissions from 1990 to 2002 (see Table 135) due to the positive impact of the enforced laws and regulations in Austria²⁹ (regulations and directives on solvents, VOC-directive). In emission intensive activity areas such as coating, printing and in the pharmaceutical industry the number of waste air purification plants has grown during the period from 1990 to 1995. From 1995 to 1998 the quantities of solvents varied heavily due to the economic development, especially in the last years (1999-2002) an increase was observed.

Table 135: Trend in greenhouse gas emissions of Category 3 Solvent and Other Product Use 1990 – 2002

GHG [Gg CO ₂ equivalent]	CO ₂	N ₂ O	Total
1990	282.67	232.50	515.17
1991	236.77	232.50	469.27
1992	187.74	232.50	420.24
1993	187.35	232.50	419.85
1994	171.54	232.50	404.04
1995	189.88	232.50	422.38
1996	172.81	232.50	405.31
1997	190.09	232.50	422.59
1998	172.24	232.50	404.74

²⁹ Lösungsmittelverordnung, BGBL 492/1991; Lösungsmittelverordnung 1995, BGBl 872/1995; Lackieranlagen-Verordnung, BGBl. 873/1995; CKW Anlagenverordnung 1994, BGBl. 865/1994;

1999	158.37	232.50	390.87
2000	181.02	232.50	413.52
2001	193.60	232.50	426.10
2002	193.60	232.50	426.10
Trend 1990 - 2002	-31,51%	0.00%	-17.29%

Table 136: Total greenhouse gas emissions and trend from 1990 – 2002 by subcategories of Category 3 Solvent and Other Product Use

GHG [Gg CO ₂ equivalent]	3 A	3 B	3 C	3 D	Total
1990	119.69	36.11	42.25	317.13	515.17
1991	97.02	29.53	35.02	307.69	469.27
1992	74.37	22.85	27.48	295.54	420.24
1993	71.67	22.23	27.13	298.82	419.85
1994	63.28	19.84	24.58	296.35	404.04
1995	67.46	21.38	26.91	306.62	422.38
1996	59.76	20.15	24.21	301.20	405.31
1997	63.93	22.91	26.31	309.43	422.59
1998	56.29	21.45	23.56	303.45	404.74
1999	50.26	20.34	21.40	298.87	390.87
2000	55.73	23.97	24.16	309.66	413.52
2001	59.60	25.64	25.84	315.02	426.10
2002	59.60	25.64	25.84	315.02	426.10
Trend 1990 – 2002	-50.20%	-29.00%	-38.84%	-0.66%	-17.29%

5.1.2 Key Sources

The key source analysis is presented in Chapter 1.5. This chapter includes information about the key sources in the IPCC Sector 3 *Solvents*. Both subcategories of this source have been identified as key categories.

Table 137: Key sources of category Solvent and Other Product Use

IDCC Cotogony	Source Cotogorica	Key S	ources*
IPCC Category	Source Categories	GHG	KS-Assessment
3	Solvent and Other Product Use	CO ₂	LA 90, 91 TA 91-99, 01
	_	N ₂ O	LA 92-94

LA02 = Level Assessment 2002

TA02= Trend Assessment Base year-2002

5.1.3 Completeness

Table 138 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated.

Table 138: Overview of subcategories of IPCC Category 3 Solvents and Other Product Use: transformation into SNAP Codes and status of estimation

IPCC Category	SNAP		CO ₂	N ₂ O
3A Paint application	0601	Paint application	✓	NA
3B Degreasing and Dry Cleaning	0602	Degreasing, dry cleaning and electronics	✓	NA
3C Chemical Products, Manufacture and Processing	0603	Chemical products manufacturing and processing	✓	NA
3D Other	0604	Other use of solvents and related activities	✓	NA
	0605	Use of HFC, N2O, NH3, PFC and SF6	NA	✓

5.2 CO₂ Emissions from Solvent and Other Product Use

5.2.1 Methodology Overview

CO₂ emissions from solvent use were calculated from NMVOC emissions of this sector. So as a first step the quantity of solvents used and the solvent emissions were calculated.

To determine the quantity of solvents used in Austria in the various applications, a bottom up and a top down approach were combined. Figure 13 presents an overview of the methodology.

The top down approach provided total quantities of solvents used in Austria. The share of the solvents used for the different applications and the solvent emission factors have been calculated on the basis of the bottom up approach. By linking the results of bottom up and top down approach, quantities of solvents annually used and solvent emissions for the different applications were obtained.

A study [FIEU&IIÖ, 2002b] showed that emission estimates only based on the top down approach overestimate emissions because a large amount of solvent substances is used for "non-solvent-applications". "Non-solvent application" are applications where substances usually used as solvents are used as feed stock in chemical, pharmaceutical or petrochemical industry (e.g. production of MTBE, formaldehyde, polyester, biodiesel, pharmaceuticals etc.) and where therefore no emissions from "solvent use" arise. However, there might be emissions from the use of the produced products, such as MTBE which is used as fuel additive and finally combusted, these emissions for example are considered in the transport sector.

Additionally the comparison of the top-down and the bottom-up approach helped to identify several quantitatively important applications like windscreens wiper fluids, antifreeze, moonlighting, hospitals, de-icing agents of aeroplanes, tourism, cement- respectively pulp industry, which were not considered in the top-down approach.

Top-down approach Bottom up approach Total census: 1980-1981, 1984-1985, 1988-2001 Pillar years:1980, 1990, 1995, 2000 Interpolation: 1982, 1983, 1986, 1987 Interpolation for the years in between Foreign trade balance Bottom up survey (solvents and products) 1300 companies 1800 households Solvents production in Austria Survey on economic and technical Non-solvent applications factors Total quantity of solvents Structural data on solvents applications used (SNAP 06 Level 3) (SNAP 06 Level 1) Emission factors for solvent applications (SNAP 06 Level 3) Quantity of solvents for solvent applications (SNAP 06 Level 3) Solvent emissions (SNAP 06 Level 3)

Figure 13: Overview of the methodology for solvent emissions

5.2.2 Top down Approach

The top-down approach is based on

- 1. import-export statistics
- 2. production statistics on solvents in Austria
- 3. a survey on non-solvent-applications in companies [IIÖ&FIEU, 2004]
- 4. a survey on the solvent content in products and preparations at producers and retailers [FIEU&IIÖ, 2002 b]

ad (1) and (2) Total quantity of solvents used in Austria were obtained from import-export statistics and production statistics provided by STATISTIK AUSTRIA.

Nearly a full top down investigation of substances of the import-export statistics from 1980 to 2002 was carried out (data in the years 1982, 1983, 1986 and 1987 were linearly interpolated). A main problem was that the methodology of the import-export statistics changed over the years. In earlier years products and substances had been pooled to groups and whereas the current foreign trade balance is more detailed with regard to products and substances. It was necessary to harmonise the time series in case of deviations.

There are only a few facilities producing solvents in Austria. Therefore due to confidentiality the Statistic Austria provided the data in an aggregated form. The solvents production fluctuated especially in the last years considerably.

ad (3) In the study on the comparison of top down and bottom up approach [FIEU&IIÖ, 2002b] the amount of solvent substances used in "non-solvent-applications" was identified. The 20 most important companies in this context were identified and asked to report the quantities of solvents they used over the considered time period in "non-solvent-applications".

ad (4) Relevant producers and retailers provided data on solvent content in products and preparations. As the most important substance groups alcohols and esters were identified.

5.2.3 Bottom up Approach

In a first step an extensive survey on the use of solvents in the year 2000 was carried out in 1 300 Austrian companies [FIEU&IIÖ, 2002 a]. In this survey data about the solvent content of paints, cleaning agents etc. and on solvents used (both substances and substance categories) like acetone or alcohols were collected.

Information about the type of application of the solvents was gathered, divided into the three categories "final application", "cleaner" and "product preparation" as well as the actual type of waste gas treatment, which was divided into the categories "open application", "waste gas collection" and "waste gas treatment".

For every category of application and waste gas treatment an emission factor was estimated to calculate solvent emissions in the year 2000 (see Table 139).

Category	Factor
final application	1.00
cleaner	0.85
product preparation	0.05
open application	1.00
waste gas collection	1.00
waste gas treatment	0.20

Table 139: Emission factors for NMVOC emissions from Solvent Use

In a second step a survey in 1 800 households was made [FIEU&IIÖ, 2002 b] for estimating the domestic solvent use (37 categories in 5 main groups: cosmetic, do-it-yourself, household cleaning, car, fauna and flora). Also, solvent use in the context of moonlighting besides commercial work and do-it-yourself was calculated.

The comparison of top down and bottom up approach helped to identify several additional applications, that make an important contribution to the total amount of solvents used. Thus in a third step the quantities of solvents used in these applications such as windscreens wiper fluids, antifreeze, hospitals, de-icing agents of aeroplanes, tourism, cement- respectively pulp industry, were estimated in surveys.

The outcome of these three steps was the total quantities of solvents used for each application in the year 2000 (at SNAP level 3) [FIEU&IIÖ, 2002 b].

To archive a time series the development of the economic and technical situation in relation to the year 2000 was considered. It was distinguished between "general aspects" and "specific aspects" (see tables below). The information about these defined aspects were collected for three pillar years (1980, 1990, 1995) and were taken from several studies [SCHMIDT et al. 1998] [BARNERT 1998] and expert judgements from associations of industries (chemical

industry, printing industry, paper industry) and other stakeholders. On the basis of this information calculation factors were estimated. With these factors and the data for solvent use and emission of 2000 data for the three pillar years was estimated. For the years in between data was linearly interpolated.

Table 140: General aspects and their development

General aspects	1980	1990	1995	2000
efficiency factor solvent cleaning	250 %	150 %	130 %	100 %
efficiency factor application	150 %	110 %	105 %	100 %
solvent content of water-based paints	15 %	12 %	10 %	8 %
solvent content of solvent-based paints	60 %	58 %	55 %	55 %
efficiency of waste gas purification	70 %	75 %	78 %	80 %

Table 141: Specific aspects and their development: distribution of the used paints (water based-paints - solvent-based paints) and part of waste gas purification (application - purification)

SNAP	description	year	Distribution paints	n of used	Part of waste gas treatment			
category		,	Solvent based paints	Water based paints	application	purification		
		2000	73%	27%	10%	0%		
060101	manufacture of	1995	80%	20%	8%	0%		
060101	automobiles	1990	90%	10%	5%	0%		
		1980	100%	0%	0%	0%		
		2000	51%	49%	62%	1%		
060102	car repairing	1995	55%	45%	60%	0%		
		1990	75%	25%	10%	0%		
		1980	85%	15%	5%	0%		
		2000	46%	54%	46%	3%		
060107	wood coating	1995	60%	40%	45%	2%		
000107		1990	85%	15%	10%	0%		
		1980	100%	0%	0%	0%		
		2000	97%	3%	90%	46%		
060108	Other industrial paint	1995	99%	1%	87%	45%		
000106	application	1990	100%	0%	26%	20%		
		1980	100%	0%	0%	0%		
		2000	92%	8%	75%	0%		
060201	Metal degreasing	1995	95%	5%	65%	0%		
000201	wetai degreasing	1990	100%	0%	10%	0%		
	_	1980	100%	0%	0%	0%		
060403	Printing industry	2000			44%	17%		
		1995			29%	10%		
		1990			10%	5%		

-		1980			0%	0%
		2000			58%	0%
000405	Application of glues and	1995	=		53%	0%
060405	adhesives	1990	-		15%	0%
		1980	-		0%	0%
		2000	91%	9%	19%	4%
060103	Paint application : construction and	1995	93%	7%	15%	2%
000103	buildings	1990	100%	0%	5%	0%
	-	1980	100%	0%	0%	0%
	Paint application : coil coating	2000	100%	0%	63%	0%
060105		1995	100%	0%	60%	0%
000105		1990	100%	0%	25%	0%
		1980	100%	0%	0%	0%
		2000	83%	17%	0%	0%
060406	Preservation of wood	1995	85%	15%	0%	0%
000400	Freservation of wood	1990	95%	5%	0%	0%
		1980	100%	0%	0%	0%
		2000	100%	0%	90%	0%
060412	Other (preservation of	1995	100%	0%	80%	0%
000412	seeds,)	1990	100%	0%	10%	0%
		1980	100%	0%	0%	0%

Table 142: Specific aspects and their development: changes in the number of employees compared to the year 2000

SNAP97			s in the numed to the the	ber of empl ar 2000 [%]	oyees
		1980	1990	1995	2000
0601	Paint application				
060101	manufacture of automobiles	88%	82%	72%	100%
060102	car repairing	94%	98%	96%	100%
060103	construction and buildings	96%	90%	102%	100%
060104	domestic use	separate	analysed		
060105	coil coating	99%	113%	107%	100%
060107	wood coating	107%	109%	112%	100%
060108	industrial paint application	122%	112%	106%	100%
0602	Degreasing, dry cleaning and electronics				
060201	Metal degreasing	151%	113%	83%	100%
060202	Dry cleaning	63%	75%	88%	100%
060203	Electronic components manufacturing	143%	122%	104%	100%
060204	Other industrial cleaning	33%	77%	56%	100%
0603	Chemical products manufacturing and processing				
060305	Rubber processing	110%	101%	102%	100%

060306	Pharmaceutical products manufacturing	118%	112%	97%	100%
060307	Paints manufacturing	118%	112%	97%	100%
060308	Inks manufacturing	118%	112%	97%	100%
060309	Glues manufacturing	118%	112%	98%	100%
060310	Asphalt blowing	124%	120%	120%	100%
060311	Adhesive, magnetic tapes, films and photographs	33%	57%	76%	100%
060312	Textile finishing	241%	171%	132%	100%
060314	Other	117%	112%	98%	100%
0604	Other use of solvents and related activities				
060403	Printing industry	129%	125%	111%	100%
060404	Fat, edible and non edible oil extraction	129%	116%	112%	100%
060405	Application of glues and adhesives	239%	156%	104%	100%
060406	Preservation of wood	108%	105%	100%	100%
060407	Under seal treatment and conservation of vehicles	97%	102%	103%	100%
060408	Domestic solvent use (other than paint application	separate	analysed		
060411	Domestic use of pharmaceutical products (k)				
060412	Other (preservation of seeds,)	108%	105%	101%	100%

5.2.4 Combination Top down – Bottom up approach

To verify and adjust the data the solvents given in the top down approach and the results of the bottom up approach were differentiated by 15 defined categories of solvent groups (see below Table 143). The differences between the quantities of solvents from the top down approach and bottom up approach respectively are lower than 10%. Table 143 shows the range of the differences in the considered pillar years broken down to the 15 substance categories.

Table 143: Differences between the results of the bottom up and the top down approach

	Acetone	Methanol	Propanol	Solvent naphta	Paraffins	Alcohols	Glycols	Ester	Aromates	Ether	org. acids	Ketones	Aldehydes	Amines	cycl. Hydrocarb.	Others	sum or differDifferences [kt/a]
2000																	-14
1995																	-2
1990																	14
1980																	-18

Difference less than 2 kt/a
Difference 2 -10 kt/a
Difference greater than 10 kt/a

As the data of the top down approach were obtained from national statistics, they are assumed to be more reliable than the data of the bottom up approach. That's why the annual quantities of solvents used were taken from the top down approach while the share of the solvents for the different applications (on SNAP level 3) and the solvent emission factors have been calculated on the basis of the bottom up approach.

The following tables present activity data and implied emission factors (Table 144 and Table 145).

Table 144: Activity data of Category 3 Solvent and other product use [Mg]

SNAP	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0601 Paint application													
060101 manufacture of automobiles	1.8	1.5	1.2	1.3	1.2	1.3	1.3	1.5	1.4	1.4	1.7	1.7	1.7
060102 car repairing	1.0	0.9	0.8	8.0	0.8	1.0	0.9	1.0	0.9	8.0	0.9	1.0	1.0
060103 construction and buildings	3.9	3.6	3.2	3.5	3.6	4.3	4.1	4.4	3.9	3.6	4.0	4.4	4.4
060104 domestic use	4.6	3.6	2.7	2.4	1.9	1.7	1.7	1.8	1.7	1.6	1.8	2.0	2.0

060105	coil coating	5.7	5.1	4.4	4.8	4.8	5.6	5.2	5.5	4.8	4.3	4.7	5.3	5.3
060107	wood coating	7.1	6.2	5.2	5.5	5.4	6.1	5.5	5.7	4.9	4.3	4.6	5.3	5.3
060108	Other industrial paint application	31.3	28.5	24.7	27.1	27.4	32.3	30.6	32.8	29.5	26.9	30.3	33.4	33.4
0602	Degreasing, dry cleaning and electronics													
060201	Metal degreasing	9.4	8.0	6.4	6.6	6.2	6.7	6.6	7.4	6.9	6.6	7.8	8.2	8.2
060202	2 Dry cleaning	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.5	0.4	0.4	0.5	0.5	0.5
060203	B Electronic components manufacturing	2.5	2.2	1.7	1.8	1.7	1.8	1.7	1.8	1.6	1.5	1.6	1.8	1.8
060204	Other industrial cleaning	4.1	3.9	3.5	4.0	4.2	5.1	5.3	6.1	5.9	5.8	7.0	7.2	7.2
0603	Chemical products manufacturing AND pro	cessi	ng											
060305	5 Rubber processing	1.0	0.9	0.7	0.8	0.7	0.8	0.8	0.8	0.7	0.6	0.6	0.7	0.7
060306	6 Pharmaceutical products manufacturing	8.4	7.0	5.5	5.5	5.0	5.2	5.6	6.7	6.7	6.8	8.4	8.4	8.4
060307	Paints manufacturing	60.0	55.0	50.0	45.0	40.0	35.0	34.5	33.9	33.4	32.8	32.2	34.9	34.9
060308	3 Inks manufacturing	7.2	6.9	6.7	6.4	6.2	6.0	5.8	5.6	5.5	5.3	5.1	5.6	5.6
060309	Glues manufacturing	4.2	4.2	4.1	4.1	4.1	4.0	4.1	4.2	4.3	4.4	4.5	4.9	4.9
060310	Asphalt blowing	1.3	1.2	1.0	1.0	1.0	1.1	1.0	1.0	8.0	0.7	0.7	8.0	0.8
	Adhesive, magnetic tapes, films and	l												
060311	photographs	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
060312	2 Textile finishing	0.2	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
060314	Other	41.5	40.7	39.8	39.0	38.1	37.3	37.6	37.9	38.2	38.5	38.8	42.0	42.0
0604	Other use of solvents and related activities													
060403	Printing industry	14.9	13.2	11.2	11.9	11.8	13.5	12.6	13.2	11.6	10.4	11.4	12.8	12.8
060404	Fat, edible and non edible oil extraction	0.5	0.5	0.4	0.4	0.4	0.4	0.4	0.4	0.3	0.3	0.3	0.3	0.3
060405	5 Application of glues and adhesives	0.8	0.7	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.6
060406	6 Preservation of wood	0.7	0.6	0.5	0.6	0.5	0.6	0.6	0.6	0.6	0.5	0.6	0.6	0.6
	Under seal treatment and conservation of	f												
060407	vehicles	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
	Domestic solvent use (other than paint	t												
060408	application)	14.0	13.5	12.3	14.1	14.9	18.2	18.3	20.6	19.6	18.9	22.4	23.4	23.4
060411	Domestic use of pharmaceutical products (k)	5.1	4.6	4.1	4.5	4.6	5.4	5.3	5.8	5.3	5.0	5.8	6.2	6.2
060412	Other (preservation of seeds,)	7.6	6.8	5.8	6.3	6.3	7.3	7.0	7.6	6.9	6.4	7.3	8.0	8.0
-		_			_	_		_	_	_		_		

Table 145: Implied NMVOC emission factors for Solvent Use 1990-2002 [in %]

SNAP	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
0601 Paint application													
060101 manufacture of automobiles	94	88	82	76	70	64	63	62	60	59	57	56	56
060102 car repairing	98	97	97	97	96	96	95	93	92	91	89	88	88
060103 construction and buildings	92	90	89	87	86	84	85	86	86	87	88	89	89
060104 domestic use	88	89	89	89	89	89	89	89	89	89	89	89	89
060105 coil coating	84	79	74	69	63	58	57	56	55	54	53	52	52
060107 wood coating	94	89	85	80	76	71	71	70	69	68	67	66	66
060108 Other industrial paint application	78	70	62	54	46	37	36	35	33	32	30	29	29
0602 Degreasing, dry cleaning and electron	onics												
060201 Metal degreasing	93	86	78	71	63	56	54	51	49	47	45	43	43
060202 Dry cleaning	95	94	92	91	89	88	87	87	86	86	85	84	84
060203 Electronic components manufacturing	68	64	61	57	53	49	48	47	46	45	44	43	43
060204 Other industrial cleaning	72	72	71	71	70	70	69	69	69	68	68	68	68
0603 Chemical products manufacturing Al	ND pro	cessin	g										
060305 Rubber processing	99	98	98	97	97	96	96	95	95	94	94	93	93
Pharmaceutical products 060306 manufacturing	46	42	38	34	29	25	25	25	26	26	26	26	26
060307 Paints manufacturing	5	5	5	5	5	5	5	4	4	4	4	3	3
060308 Inks manufacturing	5	5	5	5	5	5	5	5	5	5	5	5	5
060309 Glues manufacturing	20	20	20	20	20	20	20	20	20	20	20	20	20
060310 Asphalt blowing	1	1	1	1	1	1	1	1	1	1	1	1	1
060311 Adhesive, magnetic tapes, films and photographs	100	100	67	100	100	75	75	100	100	100	80	100	100
060312 Textile finishing	89	88	89	89	89	88	89	89	87	89	89	89	89
060314 Other	22	22	21	21	20	20	19	18	18	17	16	15	15
0604 Other use of solvents and related ac	tivities	1											
060403 Printing industry	86	82	79	76	72	69	68	68	67	66	66	65	65
Fat, edible and non edible oil extraction	19	19	19	20	20	20	20	20	20	20	20	20	20
060405 Application of glues and adhesives	86	83	79	76	72	69	68	67	66	65	64	63	63
060406 Preservation of wood	99	99	99	99	99	99	99	99	99	99	99	99	99
Under seal treatment and 060407 conservation of vehicles	85	85	85	85	85	85	85	85	85	85	85	85	85

Domestic solvent use (other than paint application)	84	84	84	84	84	84	84	84	84	84	84	84	84
Domestic use of pharmaceutical products (k)	94	94	94	94	94	94	94	94	94	94	94	94	94
060412 Other (preservation of seeds,)	92	82	72	62	53	43	41	40	38	36	35	33	33

5.2.5 Calculation of CO₂ emissions from Solvent Emissions

The basis for the calculation of the carbon dioxide emissions were the quantities of solvent emissions differentiated by the 15 groups of substances (acetone, methanol, propanol, solvent naphtha, paraffins, alcohols, glycols, ester, aromates, ketones, aldehydes, amines, organic acids, cyclic hydrocarbons, and others). Substance specific carbon dioxide factors for these 15 substance groups have been created (see Table 146) on the basis of the carbon content and the stoichiometrically formed CO₂.

Table 146: Substance specific carbon dioxide emission factors

CO ₂ factor
[kg CO ₂ /kg substance]
2.28
2.44
1.91
2.20
3.33
3.14
2.16
2.38
1.82
2.45
1.38
3.14
0.92
3.14

The amount of carbon dioxide emissions was disaggregated to SNAP level 3 according to the share of solvents used and solvent emissions respectively, that were calculated in the context of the bottom up approach.

300000 250000 150000 100000 50000 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002

Figure 14: Carbon dioxide emission of Category 3 Solvent and Other Product Use 1990-2002 [t/a]

5.2.6 Uncertainty Assessment

The comparison of the results of the top-down approach (import-export statistics, substances and products, production statistics, non solvent application) and these of the bottom-up approach showed a gap of less than 10 % (difference between 2 and 14 kt/a) [IIÖ&FIEU, 2004].

Table 147 presents the uncertainties of data sources of the top down approach.

The top-down approach was mainly based on the import-export statistics. The uncertainty of the statistical data was assumed to be negligible compared to the other uncertainties. The method of the import-export statistics between 1980 and 2001 varied and to harmonise the time series it was necessary to adjust data. The current import-export statistics are more detailed in regard of the products and substances. Hence the uncertainty is assumed to be in the order of 0.5 and 10% whereas it is higher in 1990 than in 2000.

An other important data source on top-down level was the survey on "non-solvent-application" in the 20 most relevant companies. The companies reported data in different quality: partly they reported data for all years partly just for the pillar years. Generally due to increasing electronic data storage the data quality is in the last years better than in earlier years. Altogether it was assumed that the uncertainty is between 1.5% and 5%. As for the statistical data, the uncertainty is higher in 1990 than in 2000.

Table 147: Uncertainties of Top down approach

Uncertainty in Activities	Data source	1990 [%]	1995 [%]	2000 [%]	Uncertainty source
Substances	National statistics STAT.A, foreign trade balance	+2,5 to - 2,5%	+1,5 to -1,5%	+0,5 to -0,5%	Expert judgement [IIÖ&FIEU, 2004]
Products	National statistics STAT.A, foreign trade balance	+10 to -10%	+5 to -5 %	+2,5 to -2,5%	Expert judgement [IIÖ&FIEU, 2004]
Solvent Production	National production statistics STAT.A,	0	0	0	Assumed to be negligible (see above)
Non solvent applications	Surveys in relevant companies	+5 to -5 %	+2,5 to -2,5%	+1,5 to -1,5%	Expert judgement [IIÖ&FIEU, 2004]

Table 148 presents the uncertainties of the emission factors that were obtained by expert judgement. A sensitivity analysis [FIEU&IIÖ, 2002a] showed a variation of 5% of the emission factors of solvent application in the year 2000.

Table 148: Uncertainties of Bottom- up approach

Uncertainty	1990	1995	2000	Data and uncertainty	
emissions factors	[%]	[%]	[%]	source	
Emissions factor	86%	63%	58%	[IIÖ&FIEU, 2004]	
Uncertainty – emissions factor	+10 to -10%	+7 to -7%	+5 to 5%	Expert judgement [IIÖ&FIEU, 2004]	

For calculation of the overall uncertainties of Sector 6 the upper and lower limit of activity data and emission factors was taken into account. Table 149.

Table 149: Uncertainties of Sector 6 Solvent and other product use

	1990 [%]	1995 [%]	2000 [%]	Data source
Uncertainty solvent emissions	-21 to +24%	-18 to +21%	-13 to +14%	[IIÖ&FIEU, 2004]

5.3 N₂O Emissions from Solvent and Other Product Use

Anaesthesia

100% of N_2O used for anaesthesia is released into atmosphere, therefore the emission factor is 1.00 Mg N_2O / Mg product use.

It is assumed that the use of N_2O for anaesthesia is constant at 350 tons per year. This estimation is based upon expert judgement and industry inquiries.

Fire Extinguishers

 N_2O emissions from this category are not estimated. It is assumed that emissions from this source are very low in Austria since N_2O driven fire extinguishers are not used widely, the uncertainty of emission estimates would be very high and emissions are not expected to vary widely over time.

Aerosol Cans

100% of N_2O used for aerosol cans is released into atmosphere, that's why the emission factor used is 1.00. It is assumed that the use of N_2O for aerosol cans is constant at 400 tons per year. This estimate is based on expert judgement and industry inquiries.

6 AGRICULTURE (CRF SOURCE CATEGORY 4)

6.1 Sector Overview

This chapter gives information about the estimation of greenhouse gas emissions from sector Agriculture in correspondence to the data reported under the IPCC Category 4 in the Common Reporting Format.

The following sources exist in Austria: domestic livestock activities with enteric fermentation and manure management, agricultural soils and agricultural residue burning.

Applied methods are in line with the 1996 Revised IPCC Guidelines and are based on following studies commissioned by the Umweltbundesamt:

- Gebetsroither E., Strebl F., Orthofer R., (2002): Greenhouse Gas Emissions from Enteric Fermentation in Austria: ARC Seibersdorf research. July 2002
- Amon B., Hopfner- Sixt K., Amon T. (2002): Emission Inventory for the Agricultural Sector in Austria - Manure Management, Institute of Agricultural, Environmental and Energy Engineering (BOKU - University of Agriculture, Vienna), July 2002
- Strebl F., Gebetsroither E., Orthofer R., (2002): Greenhouse Gas Emissions from Agricultural Soils in Austria; ARC Seibersdorf research, revised version, Nov. 2002

These studies are not published. A detailed description of the applied methods is given in this report.

To give an overview of Austria's agricultural sector some information is provided below (according to the 1999 Farm Structure Survey – full survey) [BMLFUW, 2003]:

Agriculture in Austria is small- structured: about 217 500 farms are managed, 41% of these farms manage less than 10 ha cultivated area. More than 85 000 holdings are classified as situated in less favoured areas. Related to the federal territory Austria has the highest share of mountainous areas in the EU (70%).

The agricultural area comprises 3.4 million hectares that is a share of \sim 41% of the total territory (forestry \sim 46%, other area \sim 13%). The shares of the different agricultural activities are as follows:

41% arable land

27% grassland (meadows mown several times and seeded grassland)

30% extensive grassland (meadows mown once, litter meadows, rough pastures, Alpine pastures and mountain meadows)

2% other types of agricultural land-use (vineyards, orchards, house gardens, vine and tree nurseries)

6.1.1 Emission Trends

In the year 2003 the sector *Agriculture* contributed 8.0% to the total of Austria's greenhouse gas emissions (not considering CO_2 emissions from LUCF) in 2003. The trend of GHG emissions from 1990 to 2003 shows a decrease of 13.1% for this sector (see Figure 15 and Table 151) due to a decrease in activity data.

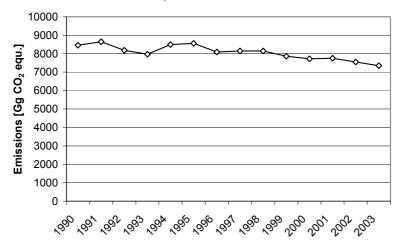


Figure 15: Trend of total GHG emissions from Agriculture

The fluctuations in the time series shown in Figure 15 are mainly due to fluctuations of N_2O emissions from agricultural soils.

Emission trends per gas

 CH_4 emissions from IPCC Category 4 Agriculture decreased by 13.3% since the base year mainly due to lower emissions from Enteric Fermentation. N_2O emissions decreased by 12.8% mainly due to lower emissions from Agricultural Soils (direct and indirect emissions). The trend is presented in Table 150.

Table 150: Emissions of greenhouse gases and their trend from 1990-2003 from Category 4 Agriculture

Year	GHG emiss	sions [Gg]
	CH₄	N_2O
1990	219.15	12.43
1991	216.17	13.24
1992	208.14	12.31
1993	208.72	11.57
1994	210.63	13.13
1995	211.77	13.26
1996	208.45	11.97
1997	206.11	12.31
1998	205.52	12.36
1999	201.19	11.73
2000	197.73	11.52
2001	195.49	11.77

2002	191.25	11.41
2003	189.97	10.84
Trend 90-03	-13.3%	-12.8%

Emission trends per sector

Table 151 presents total GHG emissions and trend 1990-2003 from *Agriculture* by subcategories as well as the contribution to the overall inventory emissions. Important subsectors are 4 A Enteric Fermentation (3.4%) and 4 D Agricultural Soils (2.9%) followed by 4 B Manure Management (1.7%).

Table 151: Total GHG emissions and trend 1990 - 2003 by subcategories of Agriculture

Year	GHG emissions [Gg CO ₂ equivalent] by sub categories					
real	4	4 A	4 B	4 D	4 F	
1990	8 456.23	3 573.19	1 806.95	3 074.35	1.74	
1991	8 643.69	3 524.91	1 783.58	3 333.47	1.72	
1992	8 187.31	3 371.19	1 740.48	3 073.98	1.65	
1993	7 970.20	3 371.82	1 754.88	2 841.88	1.63	
1994	8 492.49	3 417.53	1 759.58	3 313.68	1.69	
1995	8 557.75	3 444.32	1 765.90	3 345.83	1.71	
1996	8 089.34	3 393.64	1 733.52	2 960.50	1.68	
1997	8 144.83	3 344.21	1 727.01	3 071.84	1.77	
1998	8 146.26	3 321.15	1 735.73	3 087.67	1.72	
1999	7 860.19	3 281.83	1 670.28	2 906.32	1.76	
2000	7 724.46	3 237.23	1 630.11	2 855.47	1.65	
2001	7 753.92	3 183.17	1 632.05	2 936.96	1.74	
2002	7 552.64	3 123.50	1 588.43	2 838.97	1.74	
2003	7 349.06	3 093.65	1 589.00	2 664.80	1.61	
Share in Austrian Total 2003	8.0%	3.4%	1.7%	2.9%	0.0%	
Trend 1990- 2003	-13.1%	-13.4%	-12.1%	-13.3%	-7.5%	

As can be seen in Figure 16 and Table 151 the trend concerning emissions from all categories is decreasing. The reason for the nearly linear decrease of emissions from categories 4 A Enteric Fermentation and 4 B Manure Management is due to a decrease in livestock numbers (cattle and swine). Fluctuations of emissions from 4 D Agricultural Soils are mainly due to varying underlying activity data (sales figures of mineral fertilizers).

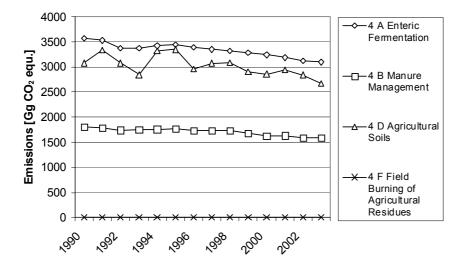


Figure 16: Emission trends of sub- sectors of Agriculture

As can be seen in Table 152, within the agricultural sector the subcategories 4 A and 4 D both contribute around 40% to total emissions, category 4 B contributes another 20%. Sub category 2 F Field Burning of Agricultural Wastes contributes only a negligible part (0.02% in 2003).

Table 152: Total greenhouse gas emissions and share of subcategories of Agriculture, 1990 and 2003

Year	GHG emissions [%] by sub categories				
	4	4 A	4 B	4 D	4 F
1990	100.0%	42.3%	21.4%	36.4%	0.0%
2003	100.0%	42.1%	21.6%	36.3%	0.0%

6.1.2 Key Sources

The key source analysis is presented in Chapter 1.5. This chapter includes information about the key sources in the IPCC Sector *4 Agriculture*. Key sources within this category are presented in Table 153.

Table 153: Key sources of Category 4 Agriculture

IPCC Category	Source Categories	Key Sources		
	Source Galegories	GHG	KS-Assessment*	
4 A 1	Cattle	CH₄	all	
4 B 1	Cattle	N_2O	all LA	
4 B 1	Cattle	CH₄	all LA, TA 96,97,00,01	
4 B 8	Swine	CH₄	all LA	
4 D 1	Direct Soil Emissions	N ₂ O	all except TA98	
4 D 3	Indirect Emissions	N_2O	all	

* LA 90 = Level Assessment 1990

LA 90 - 01 = Level Assessments for all years between 1990 and 2001

TA 00 = Trend Assessment BY-2000

6.1.3 Methodology

For the sub sectors 4 A Enteric Fermentation, 4 B Manure Management and 4 D Agricultural Soils IPCC Tier 1 methods and IPCC default emission factors were used, except for key sources of these sub sectors (sub categories Cattle of 4 A as well as Cattle and Swine of 4 B) where the more detailed Tier 2 method and country specific emission factors were used.

For the calculation of emissions from category 4 A 9 Poultry the IPCC Tier 2 method with Swiss emission factors (Gross Energy Intake, Methane Conversion Rate) was used. It is assumed that Swiss conditions are very similar to Austrian conditions.

As recommended in the Centralized Review 2003 for the estimation of emissions from category 4 F Field Burning of Agricultural Wastes the IPCC methodology using default values was applied.

6.1.4 Quality Assurance and Quality Control (QA/QC)

Data were checked for transcription errors between input data and calculation sheets. Calculations were examined focusing on units/scale and formulas. Quality Control following the GPG is described in the chapters of the sub sectors. A description of the QMS (Quality Management System) is presented in chapter 1.6.

6.1.5 Uncertainty Assessment

Table 154 presents uncertainties for emissions as well as for activity data and the EFs applied as estimated or as provided by the IPCC GPG (for the cases where default values were used for estimating emissions).

Compared to high uncertainties of emission factors, the uncertainty of the underlying statistical activity data is relatively low reducing the uncertainty of the calculated emissions.

Table 154: Uncertainties of Emissions and Emission Factors (Agriculture)

Categories		CH ₄ Emissions	N ₂ O Emissions	EF CH ₄	EF N₂O
4A1a, 4A1b	Cattle	+/- 8%³		+/- 20% ¹	
4A3/ 4A4	Sheep, Goats	+/- 62% ³		+/- 30%²	
4A6	Horses	+/- 10% ³		+/- 30%²	
4A8	Swine	+/- 42% ³		+/- 30%²	
4A9	Poultry				
4B1a	Dairy Cattle			+/- 65% ¹	- 50% to + 100% ²
4B1b	Non-dairy Cattle			+/- 75% ¹	- 50% to + 100% ²

Categories		CH ₄ Emissions	N ₂ O Emissions	EF CH₄	EF N ₂ O
4B8	Swine	+/- 90%.		+/- 70% ¹	- 50% to + 100% ²
4B 3/ 4/ 6/ 9	Sheep, Goats, Horses, Poultry	+/- 90%1		+/- 20%²	- 50% to + 100% ²
4D	Agricultural Soils		+/- 24 %		(see Table 196)
4F	Field Burning				
Activity Data					
	animal population	+/- 10%4			
	agricultural used land	+/- 5%4			

⁽¹⁾ Expert judgement by Dr. Barbara Amon, University of Agriculture Vienna (see also below under "Recalculation")

6.1.6 Recalculations

Update of activity data:

Animal Category Other.

In Austria animals of category *Other* which mainly is deer (but not wild living animals) have been counted from 1993 on. As recommended in the centralized review, the animal number of 1993 was used for the years 1990 to 1992.

Animal Category Soliped:

In the last submissions the number of soliped of the years 2000 to 2002 was based on expert judgement. For transparency reasons in this inventory the 1999 value was held constant until 2002. In the current inventory a new 2003 value of animal category *Soliped* is available.

Improvements of methodologies and emission factors:

Synthetic fertilizer use:

The S&A report 2004 noticed high inter-annual variations in N_2O emissions of sector 4 D synthetic fertilizer use. These variations are caused by effects of storage as well as the difference between the calendar year and the agricultural economic year: the amounts of synthetic fertilizers over the years reflect the amounts sold in one calendar year. However, the economic year for the farmer does not corresponded to the calendar year. Not the whole amount purchased is applied in the year of purchase. Considering these effects, in this submission the arithmetic average of each two years was used as fertilizer application data.

4 A 9 (Poultry), 4 A 10 (Other):

For the first time CH₄ emissions from *Poultry* and *Other (deer)* have been estimated.

⁽²⁾ IPCC

⁽³⁾ Calculation by expert (Monte Carlo Analysis), DI Gebetsroither (see also below under "Recalculation")

^{(4) [}WINIWARTER & RYPDAL, 2001]

4 B, 4 D (Non-dairy cattle):

The S&A report 2004 noticed high inter-annual variations in the CH_4 and N_2O IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.

4 A, 4 B In the last submissions, the GE, N_{ex} and VS_{ex} values from 2000 to 2002 were extrapolated on the basis of the published GE, N_{ex} and VS_{ex} data with a corresponding milk yield of 5 000 kg. In this year's calculations also the corresponding values of a milk yield of 6 000 kg published in [GRUBER & STEINWIDDER, 1996] were considered. The values were calculated via interpolation.

4 D 3 Atmospheric nitrogen deposition:

Following a recommendation of the centralized review (October 2004), in contrast to the last submission also N volatised in housing, storage and pasture was taken into account. Now, in accordance with the IPCC good practice, the value $Frac_{GASM}$ relates to N excreted by livestock and not to Nex left for spreading.

4 F 1 a Field burning (Cereals / Wheat):

As recommended in the Centralized Review 2003 the IPCC methodology using default values was applied.

CRF-Tables, background data:

According to the Centralized Review 2003 emissions from different animal waste management systems (AWMS) are reported under the appropriate AWMS in the CRF.

As recommended in the S&A report 2004 in table 4.B (b) notation keys instead of "0" have been used.

6.1.7 Completeness

Table 155 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated.

Table 155: Overview of subcategories of Category Agriculture: transformation into SNAP Codes and status of estimation

IPCC Cate	IPCC Category			CH ₄	N ₂ O
4 A	ENTERIC FERMENTATION	1004	ENTERIC FERMENTATION	✓	NA
4 A 1	Cattle			✓	NA
4 A 1 a	Dairy Cattle	100401	Dairy cows	✓	NA
4 A 1 b	Non- Dairy Cattle	100402	Other cattle	✓	NA
4 A 2	Buffalo	100414	Buffalos	NO	NO
4 A 3	Sheep	100403	Ovines	✓	NA
4 A 4	Goats	100407	Goats	\checkmark	NA
4 A 5	Camels and Lamas	100413	Camels	NO	NO
4 A 6	Horses	100405	Horses	✓	NA
4 A 7	Mules and Asses	100406	Mules and asses	IE ⁽¹⁾	NA

IPCC Cate	gory	SNAP		CH ₄	N ₂ C
4 A 8	Swine	100404	Fattening pigs	✓	NA
4 A 9	Poultry	100408 /09/10	Laying hens, broilers, other poultry	✓	NA
4 A 10	Other	100415	Other	✓	NA
4 B	MANURE	1005	MANURE MANAGEMENT REGARDING ORGANIC COMPOUNDS	✓	NO
	MANAGEMENT	1009	MANURE MANAGEMENT REGARDING NITROGEN COMPOUNDS	NO	✓
4 B 1	Cattle			✓	✓
4 B 1 a	Dairy Cattle	100501	Dairy cows	✓	✓
4 B 1 b	Non-Dairy Cattle	100502	Other cattle	✓	✓
4 B 2	Buffalo	100514	Buffalos	NO	NO
4 B 3	Sheep	100505	Ovines	✓	✓
4 B 4	Goats	100511	Goats	✓	✓
4 B 5	Camels and Lamas	100513	Camels	NO	NO
4 B 6	Horses	100506	Horses	✓	✓
4 B 7	Mules and Asses	100506	Mules and asses	IE ⁽²⁾	IE ⁽²
4 B 8	Swine	100503	Fattening pigs	✓	✓
4 B 9	Poultry	100507 /08/09	Laying hens, broilers, Other poultry (ducks, gooses,)	✓	✓
4 B 10	Anaerobic		Anaerobic	NO	NO
4 B 11	Liquid Systems		Liquid Systems	NO	✓
4 B 12	Solid Storage and Dry Lot		Solid Storage and Dry Lot	NO	✓
4 B 13	Other		Other management / manure without bedding	NO	✓
4 B 13	Other	100515	Other animals (deer)	✓	✓
4 C	RICE CULTIVATION	100103 100103	Rice Field (with fertilizers) Rice Field (without fertilizers)	NO	NO
4 D	AGRICULTURAL SOILS	1001 1002	CULTURES WITH FERTILIZERS CULTURES WITHOUT FERTILIZERS	NO	✓
4 D 1	Direct Soil Emissions	1001 / 1002	Cultures with and without fertilizers	NO	✓
4 D 2	Animal Production	1002	Cultures without fertilizers	NO	✓
4 D 3	Indirect Emissions	1001 / 1002	Cultures with and without fertilizers	NO	✓
4 D 4	Other (Sewage Sludge)	1001	Cultures with fertilizers	✓	✓
4 E	PRESCRIBED BURNING OF SAVANNAS			NO	NO
4 F	FIELD BURNING OF AGRICULTURAL WASTE	1003	ON- FIELD BURNING OF STUBBLE, STRAW,	✓	✓
4 F 1	Cereals	100301	Cereals	✓	✓
	Pulse	100302	Pulse		

IPCC Cat	tegory	SNAP		CH₄	N_2O
4 F 3	Tuber and Root	100303	Tuber and Root	NO	NO
4 F 4	Sugar Cane	100304	Sugar Cane	NO	NO
4 F 5	Other: Vine	100305 [0907]	Other: Open burning of agricultural wastes (except 1003)	✓	✓

⁽¹⁾ included in 4 A 6 Horses, SNAP 100406

6.1.8 Planned Improvements

Planned Improvements are presented in the respective subcategories of this chapter.

⁽²⁾ included in 4 B 6 Horses, SNAP 100506

6.2 Enteric Fermentation (CRF Source Category 4 A)

This chapter describes the estimation of CH₄ emissions from *Enteric Fermentation*. In 2003 78% of agricultural CH₄ emissions arose from this source category.

6.2.1 Source Category Description

 CH_4 emissions amounted to 170.2 Gg in the "Kyoto" base year and have decreased by 13.4% to 147.3 Gg in 2003. Almost all emissions (93.3% in 2003) are caused by cattle farming. The contribution of *Dairy Cattle* to total emissions from cattle decreased from 47.1% in 1990 to 40.0% in 2003.

Table 156: Greenhouse gas emissions from Enteric Fermentation by sub categories 1990-2003

				•	emissions	. 0.			
Year					stock Cate	0 ,			
	4 A	4 A 1 a	4 A 1 b	4 A 3	4 A 4	4 A 6	4 A 8	4 A 9	4 A 10
	Total	Dairy	Non Diary	Sheep	Goats	Horses	Swine	Poultry	Other
1990	170.15	80.16	80.43	2.48	0.19	0.89	5.53	0.18	0.30
1991	167.85	77.94	80.12	2.61	0.20	1.04	5.46	0.19	0.30
1992	160.53	75.19	75.49	2.50	0.20	1.11	5.58	0.18	0.30
1993	160.56	74.27	76.00	2.67	0.24	1.17	5.73	0.19	0.30
1994	162.74	75.62	76.85	2.74	0.25	1.20	5.59	0.18	0.30
1995	164.02	68.55	84.90	2.92	0.27	1.30	5.56	0.18	0.32
1996	161.60	68.32	82.65	3.05	0.27	1.32	5.50	0.17	0.33
1997	159.25	71.22	77.17	3.07	0.29	1.34	5.52	0.19	0.45
1998	158.15	72.71	74.62	2.89	0.27	1.36	5.72	0.18	0.40
1999	156.28	70.28	75.77	2.82	0.29	1.47	5.15	0.19	0.31
2000	154.15	63.28	80.93	2.71	0.28	1.47	5.02	0.15	0.31
2001	151.58	61.65	79.97	2.56	0.30	1.47	5.16	0.16	0.31
2002	148.74	61.43	77.69	2.43	0.29	1.47	4.96	0.16	0.31
2003	147.32	58.85	78.65	2.60	0.27	1.57	4.87	0.17	0.33
Share 2003	100%	40.0%	53.4%	1.8%	0.2%	1.1%	3.3%	0.1%	0.2%
Trend 1990- 2003	-13.4%	-26.6%	-2.2%	5.0%	46.2%	77.0%	-12.0%	-5.7%	11.0%

The overall reduction is caused mainly by a decrease in total numbers of animals. However, in the case of dairy cows the reduction of animals is partly counterbalanced by an increase in emissions per animal (because of the increasing gross energy intake and milk yield of milk cattle since 1990). CH_4 emissions from the subcategory *Cattle* are a key source.

6.2.2 Methodological Issues

The IPCC Tier 1 Method was applied for Swine, Sheep, Goats, Horses and Other Animals.

For *Cattle* the more detailed "Tier 2" method was applied. The IPCC "Tier 2" method is based on the "Tier 1" method, but it uses specific emission factors for different livestock subcategories.

The IPCC Guidelines don't provide methodologies for the categories *Poultry* and *Other*.

In Austria, the animal category *Other* corresponds to deer. For the estimation of CH_4 emissions from category 4 A 10 the IPCC default emission factor of sheep was used, as sheep is the most similar livestock category to deer.

For the calculation of emissions from category 4 A 9 Poultry the IPCC Tier 2 method with Swiss emission factors (Gross Energy Intake, Methane Conversion Rate) was used. It is assumed that Swiss conditions are very similar to Austrian conditions.

Activity data

The Austrian official statistics [STATISTIK AUSTRIA, 2003] provides national data of annual livestock numbers on a very detailed level. These data are based on livestock counts held in December each year³⁰.

The activity data used is presented in the following table. The inherent uncertainty is estimated to be about 5% [FREIBAUER & KALTSCHMITT, 2001].

Table 157: Domestic livestock population and its trend 1990-2003 (I)

				Population s	size [heads] *	,		
Year				Livestock	Category			
	Dairy	Non Dairy	Mother Cows (suckling cows >2yr)	Young Cattle <1yr	Young Cattle 1- 2yr	Cattle > 2yr	Sheep	Goats
1990	904 617	1 679 297	47 020	925 162	560 803	146 312	309 912	37 343
1991	876 000	1 658 088	57 333	894 111	555 432	151 212	326 100	40 923
1992	841 716	1 559 009	60 481	831 612	521 078	145 838	312 000	39 400
1993	828 147	1 420 872	61 845	668 926	544 994	145 107	333 835	47 276
1994	809 977	1 518 541	89 999	706 579	573 177	148 786	342 144	49 749
1995	706 494	1 619 331	210 479	691 454	564 352	153 046	365 250	54 228
1996	697 521	1 574 428	212 700	670 423	537 382	153 923	380 861	54 471
1997	720 377	1 477 563	170 540	630 853	514 480	161 690	383 655	58 340
1998	728 718	1 442 963	154 276	635 113	496 159	157 415	360 812	54 244
1999	697 903	1 454 908	176 680	630 586	488 283	159 359	352 277	57 993
2000	621 002	1 534 445	252 792	655 368	466 484	159 801	339 238	56 105
2001	597 981	1 520 473	257 734	658 930	455 712	148 097	320 467	59 452
2002	588 971	1 477 971	244 954	640 060	449 932	143 025	304 364	57 842
2003	557 877	1 494 156	243 103	641 640	446 121	163 292	325 495	54 607
Trend	-38.3%	-11.0%	417.0%	-30.6%	-20.4%	11.6%	5.0%	46.2%

³⁰ For cattle livestock counts are also held in June, but seasonal changes are very small (for the years 1998 to 2003 the difference was between 0% and 2%). Livestock counts of sheep are only held in December (sheep is only a minor source for Austria and seasonal changes of the population are not considered relevant).

The strong decline of dairy cattle numbers is connected with the increasing milk yield per cow: For the production of milk according to Austria's milk quota every year a smaller number of cows is needed.

Table 158: Domestic livestock population and its trend 1990-2003 (II)

				Popula	tion size [he	ads] *			
Year				Live	stock Categ	ory			
	Horses	Swine	Fattening Pig >50kg	Swine for breeding >50kg	Young Swine <50kg	Poultry	Chicken	Other Poultry	Other
1990	49 200	3 687 981	1 308 525*	382 335*	1 997 120*	13 820 961	13 139 151	681 810	37 100
1991	57 803	3 637 980	1 290 785*	377 152*	1 970 044*	14 397 143	13 478 820	918 323	37 100
1992	61 400	3 719 600	1 319 744*	385 613*	2 014 243*	13 683 900	12 872 100	811 800	37 100
1993	64 924	3 819 798	1 355 295	396 001	2 068 502	14 508 473	13 588 850	919 623	37 100
1994	66 748	3 728 991	1 323 145	394 938	2 010 908	14 178 834	13 265 572	913 262	37 736
1995	72 491	3 706 185	1 312 334	401 490	1 992 361	13 959 316	13 157 078	802 238	40 323
1996	73 234	3 663 747	1 262 391	398 633	2 002 723	12 979 954	12 215 194	764 760	41 526
1997	74 170	3 679 876	1 268 856	397 742	2 013 278	14 760 355	13 949 648	810 707	56 244
1998	75 347	3 810 310	1 375 037	386 281	2 048 992	14 306 846	13 539 693	767 153	50 365
1999	81 566	3 433 029	1 250 775	343 812	1 838 442	14 498 170	13 797 829	700 341	39 086
2000	81 566	3 347 931	1 211 988	334 278	1 801 665	11 786 670	11 077 343	709 327	38 475
2001	81 566	3 440 405	1 264 253	350 197	1 825 955	12 571 528	11 905 111	666 417	38 475
2002	81 566	3 304 650	1 187 908	341 042	1 775 700	12 571 528	11 905 111	666 417	38 475
2003	87 072	3 244 866	1 243 807	334 329	1 666 730	13 027145	12 354 358	672 787	41 190
Trend	77.0%	-12.0%	-4.9%	-12.6%	-16.5%	-5.7%	-6.0%	-1.3%	11.0%

^{*.....}adjusted age class split for swine as recommended in the centralized review (October 2003)

The statistical data as presented above generally provides consistent time series. However, there have been minor inconsistencies for the categories cattle, poultry, horses and other. The explanations for these inconsistencies are presented below:

- 1991: A minimum counting threshold for poultry was introduced. Farms with less than 11 poultry were not counted any more. The marked increase of the soliped population between 1990 and 1991 is caused by a better data collection from riding clubs and horse breeding farms [STAT. ZENTRALAMT, 1991].
- 1993: New characteristics for swine and cattle categories were introduced in accordance with Austria's entry into the European Economic Area (EEA) and the EU guidelines for farm animal population categories. This is the reason why the 1993 data are not fully comparable with the previous data. For example, in 1993 part of the "Young cattle < 1 yr" category was included in the "Young cattle 1-2 yr". The same cause is the main reason of the shift from "Young swine < 50 kg" to "Fattening pigs > 50 kg" (before 1993 the limits were 6 months and not 50 kg which led to the shift).

Following the recommendations of the centralized review (October 2003), the age class split for swine categories of the years 1990-1992 was adjusted using the split from 1993.

1993: For the first time there was a collection of wild animals in e.g. deer parks.

The increase of the "mother and suckling cows" population and a concurrent decrease of the "dairy cattle" population in 1993 and again in 1995 and 2000 is a result of the increased financial support for "mother and suckling cows" [STAT. ZENTRALAMT, 1993 and 1995].

The FAO agricultural data base (FAOSTAT) provides worldwide harmonized data [FAO AGR. STATISTICAL SYSTEM, 2001]. In the case of Austria, these data come from the national statistical system (STATISTIK AUSTRIA). However, there are inconsistencies between these two data sets. Analysis shows that there is often a time gap of one year between the two data sets. FAOSTAT data are seemingly based on the official STATISTIK AUSTRIA data but there is an annual attribution error. It was decided to use the STATISTIK AUSTRIA data, because they are the best available.

Information about the extent of organic farming in Austria was provided in the Austrian INVEKOS³¹ database [KIRNER & SCHNEEBERGER, 1999], which was established to account for the financial support for sustainable agriculture including organic farming. INVEKOS data were used to calculate the share of animals that are subject to organic farming practices. However, INVEKOS data were available only for the years 1997 to 2000, and these data referred only to aggregated livestock categories. Furthermore, the INVEKOS data are not fully compatible with the STATISTIK AUSTRIA data because they rely on different data reporting periods.

The data gaps in the INVEKOS data sets (insufficiently detailed animal categories, lack of data for 1990-1996) were filled through expert judgments and trend extrapolations using surrogate data (e.g. the development of organic farming).

For all major animal categories the average share of organic farming in the 1997-2000 period was calculated from the INVEKOS data. This average share was then allocated to all animal sub-categories, assuming a default ratio between all sub-categories (e.g. assuming that the cattle in organic and conventional farming have the same ratios of dairy cattle, mother cows, calves etc.). Table 159 shows the results of the shares of organic farming in the relevant livestock categories for 1997-2000.

For the years 1990-1996, a trend extrapolation using surrogate data was made, namely the number of farms that apply organic farming practices [BMLFUW, 2002]. These data for expansion development of organic farming in Austria were applied to derive a trend of the animal population numbers in organic farming for the years 1990-1996 where no other relevant data were available. For the years after 2000 the data for 2000 was used.

Table 159: Share of animal population under organic farming systems (average 1997-2000, calculations by ARCS, based on INVEKOS data)

IPCC Category	% organic	IPCC Category	% organic
CATTLE	15%	SHEEPS	26%
MATURE DAIRY CATTLE		GOATS	29%
Dairy Cattle > 2 yr	15%	POULTRY	
MATURE NON DAIRY		Chicken	3%

³¹ INVEKOS (Integriertes Verwaltungs- und Kontrollsystem, Integrated Administration and Control System) contains data about the regional distribution, land use, and the number of animals per farm. The INVEKOS is managed by the Federal Ministry of Agriculture, Forestry, Environment and Water Management.

CATTLE		Other Poultry	2%
Mother Cows > 2 yr	25%		
Cattle > 2 yr	20%	SOLIPEDS	
YOUNG CATTLE		Horses	Not estimated
Young Cattle < 1 yr	13%	Other Solipeds	Not estimated
Young Cattle 1-2 yr	12%	OTHER ANIMALS	Not estimated
SWINE	1%		
MATURE SWINE			
Fattening pig > 50 kg	1%		
Swine for breeding > 50 kg	1%		
YOUNG SWINE			
Young Swine < 50 kg	2%		•

6.2.2.1 Cattle (4 A 1)

Key Source: Yes

CH₄ emissions from *Enteric Fermentation - Cattle* (sum of dairy and non-dairy cattle) is a key source due to the contribution to total greenhouse gas emissions in Austria and also due to its contribution to the total inventory's trend. In the year 2003, emissions from *Enteric Fermentation - Cattle* contributed 3.15% to total greenhouse gas emissions in Austria.

CH₄ Emissions were calculated using the IPCC Tier 2 methodology. Activity data were obtained from national statistics and are presented in Table 157 and Table 158.

Emission Factors

Country specific emission factors were used. They were calculated from the specific *gross* energy intake and the methane conversion rate (GPG, Equation 4.14).

$$EF = (GE * Y_m * 365 days/yr) / 55.65 MJ/kg$$

Y_m Methane conversion rate

The methane conversion rate (Y_m) was taken from the IPCC recommended value for "all other cattle" (0.06 +/- 8.3%) because there are few if any feedlot cattle with a high- energy diet (i.e. with 90% or more of the diet in form of concentrates) in Austria.

Country specific values for the Gross Energy Intake were applied. The estimation was done separately for *Dairy* and *Non-Dairy* cows:

GE Gross Energy Intake of Dairy Cows (4 A 1 a)

The use of country specific values for the Gross Energy Intake results in a more precise estimation of CH₄ emissions from enteric fermentation than applying the IPCC default values.

The Gross Energy Intake for dairy cows was taken from a study by the animal nutrition experts [GRUBER & STEINWIDDER, 1996] who carried out intensive model calculations on nitrogen and phosphorus excretion of livestock. They modeled dairy cow diets typically fed in Austria,

taking into account milk yields from 3 000 to 8 000 kg per cow and year and calculated the corresponding Gross Energy Intake (see Table 160).

Table 160: Energy intake for diary cattle in Austria in dependency of annual milk yield (after GRUBER & STEINWIDDER 1996)

Milk yield	3 500	4 000	4 500	5 000	5 500	6 000
Gross energy intake [MJ GE day ⁻¹]	214.96	227.63	240.22	252.75	265.65	278.56

For calculation of the average gross energy intake of Austrian dairy cattle the average milk yield of Austrian cows was converted like presented in the study mentioned above. The time series of average milk yields of the cattle was taken from national statistics and are presented in Table 162. For dairy cattle there was a ~19% increase of GE intake between 1990 and 2003 due to the increase of the milk yield per dairy cow in this time.

GE Gross energy intake of Non-Dairy Cattle (1 A 1 b)

Gross energy intake for *Non-Dairy Cattle* was calculated from typical Austrian diets of these livestock categories. Animal nutrition expert Dr. Andreas Steinwidder³² worked out animal diets as shown in Table 161. There are distinct differences in organic and conventional diets for *Non-Dairy Cattle*. Thus, in this section a differentiation between both production systems was worked out. Gross energy intake was calculated using the methodology as described in [GRUBER & STEINWIDDER, 1996]. As no major changes in diets of *Non-Dairy Cattle* occurred in the period from 1990-2003, methane emissions from enteric fermentation of *Non-Dairy Cattle* are calculated with a constant gross energy intake for the whole time series.

³² Dr. Andreas Steinwidder, head of department animal production of the Federal Research Institute for Agriculture in Alpine Regions (BAL Gumpenstein)

Table 161: Typical Austrian diets and gross energy intake of Non-Dairy Cattle, conventional and organic production system.

		Suckling cows	cattle < 1 year	cattle 1-2 years	non dairy cattle > 2 years
	live weight	600 kg	210 kg	530 kg	600 kg
CONVENTIONAL		50 % green feeding	15 % green feeding	20 % green feeding	40 % green feeding
\cong	animal diet	20 % hay	20 % hay	15 % hay	20 % hay
Щ		30 % grass silage			
Ž			35 % maize silage	35 % maize silage	10 % maize silage
00	Gross Energy Intake [(MJ GE (kg dry matter) ⁻¹]	191.56	84.36	166.96	163.44
		Suckling cows	cattle < 1 year	cattle 1-2 years	non dairy cattle > 2 years
'	live weight	600 kg	190 kg	480 kg	580 kg
S		50 % green feeding	35 % green feeding	40 % green feeding	40 % green feeding
Ä	animal diet	20 % hay	20 % hay	15 % hay	15 % hay
ORGANIC		30 % grass silage	45 % grass silage	45 % grass silage	45 % grass silage
	Gross Energy Intake [(MJ GE (kg dry matter) ⁻¹]	191.56	72.06	151.14	159.93

The resulting emission factors are presented in the following tables:

Table 162: Annual milk yield, Gross Energy Intake and Emission Factors of Dairy Cattle 1990-2002

Year	Milk Yield	Gross Energy Intake	Emission Factor
	[kg/cow*yr]	[MJ GE/head*day]	[kg CH4/head*yr]
1990	3791	225	89
1991	3862	226	89
1992	3934	227	89
1993	4005	228	90
1994	4076	237	93
1995	4619	247	97
1996	4670	249	98
1997	4787	251	99
1998	4924	254	100
1999	5062	256	101
2000	5210	259	102
2001	5394	262	103
2002	5487	265	104
2003	5638	268	105

Table 163: Emission Factors and Gross Energy Intake of Non- Dairy Cattle 1990-2002

IPCC Category	Farming type	Gross Energy Intake [MJ/head.day]	Calculated Emission Factor [kg CH₄/head.yr]
Mother cows suckling > 2 yr	conventional	192	75
Mother cows suckling > 2 yr	organic	192	75
Cattle >2 yr	conventional	163	64
Cattle >2 yr	organic	160	63
Young Cattle < 1 yr	conventional	84	33
Young Cattle < 1 yr	organic	72	28
Young Cattle 1-2 yr	conventional	167	66
Young Cattle 1-2 yr	organic	151	59

6.2.2.2 Sheep (4 A 3), Goats (4 A 4), Horses (4 A 6) Swine (4 A 8), Poultry (4 A 9) and Other (4 A 10)

Key Source: No

As presented in Table 156, CH₄ emissions from *Sheep, Goats, Horses, Swine, Poultry* and *Other (deer)* are only minor emission sources of category *4 A Enteric Fermentation*. Together they contributed 6.7% to total emissions from this category in 2003. The most important sub source is *Swine*, with a contribution of 3.3%, followed by *Sheep* (1.8%), *Horses* (1.1%), *Goats* and *Other (deer)* with each 0.2% and finally *Poultry* (0.1%). (figures are also presented in Table 156).

Emissions (except *Poultry*) were estimated using the IPCC Tier 1 methodology.

As sheep is the most similar animal category to deer, emissions from deer were estimated applying the default emission factor of sheep. For all swine categories an emission factor of 1.5 kg/head*yr was used. Default emission factors were taken from the IPCC Guidelines and are presented in the following table:

Table 164: IPCC Default Emission Factors for Categories estimated by Tier 1

IPCC Category	Emission Factor* (Developed Countries)	IPCC Category	Emission Factor* (Developed Countries)	
	[kg CH₄/head*yr]		[kg CH₄/head*yr]	
4 A 3 Sheep (+deer)	8	4 A 6 Horses	18	
4 A 4 Goats	5	4 A 8 Swine	1.5	

^{*} Source: IPCC Reference Manual p.4.10

The IPCC Guidelines don't provide methodologies for the estimation of emissions from *Poultry*.

For the calculation of emissions from category 4 A 9 Poultry the IPCC Tier 2 method with Swiss values (Gross Energy Intake (GE), Methane Conversion Rate (Y_m)) was used. It is assumed that Swiss conditions are very similar to Austrian conditions.

 Y_m : 0,09%

GE: 2,18 MJ/head/yr (Swiss 2002 value)

Swiss values (see Swiss NIR [SAEFL, 2004]) are based on the study [Minonzio, 1998].

Activity data were obtained from national statistics and are presented in Table 157 and Table 158.

6.2.3 Uncertainties

Uncertainty of total CH₄ emissions from Enteric Fermentation: +/- 8%

Uncertainties of CH_4 emissions from *Enteric Fermentation* were estimated with a "Monte Carlo" simulation. Assuming a normal probability distribution, the calculated standard deviation is 4%. This indicates there is a 95% probability that CH_4 emissions are between +/- 2 standard deviations.

Uncertainties that were taken into account for calculations of the total uncertainty:

- Gross Energy Intake (GE): +/- 20% (estimated by expert judgement of Dr. Amon)
- Methane Conversion Factor (Y_m) cattle: +/- 8.3% [IPCC GUIDELINES, 1997]
- Livestock: (Source: STATISTIK AUSTRIA; sample survey –) statistical accuracy 95%
- Share of organic farming: +/- 10% (estimated by expert judgement of the ARC-Team)
- EF for Sheep, Swine, Horses, Goats (IPCC default values): +/- 30% [IPCC GUIDELINES, 1997]
- The emission factors for the "Tier 2" method are determined by the uncertainty of the gross energy intake (GE) and the CH₄ conversion rates (Y_m). The uncertainty was estimated to be to be about +/- 20% (Amon et al. 2002).

Table 165: Uncertainties of emission estimates for Enteric Fermentation

IPCC Category	Farming Type	Standard deviation (σ) in %
CATTLE	Conventional	4
CATTLE	Organic	6
CATTLE	Total	4
MATURE DAIRY CATTLE		
Dairy Cattle > 2 yr	Conventional	8
Dairy Cattle > 2 yr	Organic	11
Dairy Cattle > 2 yr	Total	8
MATURE NON DAIRY CATTLE		
Mother Cows > 2 yr	Conventional	8
Mother Cows > 2 yr	Organic	11
Mother Cows > 2 yr	Total	8
Cattle > 2 yr	Conventional	8
Cattle > 2 yr	Organic	11
Cattle > 2 yr	Total	8
YOUNG CATTLE		
Young Cattle < 1 yr	Conventional	8
Young Cattle < 1 yr	Organic	11
Young Cattle < 1 yr	Total	8
Young Cattle 1-2 yr	Conventional	8

IPCC Category	Farming Type	Standard deviation (σ) in %
Young Cattle 1-2 yr	Organic	11
Young Cattle 1-2 yr	Total	8
SWINE	Conventional	21
SWINE	Organic	24
SWINE	Total	21
MATURE SWINE		
Fattening pig > 50 kg	Conventional	30
Fattening pig > 50 kg	Organic	32
Fattened pig > 50 kg	Total	30
Swine for breeding > 50 kg	Conventional	30
Swine for breeding > 50 kg	Organic	32
Swine for breeding > 50 kg	Total	30
YOUNG SWINE		
Young Swine < 50 kg	Conventional	31
Young Swine < 50 kg	Organic	32
Young Swine < 50 kg	Total	31
SHEEPS	Conventional	31
SHEEPS	Organic	32
SHEEPS	Total	31
GOATS	Conventional	31
GOATS	Organic	32
GOATS	Total	31
POULTRY	Total	Not estimated
SOLIPEDS	Total	5
Horses	Conventional	5
Other Solipeds	Conventional	Not estimated
OTHER ANIMAL	Conventional	Not estimated
Total		4

Table 165 presents the standard deviations for CH_4 emissions from animal categories. The uncertainty is defined as +/- 2 σ .

6.2.4 Recalculations

4 A 1 a:

The estimation of CH_4 emissions from enteric fermentation / diary cattle is based on gross energy intake (GE) depending on milk yield data. Data were taken from [GRUBER & STEINWIDDER 1996] who carried out intensive model calculations on nitrogen excretion of cows taking into account milk yields from 3 000 to 8 000 kg.

In the last submission the GE values of the years 2000 to 2002 were extrapolated on the basis of the GE value with a corresponding milk yield of 5 000 kg. In this year's calculations also the corresponding GE value of a milk yield of 6 000 kg published in the study mentioned above was

considered. The values for the years 2000, 2001 and 2002 were calculated via interpolation which led to higher emissions.

4 A 6:

In the last submissions the number of soliped of the years 2000 to 2002 was based on expert judgement. For transparency reasons in this inventory the official 1999 value was held constant until 2002. In the current inventory a new 2003 value of animal category *Soliped* is available.

4 A 9, 4 A 10:

For the first time emissions from the livestock categories *Other (deer)* and *Poultry* were estimated.

Table 166: Difference to last year's submission of CH₄ emissions from subcategories of Category 4 A

Year	CH ₄ emissions [Gg]							
	4 A Total	4 A 1 a Dairy	4 A 6 Horses	4 A 9 Poultry	4 A 10 Other			
1990	0.47	0	0	NE->0.18	NE->0,30			
1991	0.48	0	0	NE->0.19	NE->0,30			
1992	0.47	0	0	NE->0.18	NE->0,30			
1993	0.48	0	0	NE->0.19	NE->0,30			
1994	0.48	0	0	NE->0.18	NE->0,30			
1995	0.50	0	0	NE->0.18	NE->0,32			
1996	0.50	0	0	NE->0.17	NE->0,33			
1997	0.64	0	0	NE->0.19	NE->0,45			
1998	0.59	0	0	NE->0.18	NE->0,40			
1999	0.50	0	0	NE->0.19	NE->0,31			
2000	0.61	0.18	-0.03	NE->0.15	NE->0,31			
2001	0.75	0.34	-0.06	NE->0.16	NE->0,31			
2002	0.91	0.50	-0.06	NE->0.16	NE->0,31			

6.3 Manure Management (CRF Source Category 4 B)

This chapter describes the estimation of CH_4 and N_2O emissions from animal manure. In 2003 22% of the agricultural CH_4 emissions and 21% of the agricultural N_2O emissions were caused by this source category.

6.3.1 Source Category Description

From 1990 to 2003 CH_4 emissions from *Manure Management* decreased by 13.3% to 42.16 Gg. This is mainly due a decrease of the livestock categories cattle and swine.

Table 167: CH₄ Emissions from Manure Management 1990-2003

			CH₄ em	issions fro	m Manure	Manageme	ent [Gg]		
				Lives	tock Cate	gories			
	4 B	4 B 1 a	4 B 1 b	4 B 3	4 B 4	4 B 6	4 B 8	4 B 9	4 B 13
	Total	Dairy	N. Dairy	Sheep	Goats	Horses	Swine	Poultry	Other
1990	48.60	15.80	10.27	0.06	0.00	0.07	21.32	1.08	0.01
1991	47.93	15.33	10.29	0.06	0.00	80.0	21.03	1.12	0.01
1992	47.23	14.76	9.74	0.06	0.00	0.09	21.50	1.07	0.01
1993	47.63	14.56	9.69	0.06	0.01	0.09	22.08	1.13	0.01
1994	47.42	14.63	9.75	0.07	0.01	0.09	21.77	1.11	0.01
1995	47.25	13.10	11.05	0.07	0.01	0.10	21.83	1.09	0.01
1996	46.34	12.98	10.85	0.07	0.01	0.10	21.31	1.01	0.01
1997	46.35	13.45	10.21	0.07	0.01	0.10	21.35	1.15	0.01
1998	46.86	13.65	9.88	0.07	0.01	0.10	22.02	1.12	0.01
1999	44.39	13.12	10.11	0.07	0.01	0.11	19.84	1.13	0.01
2000	43.06	11.72	10.98	0.06	0.01	0.11	19.25	0.92	0.01
2001	43.41	11.32	10.80	0.06	0.01	0.11	20.12	0.98	0.01
2002	42.02	11.19	10.45	0.06	0.01	0.11	19.20	0.98	0.01
2003	42.16	10.64	10.77	0.06	0.01	0.12	19.54	1.02	0.01
Share 2003	100%	25.2%	25.5%	0.1%	0.0%	0.3%	46.3%	2.4%	0.0%
Trend 1990- 2003	-13.3%	-32.6%	4.9%	5.0%	46.2%	77.0%	-8.4%	-5.7%	11.0%

From 1990 to 2003 the N_2O emissions from *Manure Management* decreased by 10.5% to 2.27 Gg. Emissions of cattle dominate the trend. The reduction of diary cows is partly counterbalanced by an increase in emissions per animal (because of the increasing gross energy intake, milk production and N excretion of diary cattle since 1990).

Table 168: N₂O Emissions from Manure Management 1990-2003

			N ₂ O e	emissions	from Man	ure Mana	gement [G	∂ g]	
				Li	vestock Ca	ategories			
	4 B	4 B 1 a	4 B 1 b	4 B 3	4 B 4	4 B 6	4 B 8	4 B 9	4 B 13
	Total	Dairy	Non Dairy	Sheep	Goats	Horses	Swine	Poultry	Other
1990	2.54	1.13	1.01	0.01	0.00	0.00	0.30	0.08	0.00
1991	2.51	1.10	1.01	0.01	0.00	0.00	0.30	0.09	0.00
1992	2.41	1.06	0.95	0.01	0.00	0.00	0.31	0.08	0.00
1993	2.43	1.04	0.97	0.01	0.00	0.00	0.31	0.09	0.00
1994	2.46	1.07	0.99	0.01	0.00	0.00	0.31	0.09	0.00
1995	2.50	0.97	1.12	0.01	0.00	0.00	0.31	0.09	0.00
1996	2.45	0.96	1.09	0.01	0.00	0.00	0.30	0.08	0.00
1997	2.43	1.01	1.02	0.01	0.00	0.00	0.30	0.09	0.00
1998	2.42	1.03	0.98	0.01	0.00	0.00	0.31	0.09	0.00
1999	2.38	0.99	1.00	0.01	0.00	0.00	0.28	0.09	0.00
2000	2.34	0.90	1.08	0.01	0.00	0.00	0.28	0.07	0.00
2001	2.32	0.88	1.07	0.01	0.00	0.00	0.29	0.08	0.00
2002	2.28	0.88	1.04	0.01	0.00	0.00	0.27	0.08	0.00
2003	2.27	0.85	1.05	0.01	0.00	0.00	0.28	0.08	0.00
Share 2003	100%	37.2%	46.4%	0.4%	0.0%	0.1%	12.4%	3.5%	0.0%
Trend 1990-2003	- 10.5%	- 25.4%	4.7%	5.0%	46.2%	77.0%	-7.7%	-5.4%	11.0%

6.3.2 Methodological Issues

The IPPC-Tier 2 methodology is applied to estimate CH_4 emissions from manure management of cattle and swine as these are key sources. This method requires detailed information on animal characteristics and the manner in which manure is managed. Sheep, goats, horses and other soliped, chicken, other poultry and other animals are of minor importance in Austria, therefore the CH_4 emissions of these livestock categories are estimated with the Tier 1 approach.

For the estimation of N_2O emissions a Tier 1 methodology is used. N_2O emissions are calculated on the basis of N excretion per animal and waste management system.

Data of Austria's manure management system distribution were taken from [KONRAD, 1995].

Activity data

[STATISTIK AUSTRIA, 2003] provides national data of annual livestock numbers on a very detailed level (see Table 157 and Table 158). These data are basis for the estimation.

The animal numbers of *Young Swine* were not taken into account because the emission factors for *Breeding Sows* already includes nursery and growing pigs [SCHECHTNER, 1991].

6.3.2.1 Estimation of CH₄ Emissions

CH₄ emissions of cattle and swine are estimated with the Tier 2 approach. This method requires detailed information on animal characteristics and the manner in which manure is managed. The following formula has been used (GPG, Equation 4.17):

$$EF_i = VS_i * 365 [days yr^{-1}] * B_{0i} * 0.67 [kg m^{-3}] * \Sigma_{iK} MCF_{iK} * MS\%_{ijK}$$

EF_i = annual emission factor (kg) for animal type i (e.g. dairy cows)

VS_i = Average daily volatile solids excreted (kg) for animal type i

 B_{0i} = maximum methane producing capacity (m³ per kg of VS) for manure produced by animal type I

 MCF_{jK} = methane conversion factors for each manure management system j by climate region K

 $MS\%_{ijK}$ = fraction of animal type i's manure handled using manure systems j in climate region K

Cattle (4 B 1)

Key Source: Yes (CH₄ level 0.64%, N₂O level 0.49%)

Boi Values

IPCC default values were used (Appendix B, IPCC Guidelines, Reference Manual)

MCF Values

Due to the lack of sufficiently detailed information about manure systems in Austria, the default MCF values for "cool climate regions" presented in the IPCC Guidelines' Reference Manual (table 4-8) were used. For liquid systems the revised GPG default value of 39% was used.

Manure Management Systems

In Austria national statistics on manure management systems are not available. Up to now, only one comprehensive survey has been carried out [KONRAD, 1995] (Table 169). This manure management system distribution was used for the whole period from 1990-2003.

Table 169: Manure Management System distribution in Austria: Cattle

Livestock category	Liquid/Slurry [%]	Solid Storage [%]	Pasture/range/paddock [%]
dairy cattle summer	16.7 ¹	62.0 ¹	21.3 ¹
dairy cattle winter	21.2 ¹	78.8 ¹	
Dairy cattle winter/summer	18.95 ¹	70.4 ¹	10.65 ¹
suckling cows summer	16.7 ¹	62.0 ¹	21.3 ¹
suckling cows winter	21.2 ¹	78.8 ¹	
suckling cows winter/summer	18.95 ¹	70.4 ¹	10.65 ¹
cattle 1 –2 years summer	7.7 ¹	39.9 ¹	52.4 ¹
cattle 1 –2 years winter	16.2 ¹	83.8 ¹	
cattle 1 –2 years winter/summer	11.95 ²	61.85 ²	26.2 ²
cattle < 1 year	28.75 ¹	71.25 ¹	
non dairy cattle > 2 years	48.6 ¹	51.4 ¹	

¹. "Die Rinder-, Schweine- und Legehennenhaltung in Österreich aus ethologischer Sicht" [KONRAD, 1995]

^{2..}Estimation of Dipl.-Ing. Alfred Pöllinger (Federal Research Institute, Gumpenstein) following [KONRAD, 1995]

MMS are distinguished for *Dairy Cattle*, *Suckling Cows* and *Cattle 1–2 years* in "summer situation" and "winter situation" (Table 169). During the summer months, a part of the manure from these livestock categories is managed in "pasture/range/paddock". The value for "pasture/range/paddock" is estimated as follows: During summer, 14.1% of Austrian dairy cows and suckling cows are on alpine pastures 24 hours a day. 43.6 % are on pasture for 4 hours a day and 42.3 % stay in the housing for the whole year [KONRAD 1995]. "Alpine pasture" and "pasture" are counted together as MMS "pasture/range/paddock". As "pasture" only lasts for about 4 hours a day, only 1/6 of the dairy cow pasture-% (43.6%) is added to the total number. This results in 21.3% "pasture/range/paddock" during summer. In winter, "pasture/range/paddock" does not occur in Austria. Summer and winter both last for six months.

VS Values

Values for VS excretion of *Diary Cattle* specific for Austria have been calculated with the country specific data given in [SCHECHTNER, 1991] and [GRUBER & STEINWIDDER 1996]:

Table 170: VS excretion after [GRUBER & STEINWIDDER 1996]

Milk yield	3 500	4 000	4 500	5 000	5 500	6 000
VS excretion	3.53	3.65	3.75	3.86	3.96	4.06

[GRUBER & STEINWIDDER 1996] calculated manure production of *Diary Cattle* in dependency on annual milk yields. Using this information, a time series of manure production was calculated:

Table 171:VS excretion of Austrian diary cows for the period 1990-2003

Year	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Milk Yield [kg/cow*yr]	3791	3862	3934	4005	4076	4619	4670	4787	4924	5062	5210	5394	5487	5 638
VS	3.63	3.64	3.64	3.65	3.75	3.85	3.87	3.88	3.89	3.91	3.92	3.93	3.95	3.96

Austrian specific values on VS excretion of *Non-Dairy Cattle* were calculated from feed intake (gross energy intake, feed digestibility, ash content). This approach has been chosen as it allows to differ in organic and conventional production systems. Nutrition expert Dr. Steinwidder worked out country-specific feed rations under organic and conventional management (see Table 161). As no major changes in diets of *Non-Dairy Cattle* occurred in the period from 1990-2003, methane emissions from manure management of *Non-Dairy Cattle* are calculated with a constant gross energy intake and thus constant VS excretion rate for the whole time series.

The VS excretion rate was calculated from feed intake following the formula presented in the IPCC guidelines (Reference Manual, Equation 4.15):

VS [kg dm day⁻¹] = Intake [MJ day⁻¹] * $(1 \text{kg} (18.45 \text{ MJ})^{-1})$ * (1 - DE%/100) * (1 - ASH%/100)

VS = VS excretion per day on a dry weight basis

Dm = dry matter

Intake = daily average gross energy feed intake [MJ day⁻¹]

DE% = digestibility of feed in per cent ASH% = ash content of manure in per cent

Table 172 presents data for the calculation of VS excretion of the livestock categories *Non-Dairy Cattle*.

Table 172: Austrian VS excretion rates of Non-Dairy Cattle, conventional and organic production system

	Suckling cows		cattle <	cattle < 1 year cattle		-2 years	non dairy cattle > 2 years	
	Conv.	Org.	Conv.	Org.	Conv.	Org.	Conv.	Org.
feed digestibility [%]	64	64	76	75	73	73	73	73
ash content [%]	11.5	11.5	12.0	12.0	11.5	11.5	11.0	11.0
Gross energy intake	191.56	191.56	84.36	72.06	166.96	151.14	163.44	159.93
[MJ GE (kg dry matter) ⁻¹]	191.50	191.50	04.30	72.00	100.90	151.14	103.44	109.93
VS excretion	3.31	3.31	0.97	0.86	2.16	1.96	2.13	2.08
[kg head ⁻¹ day ⁻¹]	3.31	3.31	0.97	0.00	2.10	1.90	2.13	2.00

The VS values of Organic Systems are not significantly different from those of the Conventional Systems. Uncertainty is estimated to be \pm 20%.

Swine (4 B 8)

Key Source: Yes (CH₄, level assessment for 2003: 0.45%)

B₀ and MCF Values

IPCC default values were used.

Manure management System

The comprehensive survey carried out by [KONRAD, 1995] already mentioned above was used.

Table 173: Manure management distribution in Austria: Swine

Livestock category	Liquid/Slurry [%]	Solid Storage [%]	Pasture/	
Livestock category	Liquid/Sidity [/6]	Solid Storage [76]	range/paddock [%]	
breeding sows	70 ²	30 ²		
fattening pigs	71.9 ¹	28.1 ¹		

^{1. &}quot;Die Rinder-, Schweine- und Legehennenhaltung in Österreich aus ethologischer Sicht" [KONRAD, 1995]

²..Estimation of Dipl.-Ing. Alfred Pöllinger (Federal Research Institute, Gumpenstein) following [KONRAD, 1995]

VS excretion

VS excretion of *Swine* was estimated from country-specific data on VS content in the manure [SCHECHTNER, 1991]. Changes in animal performance of *Swine* are not reported for Austria. Thus, VS excretion rates of *Swine* were kept constant for the whole time series.

Table 174. VS excretion from Austrian swine, calculated with [SCHECHTNER, 1991]

Livestock category	Manure Production given in Schechtner (1991)	Calculated manure production [t head ⁻¹ yr ⁻¹]	VS content in manure [kg (t manure) ⁻¹]	VS excretion [kg head ⁻¹ day ⁻¹]
breeding sows	4 t sow ⁻¹ yr ⁻¹	4.00	75	0.82
fattening pigs	0.63 t pig ⁻¹ 120 days ⁻¹	1.92	55	0.29

Animal numbers of *Young Swine* were not taken into account because the emission factors for *Breeding Sows* already include nursery and growing pigs [SCHECHTNER, 1991].

Sheep (4 B 3), Goats (4 B 4), Horses (4 B 6), Poultry (4 B 9) and Other Animals (4 B 13)

CH₄ emissions from *Manure Management* for *Sheep, Goats, Horses, Poultry* and *Other Animals* are estimated with the Tier 1 approach. A differentiation between organic and conventional management is not possible due to lack of data.

Default emission factors were taken from the IPCC guidelines (Table 4-5 of the Reference Manual). CH₄ emissions were estimated multiplying these emission factors by national animal numbers.

Table 175: CH₄ emissions from manure management systems for Sheep, Goats, Horses and Other Soliped, Chicken, Other Poultry and Other Animals in Austria

	Emission Factor		Emission Factor
Livestock category	[kg CH ₄ per head per yr]	Livestock category	[kg CH ₄ per head per yr]
Sheep	0.19	Chicken	0.078
Goats	0.12	Other Poultry ¹	0.078
Horses & other soliped	1.39	Other Animals (deer)	0.19

¹the IPCC guidelines do not differentiate between laying hens and other poultry. The same emission factor was applied to both livestock categories.

The Austrian inventory does not distinguish between *Horses* and *Mules and Asses*. As *Mules and Asses* are only of very little importance in Austria, CH₄ emissions from manure of horses and other soliped were estimated with the default emission factors for *Horses*.

In Austria the animal category *Other Animal* corresponds to deer (held in pastures). As sheep is the most similar animal category to deer, emissions from deer were estimated applying the default emission factor of sheep.

6.3.2.2 Estimation of N₂O Emissions

Following the guidelines, all emissions of N_2O taking place before the manure is applied to soils are reported under *Manure Management*.

For the estimation of N_2O emissions from manure management systems only a Tier 1 approach is available. The IPCC Guidelines method for estimating N_2O emissions from manure management entails multiplying the total amount of N excretion (from all animal species/categories) in each type of manure management system by an emission factor for that type of manure management system. Emissions are then summed over all manure management systems (see formulas below).

N excretion per animal waste management system:

$$Nex_{(AWMS)} = \sum_{(T)} [N_{(T)} \ x \ Nex_{(T)} \ x \ AWMS_{(T)}]$$

Nex_(AWMS) = N excretion per animal waste management system [kg yr⁻¹]

 $N_{(T)}$ = number of animals of type T in the country

 $Nex_{(T)}$ = N excretion of animals of type T in the country [kg N animal⁻¹ yr⁻¹]

 $AWMS_{(T)}$ = fraction of $Nex_{(T)}$ that is managed in one of the different distinguished animal

waste management systems for animals of type T in the country

T = type of animal category

N₂O emission per animal waste management system:

$$N_2O_{(AWMS)} = \sum [Nex_{(AWMS)} \times EF_{3(AWMS)}]$$

 $N_2O_{(AWMS)}$ = N_2O emissions from all animal waste management systems in the country [kg

N yr⁻¹]

Nex_(AWMS) = N excretion per animal waste management system [kg yr⁻¹]

EF_{3(AWMS)} = N₂O emissions factor for an AWMS [kg N₂O-N per kg of Nex in AWMS]

AWMS

The animal waste management system distribution data used to estimate N_2O emissions from *Manure Management* are the same as those that were used to estimate CH_4 emissions from *Manure Management* (see Table 169 and Table 173).

N excretion

For Goats, Sheep, Horses, Chicken, Other Poultry and Other Animal default values for N excretion were used, whereas for Cattle and Swine country specific emission factors as presented below were applied.

N excretion from Austrian *Dairy Cattle* was calculated after [GRUBER & STEINWIDDER, 1996], who intensively reviewed research on N excretion in dependency on the annual milk yield (Table 176).

Table 176: N excretion of Austrian dairy cows for the period 1990-2003

Year	Milk yield [kg yr ⁻¹]	Nitrogen excretion [kg/animal/yr]	Year	Milk yield [kg yr ⁻¹]	Nitrogen excretion [kg/animal/yr]
1980	3 518	54.33	1997	4 787	62.25

1990	3 791	55.82	1998	4 924	62.86
1991	3 862	55.97	1999	5 062	63.48
1992	3 934	56.12	2000	5 210	64.50
1993	4 005	56.27	2001	5 394	65.52
1994	4 076	58.64	2002	5 487	66.54
1995	4 619	61.02	2003	5 638	67.56
1996	4 670	61.64			

N excretion rates for the livestock categories of *Non-Dairy Cattle* were derived from different sources (Table 177). The milk production of *Suckling Cows* is about 3 000 kg, thus the value of N excretion of *Dairy Cattle* with that annual milk production taken from [GRUBER & STEINWIDDER, 1996] was used for this livestock category. N excretion of *Cattle 1-2 years* were taken from this study as well. However, [GRUBER & STEINWIDDER, 1996] do not give data on N excretion of *Cattle <1 year* and *Cattle >2 years*. As there is no significant difference in husbandry of these livestock categories, N excretion of *Cattle <1 year* was taken from the revised German inventory on ammonia emissions and for N excretion of *Cattle >2 years* the value of the Swiss inventory was used. Austrian specific N excretion values for *Swine* were also taken from [GRUBER & STEINWIDDER, 1996] (Table 177).

Table 177: N excretion values used for calculation of N₂O emissions from manure management

Livestock estagony	Nitrogen excretion
Livestock category	[kg per animal per yr]
suckling cows ¹	51.9 ²
cattle 1 – 2 years	42.2 ²
cattle < 1 year	16.0 ³
cattle > 2 years	60.04
breeding sows ⁵	26.9 ²
fattening pigs	15.0 ⁴
Sheep	20.0 ⁶
Goats	20.0 ⁶
Horses	50.0 ⁷
Chicken	0.8 ⁷
Other Poultry	2.0 ⁷
Other Animals (deer)	20.0 ⁶

- (1) annual milk yield: 3 000 kg
- (2) GRUBER & STEINWIDDER 1996
- (3) DÖHLER ET AL. 2001
- (4) Eidgenössische Forschungsanstalt für Agrarökologie und Landbau Zürich-Reckenholz 1997
- (5) 2.1 litters per year
- (6) IPCC REFERENCE MANUAL, Table 4-20
- (7) CORINAIR

Livestock numbers per category can be found in Table 157 and Table 158, manure management system distribution for cattle and swine can be found in Table 169 and Table 173. For the other categories it is presented in the following table (Table 178).

Table 178: Distribution of manure management systems in Austria: Sheep, Goats, Horses, Poultry and Other Animals

Livestock category	Liquid/Slurry [%]	Solid Storage [%]	Pasture/ range/paddoc k [%]	Other Management System [%]
Sheep	0	2	87	11
Goats	0	0	96	4
Horses	0	0	96	4
Poultry (Chicken and Other Poultry)	1	13	2	84
Other Animals	0	0	96	4

Emission factors

Emission factors for animal waste management systems *Liquid/Slurry*, *Solid Storage*, *Pasture/Range/Paddock* and *Other Systems* were taken from the IPCC guidelines [IPCC GUIDELINES, 1997] (Reference Manual, Table 4-22).

Table 179. IPCC default values for N₂O emission factors from animal waste per animal waste management system

Animal Waste Management System	Emission Factor [kg N ₂ O-N per kg N excreted]
Liquid/Slurry	0.001
Solid Storage	0.02
Pasture/Range/Paddock	0.02
Other Systems	0.005

6.3.3 Uncertainties

Uncertainties are presented in Table 154.

6.3.4 Recalculations

4 B 1 a:

In the last submission, the Nex and VSex values from 2000 to 2002 were extrapolated on the basis of the Nex and VSex data with a corresponding milk yield of 5000 kg. In this year's calculations also the corresponding Nex and VSex values of a milk yield of 6 000 kg published in [GRUBER & STEINWIDDER 1996] were considered. The values were calculated via interpolation. This led to slightly higher emissions of N_2O in the years 2000, 2001, 2002.

4 B 1 b:

The S&A report 2004 noticed high inter-annual variations in the CH4 IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.

4 B 13:

In Austria animals of category *Other* which mainly is deer (but not wild living animals) have been counted from 1993 on. As recommended in the centralized review, the animal number of 1993 was used for the years 1990 to 1992. This led to slightly higher emissions in those years.

Table 180: Difference to last submission of CH₄ emissions from subcategories of Category 4 B

IPCC		[Gg CH₄]											
Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
4 B MANURE MANAGEMENT	0.01	0.01	0.01	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 B 1 a Dairy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 B 1 b Non Dairy	0.00	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 B 13 Other	0.01	0.01	0.01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Table 181: Difference to last submission of N₂O emissions from subcategories of Category 4 B

IPCC	[Gg N ₂ O]												
Categories	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
4B MANURE MANAGEMENT	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
4 B 1 a Dairy	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
4 B 8 Other	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

6.3.5 Planned Improvements

A survey on Austria's distribution of manure management systems is planned to be started this year.

6.4 Agricultural Soils (CRF Source Category 4 D)

6.4.1 Source Category Description

 N_2O emissions from category 4 D Agricultural Soils are a key source (4 D 1: 1.54 %, 4 D 3: 1.11%, see Table 153).

In 2003 79% of total N_2O emissions from *Agriculture* (48% of total Austrian N_2O emissions) originated from *Agricultural Soils*, the rest originates from 4 B Manure Management and a very small share from 4 F Field Burning of Agricultural Waste.

Emissions from this category contributed 2.9% (2 664.80 Gg CO₂ equivalents) to Austria's total greenhouse gas emissions in the year 2003. This is 36.3% of total GHG emissions of the sector *Agriculture*.

The trend of N_2O emissions from this category is decreasing: in 2003 emissions were 13.4% below 1990 levels.

Table 182 presents N_2O emissions of *Agricultural Soils* by subcategory as well as their trends and their share in total N_2O emissions.

Table 182: N₂O emissions from Category 4 D, 1990-2003

					N ₂ O er	nissions	s [Gg]				
					IPCC	Catego	ries				
Year	4 D total	4 D 1 Direct Soil Emissions	Synthetic Fertilisers	Organic Fertiliser	Crop Residue	N-fixing Crops	4 D 2 Animal	4 D 3 Indir. Soil Emissions	Nitrogen Leaching	Athm. Deposition	4 D 4 Sewage Sludge
1990	9.90	5.32	2.62	1.94	0.43	0.33	0.67	3.88	3.30	0.59	0.02
1991	10.73	5.85	3.07	1.94	0.48	0.36	0.69	4.17	3.58	0.58	0.02
1992	9.89	5.41	2.60	1.89	0.46	0.46	0.67	3.80	3.24	0.56	0.02
1993	9.14	4.89	2.05	1.92	0.47	0.45	0.71	3.50	2.95	0.55	0.03
1994	10.66	5.88	2.88	1.93	0.61	0.45	0.72	4.04	3.47	0.56	0.03
1995	10.76	5.89	2.92	1.96	0.69	0.32	0.75	4.09	3.53	0.56	0.03
1996	9.52	5.08	2.30	1.93	0.51	0.34	0.75	3.66	3.13	0.53	0.03
1997	9.88	5.32	2.45	1.94	0.53	0.40	0.76	3.76	3.23	0.53	0.03
1998	9.93	5.40	2.45	1.94	0.58	0.43	0.73	3.77	3.22	0.54	0.03
1999	9.34	5.05	2.16	1.89	0.61	0.39	0.73	3.53	3.01	0.52	0.03
2000	9.18	4.93	2.23	1.84	0.48	0.37	0.71	3.51	3.00	0.51	0.03
2001	9.44	5.12	2.39	1.83	0.54	0.36	0.70	3.60	3.09	0.51	0.03
2002	9.13	4.95	2.24	1.79	0.54	0.38	0.68	3.47	2.97	0.50	0.03
2003	8.57	4.56	1.90	1.81	0.46	0.39	0.70	3.28	2.78	0.50	0.03
Share 2003	100%	53.2%	22.2%	21.1%	5.3%	4.6%	8.1%	38.3%	32.4%	5.8%	0.4%
Trend 90- 03	-13.4%	-14.3%	-27.3%	-7.0%	7.0%	18.5%	4.4%	-15.6%	-15.7%	-14.8%	26.3%

 ${\rm CH_4}$ emissions from Agricultural Soils originate from sewage sludge spreading on agricultural soils. Emissions from this category contribute only a negligible part of Austria's total greenhouse gas emissions (0.01% or 9.09 Gg ${\rm CO_2}$ equivalents 2003). This is 0.12% of total GHG emissions of the sector *Agriculture*.

Table 183: CH₄ emissions from Category 4 D, 1990-2003

		CH ₄ emissions [Gg]
		IPCC Category
Year	4 D total	4 D 4 Other (sewage sludge
		application)
1990	0.33	0.33
1991	0.33	0.33
1992	0.31	0.31
1993	0.47	0.47
1994	0.40	0.40
1995	0.44	0.44
1996	0.45	0.45
1997	0.45	0.45
1998	0.45	0.45
1999	0.45	0.45
2000	0.45	0.45
2001	0.43	0.43
2002	0.43	0.43
2003	0.43	0.43
Share 2003	100.0%	100.0%
Trend 90-03	32.0%	32.0%

6.4.2 Methodological Issues

The IPCC Tier 1a and – where applicable – Tier 1b method was applied and IPCC default emission factors were used.

Table 184: N₂O emissions factors for Agricultural Soils

Category	Emission Factor [t N ₂ O-N / t N]	Source	
4 D 1 Direct Soil Emissions			
Synthetic Fertilizers (mineral fert.)			
Animal Waste applied to soils	- - 0.0125	IDCC CDC (Table 4.17)	
N- fixing Crops	- 0.0125	IPCC GPG (Table 4.17)	
Crop Residue	_		
4 D 2 Animal Production	0.00/+N	IPCC Guidelines (Table 4.22)	
(Grazing animals)	0.02/ t N _{exGRAZ}		
4 D 3 Indirect Soil Emissions			
Athmospheric Deposition	0.01/ t of volatized nitrogen	IPCC GPG (Table 4.18)	

Nitrogen Leaching (and Run- off)	0.0025/ t N- loss by leaching	IPCC GPG (Table 4.18)
4 D 4 Other (Sewage Sludge)	0.0125	IPCC GPG (Table 4.17)

For sewage sludge application also CH₄ emissions were estimated (country specific method).

Activity Data

Data for necessary input parameters (activity data) were taken from the following sources:

Table 185: Data sources for nitrogen input to Agricultural Soils

Category	Data Sources		
4 D 1 Direct Soil Emissions			
Synthetic Fertilizers (mineral fert.)	fertilizer consumption: Grüner Bericht 2004 [BMLFUW, 2004] ⁽¹⁾ ; urea application in Austria: Sales data RWA, 2004 ⁽²⁾		
Animal Waste applied to soils	calculations and expert judgement by Dr. Barbara Amon following [GRUBER & STEINWIDDER, 1996]		
N- fixing Crops	Cropped area legume production: [BMLFUW, 2004], (1)		
Crop Residue	Harvested amount of agricultural crops: [BMLFUW, 2004], (1)		
4 D 2 Animal Production (Grazing)	calculations and expert judgement by Dr. Barbara Amon following [GRUBER & STEINWIDDER, 1996]		
4 D 3 Indirect Soil Emissions			
Athmospheric Deposition	calculations and expert judgement by Dr. Barbara Amon following [GRUBER & STEINWIDDER, 1996]		
Nitrogen Leaching (and Run- off)	see above (synthetic fertilizers, animal waste, sewage sludge)		
4 D 4 Other (Sewage Sludge)	Water Quality Report 2000 [PHILIPPITSCH ET AL., 2001], Report on sewage sludge [SCHARF ET AL., 1997], Gewäserschutzbericht 2002 [BMLFUW 2002]		

¹ http://www.gruenerbericht.at and http://www.awi.bmlf.gv.at

Detailed data about the use of different kind of fertilizers are available until 1994, because until then, a fertilizer tax ("Düngemittelabgabe") had been collected. Data about the total synthetic fertilizer consumption are available for amounts (but not for fertilizer types) from the statistical office (STATISTIK AUSTRIA) and from an agricultural marketing association (Agrarmarkt Austria, AMA). Annual sales figures about urea are available for the years 1994 onwards from a leading fertilizer trading firm (RWA). These sources were used to get a time series of annual fertilizer application distinguishing urea fertilizers and other fertilizers ("mineral fertilizers").

The S&A report 2004 noticed high inter-annual variations in N_2O emissions of sector 4 D synthetic fertilizer use. These variations are caused by effects of storage as well as the difference between the calendar year and the agricultural economic year: the amounts of synthetic fertilizers over the years reflect the amounts sold in one calendar year. However, the economic year for the farmer does not correspond to the calendar year. Not the whole amount purchased is applied in the year of purchase.

Considering these effects, in this submission the arithmetic average of each two years was used as fertilizer application data. The time series for fertilizer consumption is presented in Table 186.

² RWA: Raiffeisen Ware Austria

Table 186: Mineral fertiliser N consumption in Austria 1990-2003 and arithmetic average of each two years

Year	Annual Nutrient Sales Data [t N/yr]	of which Urea	Data Source	Weighted Nutrient Consumption [t N/yr]	Weighted Urea Consumption [t N/yr]
1989	133 304	1 700	FAO		
1990	140 379	3 965	estimated, GB ¹	136 842	2 833
1991	180 388	3 965	GB ¹	160 384	3 965
1992	91 154	3 886	GB ¹	135 771	3 926
1993	123 634	3 478	GB ³ , RWA ²	107 394	3 682
1994	177 266	4 917	GB ⁴ , RWA ²	150 450	4 198
1995	127 963	5 198	GB ⁴ , RWA ²	152 615	5 058
1996	112 641	4 600	GB ⁴ , RWA ²	120 302	4 899
1997	143 818	6 440	GB ⁴ , RWA ²	128 230	5 520
1998	113 301	6 440	GB ⁴ , RWA ²	128 560	6 440
1999	113 409	6 808	GB ⁴ , RWA ²	113 355	6 624
2000	120 541	3 848	GB ⁴ , RWA ²	116 975	5 328
2001	129 100	3 329	GB ⁴ , RWA ²	124 821	3 589
2002	105 899	5 297	GB ⁴ , RWA ²	117 500	4 313
2003	94 400	8 608	GB ⁴ , RWA ²	100 150	6 952

^{1 [}GRÜNER BERICHT, 1999]

The yearly numbers of the legume cropping areas were taken from official statistics [BMLFUW, 2004].

Table 187: Cropped area legume production, 1990-2003

		Areas [h	na]	
Year	peas	soja beans	horse/field beans	clover hey, lucerne,
1990	40 619	9 271	13 131	57 875
1991	37 880	14 733	14 377	65 467
1992	43 706	52 795	14 014	64 379
1993	44 028	54 064	1 064	68 124
1994	38 839	46 632	10 081	72 388
1995	19 133	13 669	6 886	71 024
1996	30 782	13 315	4 574	72 052
1997	50 913	15 217	2 783	75 976
1998	58 637	20 031	2 043	76 245
1999	46 007	18 541	2 333	75 028
2000	41 114	15 537	2 952	74 266
2001	38 567	16 336	2 789	72 196

² Raiffeisen Ware Austria, sales company

^{3 [}GRÜNER BERICHT, 2002]

^{4 [}GRÜNER BERICHT, 2004]

2002	41 605	13 995	3 415	75 429
2003	42 097	15 463	3 465	78 813

Harvest data were taken from [BMLFUW, 2004], partly adopted from [JONAS & NIELSEN, 2002] and are presented in Table 188.

Table 188: Harvest Data I, 1990-2003

Harvest [1000 t]									
	corn	wheat	rye	barley	oats	maize (corn)	potato	sugar beet	fodder beet
1990	5 290	1 404	396	1 521	244	1 620	794	2 494	171
1991	5 045	1 375	350	1 427	226	1 571	790	2 522	173
1992	4 323	1 325	278	1 342	185	1 118	738	2 605	119
1993	4 206	1 018	292	1 100	191	1 524	886	2 994	129
1994	4 436	1 255	319	1 184	172	1 421	594	2 561	103
1995	4 452	1 301	314	1 065	162	1 474	724	2 886	85
1996	4 493	1 240	156	1 083	153	1 736	769	3 131	62
1997	5 009	1 352	207	1 258	197	1 842	677	3 012	59
1998	4 771	1 342	236	1 212	164	1 646	647	3 314	72
1999	4 806	1 416	218	1 153	152	1 700	712	3 217	70
2000	4 490	1 313	183	855	118	1 852	695	2 634	47
2001	4 827	1 508	214	1 012	128	1 771	695	2 773	43
2002	4 745	1 434	171	861	117	1 956	684	3 043	40
2003	4 246	1 191	133	882	129	1 708	560	2 485	33

Table 189: Harvest Data II, 1990-2003

				Harvest	[1000 t]				
Year	silo- green maize	clover- hey	rape	sunflow er	soja bean	horse- /fodder bean	peas	vege- tables	oil pumkin
1990	4 289	717	102	57	18	41	145	273	3
1991	4 252	797	128	72	37	37	133	277	4
1992	3 523	587	126	79	81	31	137	227	4
1993	4 220	628	125	104	103	29	107	230	3
1994	4 152	743	217	92	105	27	134	246	3
1995	3 996	823	268	61	31	17	60	302	5
1996	3 918	858	121	44	27	10	93	297	8
1997	3 940	962	129	44	34	6	162	349	8
1998	3 865	1 014	128	57	51	5	178	313	11
1999	3 729	1 025	193	64	50	6	140	399	6
2000	3 531	1 440	125	55	33	7	97	361	6
2001	3 035	1 349	147	51	34	7	112	391	7

2002	3 285	1 395	129	58	35	9	96	406	9
2003	3 026	1 425	78	71	39	9	93	376	10

Data about the annual amount of sewage sludge produced and agriculturally applied were taken from [PHILIPPITSCH ET AL., 2001], [SCHARF ET AL., 1997] and [BMLFUW, 2002].

Data were reported for 1991, 1993, 1995 and 1998 and 2001. For the years 1992 and 1994 interpolated values were used. For all other years the value of the year before was used.

Table 190: Amount of sewage sludge (dry matter) produced in Austria, 1990-2003

produced [t dm]	agriculturally applied [t dm]	agriculturally applied [%]
161 936	31 507	19.5
161 936	31 507	19.5
200 000	30 000	15.0
300 000	45 000	15.0
350 000	38 500	11.0
390 500	42 400	10.9
390 500	42 955	11.0
390 500	42 955	11.0
392 909	43 220	11.0
392 909	43 220	11.0
392 909	43 220	11.0
398 800	41 600	10.0
398 800	41 600	10.0
398 800	41 600	10.0
	[t dm] 161 936 161 936 200 000 300 000 350 000 390 500 390 500 390 500 392 909 392 909 392 909 398 800 398 800	[t dm] applied [t dm] 161 936 31 507 161 936 31 507 200 000 30 000 300 000 45 000 350 000 38 500 390 500 42 400 390 500 42 955 390 500 42 955 392 909 43 220 392 909 43 220 398 800 41 600 398 800 41 600

6.4.2.1 Direct Soil Emissions (4 D 1)

Direct Soil Emissions is the most important subcategory of 4 D Agricultural Soils (Key Source 2003: 1.54%). 53.2% (4.56 Gg in 2003) of N_2O emissions from Agricultural Soils arise from this subcategory (see Table 182).

Calculation of direct N_2O emissions from soils is based on the assumption that 1.25% of the nitrogen input to agricultural soils is emitted in the form of N_2O (expressed as N). In this method, the nitrogen input is corrected for gaseous losses through volatilization of NH_3 and NO_X .

N₂O emissions from following sub- sources were estimated:

- Synthetic fertilizers (mineral fertilizers and urea)
- Animal waste (manure collected in stables and applied to soils)
- Biological <u>nitrogen fixation</u> through legumes
- Crop residues remaining on the field after harvest

Nitrogen input from all sources were calculated using IPCC Tier 1a (GPG, equation 4.20/ 4.21) and the emission factor of 1.25% (IPCC GPG, p.4.54, 4.60). The calculation is described in the

following subchapters. The conversion from N_2O-N to N_2O emissions was performed by multiplication with (44/28).

This method estimates total direct N_2O emissions, irrespective of type of soils, of land use (e.g. grassland and cropland soils) and of vegetation, irrespective of the nitrogen compounds (e.g. organic, inorganic nitrogen), and irrespective of climatic factors.

Nitrogen input through application of mineral fertilizers

The method applied for calculation of the emissions is IPCC Tier 1a (GPG, Equation 4.22):

$$F_{SN} = N_{FERT} * (1 - Frac_{GASF})$$

F_{SN} = Annual amount of synthetic fertilizer nitrogen applied on soils, corrected for volatile N-losses [t N]

N_{FERT} = Annual amount of nitrogen in synthetic fertilizers (mineral and urea) applied on soils [t N] – see Table 186

Frac $_{GASF}$ = Fraction of nitrogen lost through gaseous emissions of NH $_3$ and NO $_x$ [t/t] - 0.023 for mineral fertilizers and 0.153 for urea fertilizers [EMEP/CORINAIR, 1999] p.1010-15, table 5.1.

Nitrogen input through application of animal manure

The method applied is IPCC Tier 1b but with Austria specific consideration of nitrogen losses (NH_3 -N, NO_x -N, N_2 O-N).

With regard to a comprehensive treatment of the nitrogen budged, Austria established a link between the ammonia and nitrous oxide emissions inventory. This procedure enables the use of country specific data, which is more accurate than the use of the default value for Frac_{gasm}.

According to the IPCC method nitrogen from manure that is used as a biofuel should be subtracted, but this is irrelevant for Austria because in Austria manure is not used as a biofuel at all.

Nitrogen left for spreading

After storage, manure is applied to agricultural soils. Manure application is connected with NH_3 and N_2O losses that depend on the amount of manure N. From total N excretion by Austrian livestock, the following losses were subtracted:

N excreted during grazing

NH₃-N losses from housing

NH₃-N losses during manure storage

N₂O-N losses from manure management

> The remaining N is applied to agricultural soils.

Ammonia emissions from housig and storage were calculated following the CORINAIR EMEP - methodology (detailed methodology for cattle and swine). A detailed description of the method applied is given in the report "Austria's Informative Report 2004 – Submission under the UNECE Convention on Long-range Transboundary Air Pollution".

In Table 191 the nitrogen left for spreading for the years 1990-2003 per animal type is presented.

Table 191: Animal manure left for spreading on agricultural soils per livestock category 1990-2003

	Nitroge	n left fo	or spre	ading [tons N	per yea	ar]							
year						IPCC	Livesto	ck Categ	ories					
	total	dairy cattle	suckling cows	cattle 1-2 a	cattle < 1 a	cattle > 2 a	sows	fattening pigs	chicken	other poultry	sheep	goats	horses / solipeds	oth. animals
1990	120509	41060	1852	14825	12559	7442	8274	15802	8083	1054	5912	712	2225	708
1991	120423	39868	2258	14683	12137	7691	8162	15587	8292	1420	6221	781	2614	708
1992	116918	38410	2382	13775	11289	7418	8345	15937	7919	1255	5952	752	2777	708
1993	119011	37891	2729	15146	9578	8035	8570	16366	8360	1422	6369	902	2936	708
1994	119795	38625	3544	15153	9592	7568	8547	15978	8161	1412	6527	949	3019	720
1995	121356	35057	8288	14919	9386	7785	8689	15848	8094	1240	6968	1035	3278	769
1996	119450	34960	8376	14206	9101	7829	8627	15244	7515	1182	7266	1039	3312	792
1997	120194	36465	6715	13601	8564	8224	8608	15323	8582	1254	7319	1113	3354	1073
1998	119837	37251	6075	13116	8621	8007	8360	16605	8330	1186	6883	1035	3407	961
1999	116933	36024	6957	12908	8560	8106	7441	15104	8488	1083	6721	1106	3689	746
2000	113629	32571	9954	12332	8896	8128	7234	14636	6815	1097	6472	1070	3689	734
2001	113406	31861	10149	12047	8945	7533	7579	15267	7324	1030	6114	1134	3689	734
2002	110788	31872	9646	11894	8689	7275	7381	14345	7324	1030	5807	1103	3689	734
2003	111908	30654	9573	11794	8710	8306	7235	15020	7600	1040	6210	1042	3938	786

 NH_3 and NOx volatilisation losses occurring during application of animal waste to agricultural soils were calculated following the CORINAIR EMEP –methodology (detailed methodology for cattle and swine - see "Austria's Informative Report 2004 – Submission under the UNECE Convention on Long-range Transboundary Air Pollution"). This procedure enables the use of country specific data, which is more accurate than the use of the default value for $Frac_{qasm}$.

Nitrogen input through biological fixation

The amount of N-input to soils via N-fixation of legumes (F_{BN}) was estimated on the basis of the cropping areas and specific consideration of nitrogen fixation rates of all relevant N-fixing crops:

$$F_{BN} = LCA * B_{Fix} / 1000$$

 F_{BN} = Annual amount of nitrogen input to agricultural soils from N-fixation by legume crops [t]

LCA = Legume cropping area [ha]

 B_{Fix} = Annual biological nitrogen fixation rate of legumes [kg/ha]

Activity values (LCA) for the years 1990-2003 can be found in Table 187.

Values for biological nitrogen fixation (120 kg N/ ha for peas, soja beans and horse/field beans

 F_{CR}

and 160 kg N/ ha for clover- hey, respectively) were taken from a publication made by the Umweltbundesamt [GÖTZ, 1998]; these values are constant over the time series.

Nitrogen input from crop residues

The method applied for calculation of the emissions is the IPCC Tier 1b method. During harvest crops and by-products (e.g. like cereal straw) are removed from fields, but stubble, roots or beet leaves are left on the field and release nitrogen during decay. The amount of crop residues is calculated on the basis of the harvest statistics.

Official data for annual yield for different agricultural products were adjusted for dry matter (e.g. cereals have a dry matter content of 86% at harvest) and multiplied with appropriate Austrian empirical factors for average ratios between crops and residues [GÖTZ, 1998]. The residues that are removed from the fields during harvest (such as cereal straw or leaves of fodder beet) are subtracted. Also considered is the loss of nitrogen that is lost if residues are burned on the fields.

The amount of nitrogen was calculated using the following formula:

$$F_{CR} = CY * dm * ExF * Frac_{NCR} * (1 - Frac_{CRR} - Frac_{CRB})$$

Annual nitrogen input to soils from crop residues left on fields [t N]

CY = Annual crop yield [t] (Table 188)

dm = Dry matter fraction [t/t], source: [GÖTZ, 1998]

ExF = Expansion factor that describes the ratio of crop residues per harvested crop

[t/t], [GÖTZ, 1998]

 $Frac_{NCR}$ = Fraction of nitrogen in dry matter of crop residues [t N/t] [GÖTZ, 1998]

 $Frac_{CRR}$ = Fraction of crop residues removed by harvest [t/t] [LÖHR, 1990]

Frac_{CRB} = Fraction of crop residue that is burned on field [t/t] [OLI, 2000],

[OZONBERICHT, 1997]

Harvest data were taken from [BMLFUW, 2003], partly adopted from [JONAS, 2002] and are presented in Table 188.

The other parameters used are presented in the following table:

Table 192: Input parameters used to estimate emissions from crop residues

	Dm [t/t]	ExF [t/t]	Frac _{NCR} [t N/t d.m.]	Frac _{CRR} [t/t]	Frac _{CRB} [t/t]
Wheat	0.86	1.0	0.005	0.7	0.0031
Rye	0.86	1.4	0.005	0.7	0.0031
Barley	0.86	1.1	0.005	0.7	0.0031
Oats	0.86	1.5	0.005	0.7	0.0031
Maize (corn)	0.50	1.4	0.005	0.0	0
Potato	0.30	0.3	0.005	0.0	0.0031
Sugarbeet	0.45	0.8	0.005	0.0	0
Fodderbeet	0.20	3.0	0.005	1.0	0
Maize (silo)	0.30	0.0	0.005	1.0	0
Clover-hay	0.86	0.0	0.005	1.0	0
Rape	0.86	21	0.005	0.0	0
Sunflower	0.86	2.5	0.015	0.0	0

Sojabean	0.40	15.0	0.015	0.0	0	
Fodderbean	0.40	1.5	0.015	0.0	0	
Peas	0.40	1.0	0.015	0.0	0	
Vegetables	0.20	0.8	0.005	0.0	0	
Oil pumpkin	0.80	72.0	0.015	0.0	0	

6.4.2.2 Animal Production (4 D 2)

Following the IPCC Guidelines, N_2O emissions resulting from nitrogen input through excretions of grazing animals (directly dropped onto the soil) were calculated under *Manure Management* but reported under *Agricultural Soils*.

$$F_{GRAZ} = N_{exGRAZ} * EF_{GRAZ}$$

 F_{GRAZ} = N₂O emissions induced by nitrogen excreted from grazing animals, expressed as N₂O-N [t N].

 $N_{\text{ex}GRAZ}$ = Nitrogen excreted during grazing (amount of animal manure nitrogen produced by grazing animals and directly dropped on agricultural soils during grazing) [t N] - see Table 193

 EF_{GRAZ} = A constant emission factor for N₂O from manure of grazing animals has been used [t N₂O-N / t N], -0.02 [IPCC Guidelines, 1997], workbook table 4-8

Table 193: Nitrogen excreted during grazing (N_{exGRAZ}) in Austria, 1990-2003

	Nitrogen excreted during grazing [t N]												
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
21 232	21 853	21 184	22 454	22 953	23 860	23 880	24 071	23 341	23 224	22 634	22 198	21 754	22 172

6.4.2.3 Indirect Soil Emissions (4 D 3)

According to IPCC definition, indirect N_2O emissions are caused by atmospheric deposition of nitrogen and by nitrogen leaching from soils. The calculations are based on the recommendations of the IPCC guidelines.

N₂O emissions through atmospheric nitrogen deposition

Emissions were calculated following the formular taken from the IPCC GPG (Equation 4.31, Tier 1a):

$$F_{AD} = [(N_{FERT} * Frac_{GASF}) + (N_{ex} * Frac_{GASM})] * EF_{AD}$$

 F_{AD} = N₂O emissions from atmospheric deposition, expressed as N₂O-N [t N]

 N_{FERT} = Nitrogen in mineral fertilizers applied on soils [t N] see Table 186.

 $Frac_{GASF}$ = Fraction of nitrogen lost from mineral fertilizer applications through gaseous emissions of NH₃ and NO_x. [t/t] - 0.023 for mineral fertilizers and 0.153 for urea fertilizers [EMEP/CORINAIR, 1999] p.1010-15, table 5.1.

N_{ex} = Total nitrogen annually produced in animal waste management systems [tN], see Table 176, Table 177

 $Frac_{GASM}$ = Fraction of animal manure that is volatized as NH₃ or NO_x [t/t]

 EF_{AD} = N₂O emission factor (constant over the time series) for emissions from atmospheric deposition: tons of N₂O-nitrogen released per ton of volatized nitrogen – 0.01 [t/t] [IPCC Guidelines, 1997]

Total N excretion by livestock that volatizes (Frac_{GASM}) includes:

- NH₃-N losses from housing, storage, grazing
- NH₃-N and NO_x-N losses from animal waste application

Table 194: N-losses and Frac_{Gasm} 1990 to 2003

Year	total N-losses	Frac _{Gasm}
	[t N/yr]	(N_{losses}/Nex_{total})
1990	33 719	0.22
1991	32 965	0.22
1992	31 970	0.22
1993	32 032	0.21
1994	31 817	0.21
1995	31 689	0.21
1996	30 520	0.20
1997	30 284	0.20
1998	30 765	0.20
1999	29 661	0.20
2000	28 868	0.20
2001	29 266	0.20
2002	28 653	0.21
2003	28 533	0.20

Calculated N losses are about 20% of total N excretion, which is consistent with the IPCC default value (20%).

Ammonia emissions for Cattle and Swine were calculated with the CORINAIR detailed methodology [EMEP/CORINAIR, 1999], for the other categories the CORINAIR simple methodology was used.

 NO_X emissions were estimated according to the assumption from [FREIBAUER & KALTSCHMITT, 2001], that 1% of the manure nitrogen left for spreading N_{LFS} (see Table 191) is emitted as NO_{X^-} N.

A detailed description of the method applied for NH_3 and NOx is given in the report "Austria's Informative Report 2004 – Submission under the UNECE Convention on Long-range Transboundary Air Pollution".

N₂O emissions through nitrogen leaching losses

The method applied for calculation of the emissions is IPCC Tier 1b.

Following IPCC recommended values, leaching losses from nitrogen fertilizers are estimated to be about 30% of the nitrogen inputs from synthetic fertilizer use, livestock excretion, and sewage sludge application. N_2O emissions are then estimated as 2.5% of the leaching losses, as suggested by the IPCC.

The calculation follows the following formular:

 $E-N_2O_{LL}$ = N₂O emissions from leaching losses, expressed as N₂O-N [t N]

F_{FERT} = Annual amount of nitrogen in synthetic fertilizers (mineral and urea) applied on soils [t N] – see Table 186

N_{exLFS} = Annual amount of nitrogen in animal excreta left for spreading on agricultural soils, corrected for losses during manure management [t N] – see Table 191

N_{exGRAZ} = Annual amount of animal manure nitrogen produced by grazing animals and directly dropped on agricultural soils during grazing [t N] – see Table 193

 F_{SSIu} = Annual nitrogen input from sewage sludge applied on agricultural soils [t N] - see Chapter 4 D 1 - Nitrogen input through the use of sewage sludge

Frac_{LEACH} = Fraction of nitrogen applied on soils that leaches— 0.03 [t/t] [IPCC

Guidelines, 1997], workbook table 4-19

 $EF-N_2O_{LL}$ = Emission factor for N₂O from leaching, expressed as N₂O-N - 0.025 [t/t] [IPCC Guidelines, 1997], workbook table 4-18

Annual nitrogen input from sewage sludge applied on agricultural soils as presented in Table 195 was calculated according to the formula presented in the subsection *Nitrogen input through the use of sewage sludge*.

Table 195: Annual nitrogen input from sewage sludge applied on agricultural soils (F_{SSIu}) in Austria, 1990-2003

	Annual nitrogen input from sewage sludge applied on agricultural soils [t N]												
1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1 232	1 232	1 170	1 755	1 502	1 654	1 675	1 675	1 686	1 686	1 686	1 555	1 555	1 555

6.4.2.4 Sewage Sludge Application (4 D 4)

N₂O emissions

In Austria fertilisation by sewage sludge is very small. In 2003 N₂O emissions from sewage sludge contributed only 0.36% of N₂O emissions from category 4 D Agricultural Soils.

The estimation of annually applied sewage sludge is based on the figures reported in the Austrian water protection report [PHILIPPITSCH et al., 2001] and [BMLFUW, 2002] which provide data for selected years. A mean value of 3.9% N in dry matter based on a large set of measurements [SCHARF et al., 1997] was taken to calculate the nitrogen content. The amount of agriculturally applied sewage sludge can be calculated through:

$$F_{SSIu} = SSIu_N * SSIu_{agric}$$

 F_{SSIu} = Annual nitrogen input to soils by agriculturally applied sewage sludge [t N]

 $Sslu_N$ = Nitrogen content in dry matter [%] – 3.9%

 $SSlu_{agric}$ = Annual amount of sewage sludge agriculturally applied [t/t] - see Table 190

CH₄ emissions

According to the Institute for Applied Ecology and a study [SCHÄFER, 2002] the average carbon content of sewage sludge amounts about 300 kg carbon per ton sewage sludge. While 48% of the carbon remain in the soil, 52% are emitted to air. 5% of this emitted carbon is emitted as CH₄. Consequential about 10.4 kg methane is emitted per ton sewage sludge.

6.4.3 Uncertainties

The uncertainties for N_2O emissions are presented in Table 196 and were calculated by Monte Carlo analysis, using a model implemented with @risk software. The model uses a probability distribution as an input value instead of a single fixed value.

Table 196: Uncertainties of N₂O emissions from agricultural soils

Category	Uncertainty
4 D 1 Direct soil emissions	
Mineral fertilizer application	+/- 27%
Animal waste application	+/- 25%
Crop residues	+/- 25%
Biological N fixation	+/- 50%
4 D 2 Animal production	
Emissions from animal production (grazing)	+/- 58%
4 D 3 Indirect emissions	
Leaching	+/- 25%
Atmospheric deposition	+/- 57%
4 D 4 Other (Sewage sludge application)	+/- 25%
Total	+/- 24%

6.4.4 Recalculations

Synthetic fertilizer use:

The S&A report 2004 noticed high inter-annual variations in N_2O emissions of sector 4 D synthetic fertilizer use. These variations are caused by effects of storage as well as the difference between the calendar year and the agricultural economic year: the amounts of synthetic fertilizers over the years reflect the amounts sold in one calendar year. However, the economic year for the farmer does not correspond to the calendar year. Not the whole amount purchased is applied in the year of purchase. Considering these effects, in this submission the arithmetic average of each two years was used as fertilizer application data.

Animal Numbers

In Austria animals of category *Other* which mainly is deer (but not wild living animals) have been counted from 1993 on. As recommended in the centralized review, the animal number of 1993 was used for the years 1990 to 1992.

4 D 3 Atmospheric nitrogen deposition:

Following a recommendation of the centralized review (October 2004), in contrast to the last submission also N volatised in housing, storage and pasture was taken into account. Now, in accordance with the IPCC good practice, the value $Frac_{GASM}$ relates to N excreted by livestock and not to Nex _{left for spreading}.

4 D 4 Sewage Sludge:

In the previous submission N_2O and CH_4 emissions from sewage sludge application were reported under category 4 D 1. Following a recommendation of the centralized review (October 2004) sewage sludge spreading is now reported under 4 D 4 Other.

Table 197: Difference to submission 2003 of N₂O emissions from Category 4 D Agricultural Soils

IPCC (IPCC Category 4D AGRICULTURAL SOILS [N ₂ O]												
	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
4 D	0.01	-0.52	1.51	-0.46	-0.80	0.81	0.27	-0.46	0.52	0.03	-0.08	-0.09	0.41
4 D 1	-0.14	-0.46	0.78	-0.41	-0.61	0.37	0.05	-0.39	0.20	-0.09	-0.16	-0.17	0.15
4 D 2	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 D 3	0.11	-0.10	0.68	-0.09	-0.22	0.40	0.18	-0.10	0.28	0.09	0.05	0.05	0.24
4 D 4	NE-> 0.02	NE-> 0.02	NE-> 0.02	NE-> 0.03									

6.5 Field Burning of Agricultural Waste (CRF Source Category 4 F)

6.5.1 Source Category Description

Key Source: No

Emissions: CH_{4.} N₂O

This category comprises burning straw from cereals and residual wood of vinicultures on open fields in Austria.

Burning agricultural residues on open fields in Austria is legally restricted by provincial law and since 1993 additionally by federal law and is only occasionally permitted on a very small scale. Therefore the contribution of emissions from the category *Field Burning of Agricultural Waste* to the total emissions is very low.

In the year 2003 total emissions from this category amounted to 1.6 Gg CO_2 equivalent, this is a share of 0.02% in total GHG emissions from agriculture. CH_4 and N_2O emissions for the years from 1990 to 2003 are presented in Table 198.

Table 198: Greenhouse gas emissions from Category 4 F Field Burning of Agricultural Waste 1990-2003

	_	
	CH₄	N ₂ O
1990	0.07	0.001
1991	0.07	0.001
1992	0.06	0.001
1993	0.06	0.001
1994	0.06	0.001
1995	0.07	0.001
1996	0.06	0.001
1997	0.07	0.001
1998	0.07	0.001
1999	0.07	0.001
2000	0.06	0.001
2001	0.07	0.001
2002	0.07	0.001
2003	0.06	0.001
Trend	-7.6%	-6.8%
Share in Agriculture	0.02%	0.01%

6.5.2 Methodological Issues

6.5.2.1 Cereals/ Wheat (4 F 1 a)

Following a recommendation of the Centralized Review 2003 the IPCC method with default emission factors was applied.

According to an expert judgement from Dr. Reindl from the *Presidential Conference of Austrian Agricultural Chambers*, about 2 500 ha of straw fields are burnt every year (this corresponds to about 0.3% of total area under cereals).

Following the guidelines, a default value of 0.90 for fraction oxidised was used. For cereals the default values of wheat were taken (IPCC GPG Table 4-17). For dry matter fraction an Austrian specific value of 0.86 was used [LÖHR 1990].

6.5.2.2 Other (4 F 5)

This category comprises burning residual wood of vinicultures on open fields in Austria.

A simple method (Emission = Activity x Emission Factor) using country specific emission factors was used.

Activity data (viniculture area) are taken from the Statistical Yearbooks 1992-2002 [STATISTIK AUSTRIA]. According to an expert judgement from the *Federal Association of Viniculture* (Bundesweinbauverband Österreich) the amount of residual wood per hectare viniculture is 1.5 to 2.5 t residual wood and the part of it that is burnt is estimated to be 1 to 3%. For the calculations the upper limits (3% of 2.5 t/ha) have been used resulting in a factor of 0.075 t burnt residual wood per hectare viniculture area.

Table 199: Activity data for 4 F Field Burning of Agricultural Waste 1990–2003

Year	Viniculture Area [ha]	Burnt Residual Wood [t]
1990	58 364	4 377
1991	58 364	4 377
1992	58 364	4 377
1993	57 216	4 291
1994	57 216	4 291
1995	55 628	4 172
1996	55 628	4 172
1997	52 494	3 937
1998	52 494	3 937
1999	51 214	3 841
2000	51 214	3 841
2001	51 214	3 841
2002	51 214	3 841
2003	51 214	3 841

The emission factors (4 828 g CH_4 /t and 49.7 g N_2O/t burnt wood) were calculated by multiplying the emission factors of 7 kg N_2O/t TJ and 680 g CH_4/t TJ [JOANNEUM RESEARCH, 1995] with a calorific value of 7.1 MJ/kg burnt wood which corresponds to burning wood logs in poor operation furnace systems.

7 LAND USE, LAND USE CHANGE AND FORESTRY (CRF SOURCE CATEGORY 5)

7.1 Sector Overview

This category comprises CO₂ emissions and removals arising from land use, land use change and forestry, emissions of other GHG are not estimated.

The following table presents emissions and removals from this sector by sub categories.

Table 200: CO₂ emissions and removals from Sector 5 LULUCF by sub categories

	Greenhouse gas emissions/removals [Gg CO2 equivalent]					Trend BY-					
	1990	1995	1996	1997	1998	1999	2000	2001	2002	2003	2003
5 Total	-9 013	-7 046	-5 192	-11 690	-12 707	-12 637	-13 646	-13 345	-11 311	-12 773	41.7%
A. Forest Land	-9 271	-7 358	-5 503	-11 978	-12 994	-12 925	-13 933	-13 632	-11 598	-13 060	40.9%
B. Cropland	115	117	117	116	116	116	116	116	116	116	1.4%
C. Grassland	116	144	144	131	131	131	131	131	131	131	13.4%
D. Wetlands	2	4	4	3	3	3	3	3	3	3	45.5%
E. Settlements	10	18	18	14	14	14	14	14	14	14	45.5%
F. Other Land	16	29	29	23	23	23	23	23	23	23	44.3%

As can be seen from the table, the Sector Land Use, Land Use Change and Forestry is a net sink in Austria.

The most important sub category is 5 A Forest Land, in particular its sub source 5 A 1 Forest Land remaining Forest Land. This category is a net sink for CO_2 , whereas all other sub categories are sources of CO_2 emissions. However, total emissions arising from the other sub categories amount only 2-3% of removals from 5 A Forest Land.

7.1.1 Emission Trends

In 2003, removals from that category corresponded to 17% of total GHG in Austria (without LUCF), compared to 15% in the base year, they increased by 41.7% from the base year to 2003, mainly due to an increase of the carbon stock in forest land.

7.1.2 Methodology

The methodology for estimating emissions from this category is described in the sub chapters 7.2 and 7.3. Following the methodology of the actual emission/removal calculations, all land use changes from forest land (which are sub categories of 5 B - 5 F) are included in the methodological description of 5 A 2 Land converted to Forest Land.

Table 201 presents land use data and data for land use changes for the year 1990 for Austria as used for the calculations.

Table 201: Land use and LUC data for Austria for the year 1990

TOTAL	8 386	0
Other non-productive areas	634	0
Sealed areas	234	3 553
Wetlands	133	370
Other productive area ⁽²⁾	67	1 212
Vineyards, orchards and gardens	136	861
Grassland	1 939	-6 838
Alpine grassland	893	3 140
Pastures	197	-3 790
Meadows	896	-6 188
Meadows and pastures	1 093	-9 978
Arable land (incl. commercially used gardens)	1 341	-5 413
Non-exploitable forest	560	3 773
Exploitable forest	3 338	2 480
Total forest	3 893	6 253
	[1 000 ha]	[ha]
	Area 1990	LUC 1990 ⁽¹⁾

^{(1) (}year – (year-1)) with 5 year average as basis

7.1.3 Completeness

Table 202 gives an overview of the new IPCC categories included in this chapter and the corresponding sub-divisions for which the actual calculations are made. It also provides information on the status of emission estimates of all subcategories. A " \checkmark " indicates that emissions from this subcategory have been estimated; for LULUCF only CO_2 emissions/removals are estimated.

Table 202: IPCC categories according to the IPCC-Good Practice Guidance for Land-Use, Land-Use Change and Forestry.

IPCC categories ³³ / Sub division for calculation	Description	Status for CO ₂
5 A	Forest land	
5.A.1	Forest land remaining forest land	
Coniferous	Increase, decrease, net change of carbon stock	(gG C)
Coniferous	Net carbon stock change in dead organic matter	NE
Coniferous	Net carbon stock change in soils	NE
Deciduous	Increase, decrease, net change of carbon stock	(gG C)
Deciduous	Net carbon stock change in dead organic matter	NE

³³ IPCC categories33 - applied according to the "Good Practice Guidance for LULUCF (2003)"

⁽²⁾ abandoned grassland, plantations for biomass production, tree nurseries and gardens and Christmas tree plantations

Deciduous	Net carbon stock change in soils	NE
5.A.2	Land converted to forest land	
5.A.2.1	Cropland converted to forest land	
5.A.2.2	Grassland converted to forest land	
5.A.2.3	Wetlands converted to forest land	
5.A.2.4	Settlements converted to forest land	
5.A.2.5	Other land converted to forest land	
5.A.1_BiomassBurn_contr.	Biomass Burning: Controlled: Forest land remaining forest land	NO
5.A.1_BiomassBurn_wildfires	Biomass Burning: Wildfires: Forest land remaining forest land	IE ⁽¹⁾
5 B	Cropland	(2)
5 C	Grassland	(2)
5 D	Wetlands	(3)
5 E	Settlements	(3)
5 F	Other Land	(3)

⁽¹⁾CO₂ emissions caused by wildfires (CRF Table 5(V)) are included in the category 5.A.1. Data on the area affected by wildfires are available for the years 1992 to 2002³⁴.

7.2 Forest Land (5 A)

3.96 Mio ha (47.2%) of Austria are forest land [BFW, 2004a]. The sustaining of the Austrian forests in the past helped to restore an important carbon stock in the Austrian landscape and to avoid net CO_2 emissions to the atmosphere from the Sector LULUCF: In 1990 the Austrian forests represented a carbon stock of 320 ± 42 Mt carbon from biomass and 463 ± 185 Mt carbon from soil, i.e. humus layer plus mineral soil to 50 cm depth. This total carbon stock represents approximately 40 times the Austrian CO_2 equivalent emissions of the greenhouse gases CO_2 , CH_4 and N_2O in the year 1990 [Weiss et al., 2000].

Emission/Removal trends of Forest Land

With regard to forest land the annual net CO_2 removals under sector 5 of the reported period 1990 – 2003³⁵ range from 5 384 Gg CO_2 to 13 838 Gg CO_2 (mean: 10 619 Gg CO_2). The most relevant parts derive from the sub-category 5.A.1 (Forest Land remaining Forest Land), whereas land use changes to forests (5.A.2) and from forests (5.B.2 to 5.F.2) have only minor influence on the net CO_2 balance.

For the years between two observation periods data on increments and harvests of forest biomass were taken from the next following period.

For the year 2003 the means for the last period (2000 to 2002) of the National Forest Inventory (NFI) have been reported.

⁽³⁾Only cropland remaining cropland (grassland remaining grassland) and forest land converted to cropland (and grassland, respectively) are estimated

⁽³⁾Only conversion from forest land is estimated

³⁴ In the 90-ies the annual maximum area affected by forest fires in Austria was 135 ha, but usually this annually affected area is much lower. Hence, biomass losses and emissions of other GHGs by forest fires are negligible

³⁵ For the year 2003 the means for the last period (2000 to 2002) of the National Forest Inventory (NFI) have been reported

As already reported in previous submissions [e.g. UMWELTBUNDESAMT, 2004], changes in the Austrian forest biomass also resulted in a net carbon sink in the years before 1990. In the period 1961 to 1989 the mean annual net carbon sink amounted to 8 305 Gg CO_2 (from 3 718 Gg CO_2 to 13 526 Gg CO_2 with an uncertainty of ± 2.743 Gg CO_2). Between 1980 and 1996 the net carbon sink of this category equals to about 15% of the gross CO_2 equivalent emissions of the GHGs CO_2 , CH_4 and N_2O in this period [Weiss et al., 2000].

According to the new reporting tables for Land Use, Land Use Change and Forestry increments and losses at areas of land use change to and from forests (incl. also non-productive forests) must be taken into account. Therefore the figures of previous reports are not exactly comparable with the actual figures. For forest land the new calculation of the CO_2 net removals of the category 5 show slightly lower figures of at most 0.5%, whereas the figures reported for the category 5.A (Forest land) are slightly above results of previous submissions.

Details on the methodology, uncertainty assessment, quality assurance, quality control and verification are given in each sub chapter.

For the reported period 1990 to 2003 the total annual net CO_2 removals (only biomass) from land use changes to forest range from about 27 Gg CO_2 to 63 Gg CO_2 . The total annual emissions (only biomass) from land use changes from forests vary between 65 Gg CO_2 and 119 Gg CO_2 . These figures are in the order of approximately \pm 1% of the annual net CO_2 removals under sector 5.

GHG removals/emissions [Gg CO2] Trend 1990 1996 1997 1998 1999 2000 2001 2002 2003 2003 5³⁶ 9 205.87 5 384.13 11 882.99 12 899.64 12 829.99 13 838.45 13 537.31 11 503.50 12 965.09 40.8% 5.A 9 271.23 5 503.20 11 977.78 12 994.43 12 924.78 13 933.24 13 632.10 11 598.29 13 059.89 40.8% 5.A.1 9 243.38 5 440.29 11 928.71 12 945.35 12 875.70 13 884.16 13 583.03 11 549.21 13 010.81 40.8% 5.A.2 27.86 62.91 49.08 49.08 49.08 49.08 49.08 49.08 49.08 76.2% 94.79 168% Forestlan 119.07 94.79 94.79 94.79 94.79 35.36 94.79 94.79 d Conv

Table 203: CO₂ removals/emissions from IPCC Category 5 for Forest Land from 1990-2003

7.2.1 Forest Land remaining Forest Land (5 A 1)

7.2.1.1 Methodological Issues

Activity data

A national method is applied which follows the new IPCC – Good Practice Guidelines for Land Use, Land Use Change and Forestry (2003). The use of country specific conversion factors provides more accurate and appropriate figures for the Austrian forests. The main basis of the estimates are measured data on the forest area, volume increment of the growing stock and harvest (for both stem wood over bark with a diameter at breast height > 5 cm) according to the Austrian National Forest Inventory (NFI - [SCHIELER et al., 1995], [BFW, 2004a,b], [WINKLER,1997]). The NFI was carried out in the periods 1961-70, 1971-80, 1981-85, 1986-90, 1992-96 and 2000/02.

The NFI uses a permanently below ground marked 4×4 km grid across all of Austria with four permanent sample plots of 300 m^2 size at each grid point. In addition to the NFI harvest data,

³⁶ Considering only LULUC from and to forest land

which are based on measurements in the forests, further harvest statistics exist: the annually reported records of wood felled and the Austrian wood balance [BITTERMANN and GERHOLD 1995], [BMLF 1964-2003]. These statistics are not based on measured data. Therefore, it is assumed that the NFI provides more accurate figures on the harvest and for this reason the estimates are based on NFI harvest figures. However, the results of the other statistics are used to derive "relative harvest indices for individual years" (see below). In addition, the absolute harvest figures of these statistics are also included in the uncertainty analysis to guarantee an overall consistency of the calculated figures (see below).

Further comments for a better understanding of the NFI increment and harvest data:

The NFI increment data include all possible reasons for biomass increments and losses in the forests. This means that biomass increments due to abandonment of managed land and regrowth by forests or biomass losses due to e.g. traditional (non-commercial) fuel wood consumption, forest land conversion, forest fires (wild-fires) and other damages are already considered in calculations based on the NFI data.

In order to fulfil the requirements of the new reporting format and to report on the category "Forest land remaining forest land (5 A 1)", estimations of the emissions and removals due to annual land use changes from and to commercial forests had to be made and subtracted from the total net CO_2 figures. The approaches on calculating CO_2 emissions and removals related to land use changes are described in more detail in chapter 1.3.

The NFI provides means of annual increment and harvest for the individual periods. Instead of using these means or interpolated values for single years, these NFI means are converted with indices³⁷ to obtain annual data of increment and harvest. For harvest these relative indices are derived from further national statistics on harvest which are the annually reported records of wood felled [BMLF 1964-2003] and the wood balance [BITTERMANN and GERHOLD 1995], which provides data until 1996. For increment a representative Austrian set of tree ring cores [HASENAUER et al. 1999a, b] is used to calculate the relative indices. These indices are available until 1994 but the amendment of the figures 1995 to 2002 based on the results of the recent NFI is planned for the next submission. The means of these estimated annual data on increment and harvest for a certain inventory period are equal to the measured periodic means provided by the NFI. This method allows more accurate estimates of the figures for individual years for the category 5 A 1. The figures for annual growth and for annual harvest differ year by year for several reasons (e.g. weather conditions; timber demand and prices, wind throws). Such reasons for different growth and different harvest in individual years explain the high annual variations in the CO₂ net removals by the Austrian forests.

Conversion factors

Conversion factors are used to convert the measured m³ stem wood over bark (o.b.) to t carbon increment and t carbon harvest of the whole trees (including also below ground biomass).

These conversion factors are not based on default values given by the IPCC (1997) but on estimates, which give more accurate figures for the Austrian forests. These estimates of the used conversion factors are based on the species and age class composition of increment and harvest according to NFI and literature values for the wood densities for all individual tree species (compiled in [KOLLMANN, 1982], [LOHMANN, 1987]), literature values on the dry mass relations of stem wood to the other tree compartments for the main tree species in Austria and

³⁷ Values for the relative variation in the individual years of the time series

for individual age classes (compiled in [KÖRNER et al., 1993]) and literature values on C contents for individual tree compartments and species (see Table 204). The conversion factors are calculated for each inventory period and separately for increment and harvest respectively.

Further details on the approach and methodology are given in [WEISS et al., 2000].

Table 204: Conversion factors for the Austrian forests [WEISS et al. 2000]

Conversion factors	Coniferous	Deciduous
m ³ o.b. t dm (stemwood)	0.39	0.53
t dm stemwood \rightarrow t dm whole tree (incl. also below ground biomass)		
increment	1.45	1.46
harvest	1.54	1.50
t dm whole tree → t C whole tree	0.49	0.48

The time series of accurate and measured values for individual years ends with the year 2002. For 2003 the means for the last inventory period (2000/02) are reported.

7.2.1.2 QA/QC, Verification, Uncertainty Assessment

Since the results of the CO_2 removals reported for the new category 5 A 1 derive from the same data base and show only minor changes compared to the results in sector 5 A of previous reports, the QA/QC, the verification and the uncertainty assessment of the previous calculations is still valid.

The NFI is based on a very comprehensive quality assurance system which allows the exact identification of the right location of the grid and sample points, guarantees the repeated measurement of the right trees (permanent marked grid) and indicates at once implausible figures for individual parameters during the measurements on site and any missing trees compared to the period before (further details are given in [SCHIELER and HAUK, 2001]). The calculation of the data for category 5 A 1 is embedded in the overall QA/QC-system of the Austrian GHG inventory (see Chapter 1.6):

The calculation of the uncertainty of the reported data for category 5 A 1 takes into account:

- The statistical uncertainty of the forest inventory,
- The uncertainty related to the calculation of annual data,
- The uncertainty related to the missing consistency of different statistics³⁸
- and the uncertainty of each conversion and expansion factor.

The estimates of the uncertainty include a consistency approach with other national statistics.

Because of the differing quality of the data classic statistical approaches were not always adequate. For instance, the uncertainties of the conversion factors were estimated in a pragmatic as well as conservative way (Table 205, details are described in [WEISS et al., 2000]). Such an approach takes into account that the conversion factors were not measured by a systematic inventory (like NFI) but derived from a few local ecosystem studies (expansion

³⁸ e.g.: There are three different Austrian statistics for annual harvest: measured harvest according to NFI, national annual records of wood felled, and the national wood balance.

factors) and literature data on wood densities and C contents. Therefore, the uncertainty related to these conversion factors is comparably higher than the one of the systematically measured stem wood volume of increment and harvest. Error propagation was used to calculate the overall uncertainty.

Table 205: Relative uncertainties of the used data for the calculations [WEISS et al. 2000]

	Relative uncertainties [%]							
Forest inventory		Uncertainty related to the calculation of annual data	Conversion Conversion factor factor		Conversion factor			
	and to the necessary consistency of different statistics		" m^3 o.b. $\rightarrow t$ dm"	"t dm stemwood → t dm whole tree"	"t dm \rightarrow t C"			
Increment	2.0	3.2	11.1	6.5	2.0			
Harvest	3.5	12.2	11.1	0.5	2.0			

7.2.1.3 Recalculations

The extrapolation of trends for increment and harvest from the inventory period 1986/90 to the 90ies led to figures which had to be strongly revised downwards after the inventory period 1992/96. One of the main reasons was that the increment did not increase as in the years before. A use of means for increment and for harvest, which are based on the latest NFI results, for years after the latest NFI provides more reliable figures than an extrapolation of trends which are rather uncertain. This is particularly true for increment which strongly depends on weather conditions, but also for harvest, when - for instance – storm fellings are taken into consideration. The revision of these means and constant figures for the year 1991 and the years between 1997 and 1999 have been carried out.

7.2.1.4 Planned improvements

CO₂ emissions and removals from net carbon stock changes in dead organic matter and soils are not estimated at the moment. As given in the introduction, Weiss et al. (2000) estimated the carbon-stock of the Austrian forest soils by using data of the Austrian forest soil survey (humus layers and mineral soil layers 0-50 cm were sampled at the grid points of an 8,7 x 8,7 km grid across all Austria in the period 1987 to 1989; FBVA 1992). Similar carbon stock estimates are also available for the Austrian agricultural soils (see UNFCCC submission 2000). The changes in the carbon content of the soils are very small and slow and so far no reassessments of the Austrian soil inventories have taken place that would allow estimates for the carbon stock changes of the soils. Modelling approaches were used to estimate the carbon stock change of the Austrian forest soils in the period 1961 to 1996 [WEISS et al., 2000]. According to these estimates it is assumed that the Austrian forest soils were a carbon sink of about 10% of the net carbon sink of the forest biomass in the period 1961-1996. However, these results have to be considered as hypothetical because repeated soil measurements are missing, which would help to verify the modelled carbon stock changes. It is planned to carry out such a reassessment of the forest soil inventory in the near future. This will allow providing measured figures for the carbon stock changes in this category.

7.2.2 Land Use Changes to and from Forest Land (Categories 5 A 2 and 5 B 2.1, 5 C 2.1, 5 D 2.1, 5 E 2.1, 5 F 2.1).

7.2.2.1 Methodological Issues

Activity data

Areas were land use changes to and from forests take place are generally very small in Austria. By means of the NFI, which follows a regular grid of $4 \times 4 \text{ km}$ (see also 1.2.1.1) land use changes can only be observed by chance and therefore the number of grid points with observed land use change is small. Therefore the estimates for land use changes from and to forest uses have a significantly higher uncertainty compared to the uncertainty for the total forest land (see below).

In case a land use change has been observed at an inventory point of the last NFI (2000/02) the type of the neighbouring non-forest land was recorded. The evaluation of 2/3 of such forest boundary points led to the land use statistic shown in the tables 4 and 5. It is assumed, that the other third follows the same distribution.

The total increase of forest area from 1997 to 2002 was 68,000 ha (total forest area). The loss of forest area for the same period was calculated with about 32,000 ha, leading to a net increase of the total forest area of about 36,000 ha (19.000 ha for the productive forest) for the years 1997 to 2002.

Table 206: Land use changes to forest area (%, ha) of the total increase of the forest area observed for the period 2000/02 [based on BFW, 2004a]

Categories of land use changes according to the IPCC GPG 2003	Land use changes to forest land (% total increase of forest land)	Land use changes to forest land [1000 ha]
Cropland (5 A.2.1)	16.0	10.9
Grassland (5 A.2.2)	59.0	40.3
Wetlands (5 A.2.3)	5.0	3.4
Settlements (5 A.2.4)	14.0	9.6
Others (5 A.2.5)	6.0	4.1
Total	100.0	68.3

Table 207: Land use changes from forest area (%, ha) of the total loss of the forest area observed for the period 2000/02 [based on BFW, 2004a]

Categories of land use changes from forests according to the IPCC GPG 2003	Land use changes to forest land (% total increase of forest land)	Land use changes from forest land [1000 ha]
Cropland (5 B.2.1)	5.0	1.6
Grassland (5 C.2.2)	53.0	16.8
Wetlands (5 D.2.3)	3.0	0.9
Settlements (5 E.2.4)	15.0	4.8
Others (5 F.2.5)	24.0	7.6
Total	100.0	31.8

As shown in Table 206 and Table 207 the land use changes to and from forests mainly appear from/to grassland sites (59% or 53%, respectively). The Land use changes from or to other categories are far below this value and should only be seen as relative figures, due to a high degree of uncertainty (see 1.3.1.2).

For the years before 1997 it was assumed that the land use changes between two observation periods show the same ratio of distribution as in the latest inventory because only the total amount of land use decrease and loss is available for all the observed periods.

The annual increment of stemwood over bark (o.b.) on areas which have become forests was estimated with 3 m³/ha.

The annual average loss of stemwood o.b. on lost forest areas was estimated with 31.2 ± 8.1 m³/ha for coniferous and 6.5 ± 1.9 m³/ha for deciduous trees (in total 13.8 ± 2.9 m³/ha).

Conversion factors

In Table 208 the conversion factors for the total above ground biomass (with no further division into coniferous and deciduous) is shown.

Table 208: Conversion factors for land use changes to forest land.

Conversion factors	Total biomass (conif. and dec.)
m^3 stemwood o.b. \rightarrow t dm whole tree (incl. also below ground biomass)	
increment	0.8
harvest	0.72
t dm whole tree → t C whole tree	0,49

7.2.2.2 Uncertainty Assessment

The results of the NFI provide very accurate and reliable data on the increment, harvest, distribution of tree species and other characteristics of the Austrian forest as a whole. The regular grid of 4×4 km is an appropriate way to meet this information. It is obvious, that only a few of the observed grid points of the NFI by chance describe a forest boundary, where land use changes can be detected. Therefore a high uncertainty on the results of the categories on land use changes must be considered.

7.3 5 B Cropland and 5 C Grassland

In this category emissions/removals from cropland and grassland management are considered.

Some sub sources are not relevant for Austria (e.g. slash and burn etc.), and for some not sufficient data for emission estimation was available (e.g. changes of tillage practices).

Emissions/Removals where thus only estimated for the sub categories and related sources/sinks as shown in Table 209.

Table 209: Sources (or sinks) considered for cropland and grassland management

Category / source or sink

5 B 1 Cropland remaining Cropland

- carbon stock change of living biomass on perennial cropland

Catanan	. ,			ماسان
Category	′ /	Source	OI	SILIK

- carbon stock change due to changes in organic matter input (harvest residues) to cropland soils
- CO₂ emissions due to liming of cropland and grassland

5 C 1 Grassland remaining Grassland

- carbon stock change in grassland soils due to abandonment of grassland

Emission were only estimated for 1990, the same value was reported for all years.

The following table presents emission and removals estimates from cropland and grassland management.

Table 210: Emissions from cropland and grassland management in 1990

Category	Net carbon stock	Net carbon stock change [Gg CO ₂]		
	biomass	soils	Net CO ₂ emissions [Gg]	
5 B 1 Cropland remaining Cropland	132.63	-136.62	3.99	
5 C 1 Grassland remaining Grassland		81.06	81.06	
Liming of Cropland and Grassland (reported in 5 B Cropland)			107.49	

7.3.1 Methodological Issues

Note: most calculations are based on the methods described in the "Draft IPCC Good Practice Guidance for LULUCF" released in May 2003. The revised version draft guidelines that were published in October 2003 were also considered in some respects, but not all of the new calculation methods and emission factors could be incorporated. A first look at the new versions made it obvious that major changes have meanwhile occurred (e.g. compare calculations of stock changes for cropland remaining cropland-biomass changes). However, for a first estimate, and considering the low contribution to total emissions, the methodologies seem appropriate.

Emissions were estimated applying the IPCC Tier 1 methodology, except for soil carbon stocks, where a country specific methodology was used.

Below the source of activity data is explained, in the following sub chapters the methodologies and emission factors used for calculation of emissions of by sub category is explained.

Activity Data

The IPCC-GPG (Oct 2003) describe three different approaches for representing land areas using the above listed categories:

- 1) The first approach identifies the total area for each individual land use category. It does not require detailed information on changes of land areas between the different categories and is only spatially explicit at the national or regional level.
- 2) The second approach provides information of the changes between the categories, but also lacks the spatial relation of the different areas.

3) The third approach provides information of the changes and also the spatial basis of each area.

Existing data about land-use change in Austria is in accordance with approach (1), it was taken from [Geisler and Jonas, 2001] and [Jonas and Nielsen 2002], in which the original national statistic data have been used to calculate an area-consistent LUC data base of Austria³⁹.

To improve this information about land use changes, a set of rules based on expert judgement was defined. Together with these rules land-use information similar to approach (2) was generated 40.

Rules that determine the land use change processes in Austria:

R1: Increase of abandoned grassland has its origin in grassland.

R2: Increase of wetland has its origin exclusively from grassland.

R3: Loss of grassland, which is not an increase of "abandoned grassland" or "wetland" leads to an increase of forest land.

R4: Increase of sealed land comes from arable land (cropland).

R5: Increase of vineyards and orchards come from arable land (cropland).

R6: Increase of plantations (biomass production, tree nurseries and Christmas tree plantations) come from old vineyards and orchards.

R7: Losses of vineyards and orchards which are not included in new plantations are included in forest increase.

R8: Decrease of abandoned grassland leads to an increase of forest land.

The following table shows a model based on the relations between the different land use categories as expressed in the rules.

³⁹ Values obtained from these studies slightly differ from official statistical data for different land-use classes, as data had to be harmonized over the time series due to changes of the methodology: e.g. in the year 1983 the unit for reporting land-use changes to national statistics was officially changed from 0.5 to 1 ha; which results in a sudden decline of orchard areas by nearly 50%.

It should be noted that this approach can only take into account net changes of land-use. This means that in case grassland is converted to cropland, but at the same time the same amount of cropland is converted to grassland the net land-use distribution will remain the same. The actual changes that have occurred and might have different effects on GHG emissions and uptake cannot be reflected appropriately with the available land-use data, that reflect only net changes of land-use but not the full dynamics of it. An improvement of this limitation could only be achieved by the development of spatially explicit land-use information with sufficient time resolution to track land-use changes.

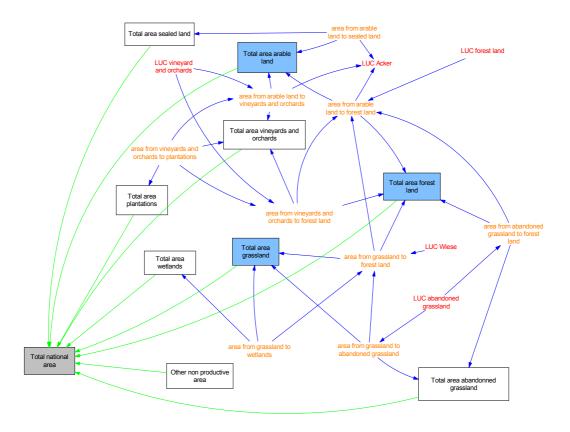


Figure 17: Model for land use changes

With the current availability of data and knowledge it is not feasible to produce verifiable time series of emission/removal estimates for cropland/grassland management (activities relating to Article 3.4 of the Kyoto Protocol). The main reason is that such an estimate would require spatially explicit land-use and soil management data for the period preceding the base year 1990, i.e. 1970-1990. Such data are not available in Austria and do not seem to be available easily in the near future.

7.3.1.1 Cropland: changes in carbon stocks in biomass

For calculating the carbon stock change of living biomass on perennial cropland the following formula was applied:

Annual change in biomass= Area of perennial cropland * Carbon accumulation rate

For the carbon accumulation rate the IPCC default value of 2.1 t C / ha.yr was used.

The area of perennial cropland was taken from the studies as explained above (under Activity Data).

The following woody crops were relevant: vineyards, orchards, plantations for biomass production, Christmas tree plantations and tree nurseries and gardens.

7.3.1.2 Cropland: changes in carbon stocks of soils

Emissions were calculated using a country specific methodology.

The methodology followed closely the formula presented by the IPCC guidelines, where the original IPCC formula also included a tillage factor, which was not considered in the country specific methodology as information was not available⁴¹.

The formula used for calculating the change in carbon stocks of cropland soils was:

Annual net change of C in soils = [(SOC * Area_t * Input factor) – (SOC * Area_(t-10) * Input factor)] / 10

where SOC is the soil organic carbon content – the Austrian specific value of 50 t C/ ha for 0-30 cm depth of cropland taken from [Gerzabek et al., 2003] was used.

For the input factor the IPCC default values were used:

- 0.9 for crops with low input (cereals and fodder maize),
- 1.1 for crops with high input (clover)
- 1.0 for crops with medium input (fodder cereals, legumes, beets, potatoes, oil seeds, other crops)

7.3.1.3 Grassland: changes in carbon stocks of soils

In this chapter the net CO_2 emissions/removals due to the change in grassland use (abandonment of grassland) is considered.

Emissions were calculated using the IPCC Tier 1 methodology.

According to the IPCC GPG, the carbon stock of "improved grassland" is 10% higher than the carbon stock of "generic grassland". This factor of -0.1 was applied to calculate the carbon stock change due to abandonment of grassland:

Carbon loss = Area of abandoned grassland * SOC * (-0.1)

For the figure of soil organic carbon (SOC) of improved grassland a value of 70 t C/ ha for 0-30 cm depth taken from [Gerzabek et al., 2003] was used.

However, Austrian specific values for extensive alpine grassland show a significantly higher carbon storage capacity for alpine grasslands (which are unimproved extensive grasslands): 70 t C/ ha for improved grassland versus 104 t C / ha for extensive alpine grassland. Thus it is not realistic for Austria to use the IPCC default values of carbon stock changes. It might be more appropriate to assume that there are no significant changes in soil carbon content after abandonment.

However, as a first estimate to obtain an idea of the relevance of emissions from this category, the IPCC default value was used.

7.3.1.4 CO₂ emissions due to liming of cropland and grassland

The amount of lime applied to grassland and cropland soils was based on expert judgment as no statistical data is available, the following information was used:

- the recommended amount of lime that should be applied to cropland and grassland according to the Austrian advisory committee for good agricultural practices ("Fachbeirat für Bodenfruchtbarkeit") is 0.7 t / ha.yr.

⁴¹ The "base factor" included in the IPCC formula is considered in the Austrian specific values for content of organic carbon in soils.

- however, according to expert judgement only 25% of this recommended value is actually applied
- additionally it has to be considered that about 60% of Austrian croplands and grasslands need no liming as they are based on carbonate ground rock

--> this results in a factor of 0.07 t lime /ha.yr

For calculating CO_2 emissions from the amount of lime applied the IPCC default value was used.

7.3.2 Uncertainty assessment

The following uncertainties were estimated, they are based on uncertainty estimates for IPCC default values taken from the GPG (as for most sources these default values were used), and on expert judgment:

- cropland/ changes in carbon stocks in biomass: 78%
- cropland/ changes in carbon stocks in soils: 15%
- grassland/ changes in carbon stocks in soils: 100%
- liming of cropland and grassland: 54%

8 WASTE (CRF SECTOR 6)

8.1 Sector Overview

This chapter includes information on and descriptions of methods for estimating greenhouse gas emissions as well as references of activity data and emission factors concerning waste management and treatment activities reported under IPCC Category 6 Waste.

The emissions addressed in this chapter include emissions from the IPCC categories 6 A Solid Waste Disposal on Land, 6 B Wastewater Handling, 6 C Waste Incineration and 6 D Other Waste (Compost Production).

Waste management and treatment activities are sources of methane (CH_4), carbon dioxide (CO_2) and nitrous oxide (N_2O) emissions.

8.1.1 Emission Trends

Table 211 presents greenhouse gas emissions for the period from 1990 to 2003 for the IPCC Category 6 Waste.

Overall greenhouse gas emissions from waste management and treatment activities during the year 2003 amounted to 3 414.59 Gg CO_2 equivalent. This are about 3.7% of total greenhouse gas emissions in Austria in 2003 and 5.7% in the base year. In 2003, greenhouse gas emissions from the waste sector were 24% below the level of the base year. Figure 18 shows the trend of GHG emissions from this category from 1990 to 2003.

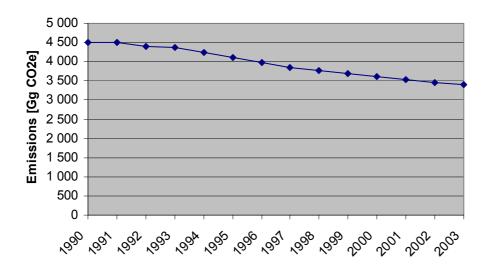


Figure 18: GHG emissions from IPPC Sector 6 Waste 1990-2003

Table 211: Emissions of greenhouse gases and their trend from 1990-2003 from category 6 Waste

	CO_2 [Gg CO_2 e]	CH_4 [Gg CO_2 e]	N_2O [Gg CO_2 e]	Total [Gg CO ₂ e]
1990	20.70	4 441.34	41.06	4 503.10
1991	18.45	4 433.95	42.71	4 495.12

1992	7.55	4 348.71	48.07	4 404.33
1993	8.50	4 307.52	55.64	4 371.66
1994	9.75	4 145.90	79.77	4 235.43
1995	10.09	3 985.85	106.46	4 102.39
1996	10.40	3 831.59	129.73	3 971.72
1997	10.70	3699.54	139.99	3 850.23
1998	10.99	3 599.74	167.63	3 778.36
1999	11.31	3 496.70	187.84	3 695.85
2000	11.28	3 379.83	210.86	3 601.98
2001	11.24	3 272.62	246.13	3 529.99
2002	11.27	3 208.86	244.97	3 465.11
2003	11.27	3 156.61	246.70	3 414.59
Trend 1990-2003	-45.6%	-28.9%	500.8%	-24.2%

Emission trends by greenhouse gas

Table 212 presents greenhouse gas emissions from the sector *Waste* for the base year (1990) and for 2003 as well as their share in greenhouse gas emissions from this sector.

Table 212: Greenhouse gas emissions from the Waste sector in the base year and in 2003.

Greenhouse gas	Base year*	2003	Base year	2003	
emissions	CO ₂ equiva	alent [Gg]	[%]		
Total	4 503.1	3 414.6	100%	100%	
CO ₂	20.7	11.3	0.5%	0.3%	
CH ₄	4 441.3	3 156.6	98.6%	92.4%	
N_2O	41.1	246.7	0.9%	7.2%	

^{*1990} for CO₂, CH₄ and N₂O

The major greenhouse gas emissions from this sector are CH_4 emissions, which represent 92.4% of all emissions from this sector in 2003 compared with 98.6% in 1990, followed by N_2O (7.2% 2003 and 0.9% 1990 respectively) and CO_2 (0.3% 2003 and 0.5% 1990 respectively).

CH₄ emissions

CH₄ emissions from the sector *Waste* have decreased by 28.9% since 1990 (see Table 211) as a result of waste management policies: the amount of land filled waste has decreased and in addition the implemented methane recovery systems have increased during the period.

CH₄ emissions originate from most subcategories within the sector but the largest source is *Solid Waste Disposal on Land*.

N₂O emissions

 N_2O emissions from the waste sector have remarkably increased over the considered period (see Table 211). In 2003, N_2O emissions from the Waste sector amounted to 246.70 Gg CO_2 equivalent. This was 500% above the level of the base year.

 N_2O emissions mainly arise from the category Other Waste (Compost production) but also from Wastewater Handling (Domestic and Commercial Wastewater and Industrial Wastewater). Waste Incineration (Municipal Solid Waste and Waste Oil) is a minor source of N_2O emissions.

CO2 emissions

 ${\rm CO_2}$ emissions of the sector Waste decreased (see Table 211). In 2003, ${\rm CO_2}$ emissions from this sector amounted to 11.3 Gg ${\rm CO_2}$ equivalent, this was 45.6% below the level of the base year.

 CO_2 emissions originate from *Waste Incineration (Municipal Solid Waste, Waste Oil and Incineration of Corpses)*. The only plant incinerating municipal waste without energy recovery was shut down in 1991, which resulted in a drop of CO_2 emissions from 1991-1992.

Emission trends by sources

Table 213 presents the greenhouse gas emissions for the period from 1990 to 2003 from the different subcategories within the IPCC Category 6 Waste.

Table 213: Total greenhouse gas emissions and trend from 1990–2003 by subcategories of Category 6
Waste

6 A	6 B	6 C	6 D	Total
4 144.07	303.40	20.85	34.78	4 503.10
4 133.27	306.83	18.60	36.43	4 495.12
4 042.61	310.77	7.56	43.39	4 404.33
3 995.46	313.51	8.52	54.17	4 371.66
3 829.35	331.93	9.77	64.37	4 235.43
3 667.53	356.53	10.11	68.22	4 102.39
3 511.77	378.14	10.42	71.38	3 971.72
3 379.67	389.50	10.72	70.34	3 850.23
3 278.70	415.87	11.02	72.78	3 778.36
3 173.90	433.57	11.34	77.04	3 695.85
3 056.57	457.23	11.31	76.87	3 601.98
2 948.17	493.06	11.26	77.49	3 529.99
2 882.74	493.12	11.29	77.96	3 465.11
2 828.85	495.19	11.29	79.25	3 414.59
24.74	62.01	45.00	107.04	24.17
-31.74	03.21	-43.03	121.04	-24.17
	4 144.07 4 133.27 4 042.61 3 995.46 3 829.35 3 667.53 3 511.77 3 379.67 3 278.70 3 173.90 3 056.57 2 948.17 2 882.74	4 144.07 303.40 4 133.27 306.83 4 042.61 310.77 3 995.46 313.51 3 829.35 331.93 3 667.53 356.53 3 511.77 378.14 3 379.67 389.50 3 278.70 415.87 3 173.90 433.57 3 056.57 457.23 2 948.17 493.06 2 882.74 493.12 2 828.85 495.19	4 144.07 303.40 20.85 4 133.27 306.83 18.60 4 042.61 310.77 7.56 3 995.46 313.51 8.52 3 829.35 331.93 9.77 3 667.53 356.53 10.11 3 511.77 378.14 10.42 3 379.67 389.50 10.72 3 278.70 415.87 11.02 3 173.90 433.57 11.34 3 056.57 457.23 11.31 2 948.17 493.06 11.26 2 882.74 493.12 11.29 2 828.85 495.19 11.29	4 144.07 303.40 20.85 34.78 4 133.27 306.83 18.60 36.43 4 042.61 310.77 7.56 43.39 3 995.46 313.51 8.52 54.17 3 829.35 331.93 9.77 64.37 3 667.53 356.53 10.11 68.22 3 511.77 378.14 10.42 71.38 3 379.67 389.50 10.72 70.34 3 278.70 415.87 11.02 72.78 3 173.90 433.57 11.34 77.04 3 056.57 457.23 11.31 76.87 2 948.17 493.06 11.26 77.49 2 882.74 493.12 11.29 77.96 2 828.85 495.19 11.29 79.25

The dominant subcategory in the sector 6 Waste is 6 A Solid Waste Disposal on Land. In 2003, Solid Waste Disposal on Land contributed 82.5% to total greenhouse gas emissions from the sector Waste. However, the contribution decreased over the period: in 1990 92.3% of the greenhouse gas emissions originated from this subcategory.

6 A Solid Waste Disposal on Land

For *Solid Waste Disposal on Land*, greenhouse gas emissions decreased by 31.7% from 1990 to 2003. The main greenhouse gas originating from this subcategory is CH₄.

The decreasing amount of land filled waste and the increasing recovery rate of landfill gas causes a decreasing trend in emissions.

6 B Wastewater Handling

For *Wastewater Handling* greenhouse gas emissions increased by 63.2% from 1990 to 2003. This was mainly due to increasing N2O emissions from handling of industrial and domestic/commercial wastewater, and due to a revised methodology.

6 C Waste Incineration

For *Waste Incineration*, greenhouse gas emissions decreased by 45.9% from 1990 to 2003. This was mainly due to the shut down of the only plant for incineration of municipal waste without energy recovery in 1991, which resulted in a drop of CO₂ emissions from 1991-1992.

6 D Other Waste

This category addresses *Compost Production*. Greenhouse gas emissions from this subcategory increased by 127.8% due to the increasing amount of composted waste.

8.1.2 Key Sources

Key source analysis is presented in Chapter 1.5. This chapter includes information about the key sources in the IPCC Sector 6 *Waste*. Table 214 presents the source categories in the level of aggregation as used for the key source analysis.

The key sources of IPCC Category 6 are 6 A Managed Waste disposal on Land and 6 B Wastewater Handling.

Compared to last year's key source analysis, one more key category namely N_2O emissions from *Wastewater Handling* has been identified. Emissions increased compared to last years submission mainly due to the revision of calculation method. For example the amount of wastewater that is treated in sewage plants and the amount of denitrification has been updated.

In the base year, 5.32% of total greenhouse gas emissions originate from the two key sources of the sector Waste, whereas Wastewater Handling has a share of less than 0.1%. In the year 2003 3.3% of total greenhouse gas emissions originate from the sector Waste - the share of Wastewater Handling is 0.2%.

Table 214: Key sources of Category 6 Waste

IPCC Category	Source Categories		Key Sources		
ii CC Category			KS-Assessment		
		CH	LA90-LA03		
6 A	Managed Waste disposal on Land	CH₄	TA97-TA03		
		N ₂ O	LA90-LA02		
6 B	Wastewater Handling		TA97-TA03		

LA00= Level Assessment 2000 TA00= Trend Assessment BY-2001

8.1.3 Methodology

Detailed information on the methodology can be found in the corresponding subchapters, where it was applied.

8.1.4 Uncertainty Assessment

In this submission uncertainty estimates based on expert judgement by Umweltbundesamt for subcategory Solid Waste Disposal on Land is provided (see respective subchapter). It is planned to provide uncertainty estimates for the second key source Waste Water Handling for the next submission as well.

8.1.5 Recalculations

Recalculations have been made for the subcategories 6 A 1 Managed Waste Disposal on Land (see Table 224), 6 B Wastewater Handling (see Table 230) and 6 D Other Waste (see Table 238). For further information please refer to the respective subchapters.

8.1.6 Completeness

Table 215 gives an overview of the IPCCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "\scrtw" indicates that emissions from this subcategory have been estimated; the grey shaded cells are those also shaded in the CRF.

Table 215: Overview of subcategories of Category Waste: transformation into SNAP Codes and status of estimation

IPCC Category	SNAP	CO_2	CH ₄	N_2O
6 A SOLID WASTE DISPOSAL ON	LAND			
6 A 1 Managed Waste Disposal	090401 Solid Waste Disposal on Land	NO	✓	
6 A 2 Unmanaged Waste Disposal	090402 Unmanaged Waste Disposal			
6 B WASTEWATER HANDLING				
6 B 1 Industrial Wastewater	091001 Waste water treatment in industry		✓	✓
6 B 2 Domestic and Commercial Wastewater	091002 Waste water treatment in residential/commercial sect.		✓	✓
6 C WASTE INCINERATION				
	090901 Incineration of corpses	✓	NO	NO
	090201 Incineration of municipal waste	✓	✓	✓
	090208 Incineration of waste oil	✓	NA	✓
6 D OTHER WASTE				
	091003 Sludge spreading	ΙE	ΙE	ΙE
	091005 Compost production	NO	✓	✓

In Austria all waste disposal sites are managed sites (also see Chapter 8.2.1.1).

Sludge spreading is included in category 4 D 1.

8.2 Waste Disposal on Land (CRF Source Category 6 A)

8.2.1 Managed Waste Disposal on Land (CRF Source Category 6 A 1)

8.2.1.1 Source Category Description

Key Source: Yes

Emissions: CH4

In Austria all waste disposal sites are managed sites (landfills). Emissions from unmanaged deposition of waste was assumed to be negligible because it was assumed that unmanaged, deposited waste mainly consists of construction waste and other waste with no or very low biodegradable content.

In the year 2003, CH₄ emissions from managed waste disposal on land (landfills) contributed 3.0% to total greenhouse gas emissions in Austria.

Managed waste disposal on land accounts for the largest contribution to CH₄ emissions in the IPCC Category 6 Waste.

The anaerobic degradation of land filled organic substances results in the formation of landfill gas. About 55% of this landfill gas is CH_4 . Most active landfills in Austria have gas collection systems.

Table 216 presents CH₄ emissions from managed waste disposal on land for the period from 1990 to 2003.

The trend of CH₄ emissions during the period is decreasing. From 1990 to 2003 CH₄ emissions decreased by 32% due to decreasing amounts of land filled waste and increasing amounts of the collected landfill-gas.

Table 216: Greenhouse gas emissions from Category 6 A 1 1990-2003

6A1	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CH₄ [Gg]	197.34	196.82	192.51	190.26	182.35	174.64	167.23	160.94	156.13	151.14	145.55	140.39	137.27	134.71

8.2.1.2 Methodological Issues

A country specific method was applied.

For calculation of emissions of solid waste disposal on land the directly deposited waste is separated into two categories: "residual waste" and "non residual waste", the methodology used for estimating emissions of these two subcategories are presented in the following subchapters.

Activity data and the implied emission factors for "Residual waste" and "Non Residual Waste" are presented in Table 217.

Table 217: Activity data and implied emission factors for "Residual waste" and "Non Residual Waste" 1990–2003

Year	Residual Waste	Non Residual Waste	Total Waste	IEF CH4
	[Mg/a]	[Mg/a]	[Mg/a]	[kg /Mg]
1990	1 995 747	863 051	2 858 798	69.0

Year	Residual Waste	Non Residual Waste	Total Waste	IEF CH4
1991	1 799 718	863 051	2 662 769	73.9
1992	1 614 157	863 051	2 477 208	77.7
1993	1 644 718	863 051	2 507 769	75.9
1994	1 142 067	863 051	2 005 118	90.9
1995	1 049 709	863 051	1 912 760	91.3
1996	1 124 169	863 051	1 987 220	84.2
1997	1 082 634	863 051	1 945 685	82.7
1998	1 081 114	863 051	1 944 165	80.3
1999	1 083 618	927 077	2 010 695	75.2
2000	1 052 061	928 358	1 980 419	73.5
2001	1 032 895	843 326	1 876 221	74.8
2002	1 347 795	864 953	2 212 748	62.0
2003	1 347 795	864 953	2 212 748	60.9

Residual waste

"Residual waste" corresponds to waste from households and similar establishments directly deposited at landfills without any treatment. It originates from private households, administrative facilities of commerce, industry and public administration, kindergartens, schools, hospitals, small enterprises, agriculture, market places and other generation points covered by the municipal waste collecting system.

According to the "federal waste management plan 2001" recycling and treatment of waste from households and similar establishments followed the following routes in 1999:

- 34.3% recycling
- 15.4% recycling (biogenous waste)
- 0.8% treatment in plants for hazardous waste
- 6.3% mechanico-biological pre-treatment
- 14.7% thermal treatment (incineration)
- 28.5% direct deposition at landfills ("residual waste");

Methodology

The detailed methodology for calculation of CH₄ emissions from "residual waste" is discussed in Table 218. The emissions are calculated according the methodology of Tabasaran and Rettenberger [described in BAUMELER et al. 1998].

First the overall amount of generated landfill gas per ton waste was calculated, taking into account the DOC-content (see Table 220) of the waste and the average temperature at the landfill (30°C). Once disposed, waste emits landfill-gas for many years. The amount of gas emitted per year is not constant. It declines exponentially over time. For the calculation the amount of landfill-gas produced in the year of disposal and in the 30 years after disposal are taken into account. To determine the total amount of landfill gas emissions for one year, the amounts generated by waste disposed in the last 31 years are summed up. After subtracting the collected and burnt gas and multiplying by the CH_4 content of landfill gas (approximately 55%) the emitted quantity of CH_4 from residual waste was obtained.

Table 218: Calculation of the CH₄ emissions of residual waste

Calculation of	Formula		Explanation
G _L Long term specific quantity of	G _L =1.868*DOC*(0.014T +0.28)	T	Temperature of the disposal site (approximately 30°C)
generated landfill gas [m³/ t waste]		DOC	Bio-degradable organic carbon content of directly deposited residual waste (estimated in [ROLLAND, SCHEIBENGRAF, 2003])
G _t Cumulated specific quantity of	$G_t = G_L^*(1-10^{(-kt)})$	G _L	Long term specific amount of generated landfill gas
gas after t years [m³/ t waste]		k	Degrade constant =0.035 [TABASARAN & RETTENBERGER]
			Number of years
		t	
G _t (a)Specific accrued quantity of	$G_t(a)=G_t-G_{t-1}$	G _t	Cumulated specific amount of gas in the year t
gas in the t th year [m³/ t waste]		G _{t-}	Cumulated specific amount of gas in the year before t
G _{geb} Quantity of incidental landfill gas	$G_{geb}=G_t(a)^*waste_{t=0}$	G _t (a)	Specific accrued amount of gas in the year t
in the year t [m³]		waste _{t=0}	Waste deposited in the year t=0
G _T Total incidental gas in the year t [m³]	G_T = $\Sigma_0^{-31}(G_{geb})$ Quantity of gas generated in the last 31 years is summed up	G _{geb}	Quantity of incidental landfill gas in the year t
GEmitted gas [m³]	G=G _T *(1-j)	G _T	Total incidental gas in the year t
		j 	Collecting factor [ROLLAND, OLIVA, 2004]
EMEmitted CH ₄	EM=G*0.55*(1-v)*ρ	G	Emitted gas
[kg]			Concentration of CH ₄ in landfill gas
		0,55 v	Percentage of methane, that is oxidized in the upper layer of the waste site, v=10% [IPPC default]
			Density of methane, ρ =0.65kg/m ³
		ρ	

Activity data

The quantities of "residual waste" from 1998 to 2003 were taken from the database for solid waste disposals "Deponiedatenbank" ("Austrian landfill database"). According to the Landfill Ordinance [Deponieverordnung (Federal Gazette BGBI. Nr 164/1996)], which came into force in 1997, the operators of landfill sites have to report their activity data annually to the UMWELTBUNDESAMT, where they are stored in the database for solid waste disposals (*Deponiedatenbank*).

Landfill gas recovery

2004 the Umweltbundesamt made an investigation [ROLLAND, OLIVA; 2004] and asked the operators of landfill sites to report their annual collected landfill gas. The results of this investigation are presented in Figure 19: the amount of the collected and burnt landfill gas increased constantly over the time period. While for example the amount of the collected landfill gas was about 2% in 1990, this amount reached 13% in the year 2002.

As this study considers only the amount of collected landfill gas from 1990 until 2002, for the calculation the amount of 2002 was used for the year 2003 as well.

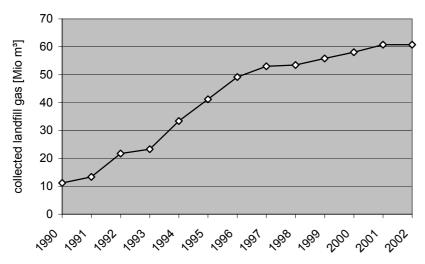


Figure 19: Amount of collected landfill gas 1990 to 2002 [ROLLAND, OLIVA; 2004]

Biodegradable organic carbon

According to the study "Biologisch abbaubarer Kohlenstoff im Restmüll" [ROLLAND, SCHEIBENGRAF, 2003] the content of biodegradable organic carbon of directly deposited residual waste decreased over the time series due to increasing separate collection of bio waste in biowaste containers and separate collection of paper. Figure 20 presents the trend of separate collection and organic share of residual waste over the time series. As can be seen the amount of biowaste that is collected separately increased while the organic share of residual waste decreased. Table 219 presents the composition of residual waste for several years between 1990 and 1999. On the basis of this information a time series for DOC was estimated (see Table 220). For the years before 1990 quantities according to a national study [HACKEL & MAUSCHITZ, 1999] were used.

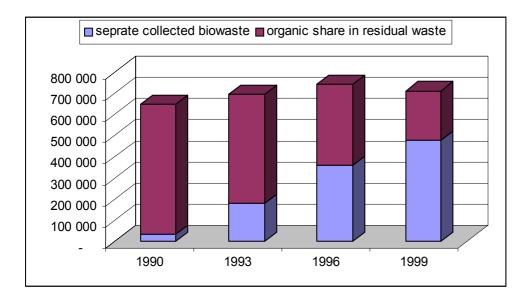


Figure 20: Separate collection of biowaste and organic share of residual waste

Table 219: Composition of residual waste

Residual waste	1990	1993	1996	1999
	[% of moist mass]			
Paper, cardboard	21.9	18.3	13.5	14
Glass	7.8	6.3	4.4	3
Metal	5.2	4.4	4.5	4.6
plastic	9.8	9.3	10.6	15
Composite materials	11.3	11.3	13.8	-
textiles	3.3	3.1	4.1	4.2
wood	-	-	1.1	2.6
Hygiene materials	-	-	-	12
Biogenic components	29.8	34.4	29.7	17.8
Hazardous household waste	1.4	1.5	0.9	0.3
Mineral components	7.2	7.9	3.8	-
Wood, leather, rubber, other components	2.3	3.6	-	-
Residual fraction	-	-	13.6	26.5

Table 220: Time series of bio-degradable organic carbon content of directly deposited residual waste [ROLLAND, SCHEIBENGRAF, 2003]

bio-degradable organic carbon
[g/kg Waste (moist mass)]
230
220
210
200
190
180
170
160
150
140
130
130
120
120
120
120
120

Non Residual Waste

"Non Residual Waste" is directly deposited waste other than residual waste but with biodegradable lots. Non Residual Waste comprises for example:

- · bulky waste
- construction waste
- mixed industrial waste
- · road sweepings
- sewage sludge
- rakings
- residual matter from waste treatment

Methodology

For the calculation the methodology of Marticorena [described in BAUMELER et al. 1998] was used. The deposited Non Residual Waste was split up into two groups and the incidental quantity of gas was calculated for each group.

- Well biodegradable waste (half-life period: 1-20 years)
- Hardly biodegradable waste (half-life period: 20-100 years)

Because of a half-life period of more than 2.500 years the emissions of very hardly biodegradable waste are not relevant and were not considered.

After calculating the total emitted gas of each group the values were summed up, multiplied by the collecting factor and the share of CH_4 in the generated gas. This resulted in the emitted quantity of CH_4 of "Non Residual Waste".

The detailed calculation steps are shown in Table 221.

Table 221: Calculation of the CH₄ emissions of Non Residual Waste

Calculation of	Formula		Explanation
Methodology of Marticorena	$M=M_0e^{-(kt)}$	M	Incidental quantity of gas [m³]
to calculate the formation potential for 100 years		M_0	Formation potential of landfill gas [m³]*
potential for 100 years			Velocity constant k=-In(0.5)/t _{1/2}
		k 	Half life period (calculated for each group, weighted by the quantity of the deposited
		t _{1/2}	waste [BAUMELER ET AL. 1998]) [a]
		••••	Running parameter; years from 0-100
		t	
GTotal emitted quantity	$G=\Sigma_1^3(M_{t=0}-M_{t=100})$	M _{t=0}	Gas formation potential in the year 0
of landfill gas after 100 years under the restriction,		$M_{t=100}\dots$	Gas formation potential in the year 100
that the quantity and the formation of the deposited		 M _{t=0} -	Total emitted quantity of landfill gas in each group after 100 years
waste is constant during 100 years [m³]		$M_{t=100}$	Summation of the 2 groups
		Σ_1^2	
EMEmitted CH ₄ [kg]	EM=G*(j-1)*0,55*	G	Total emitted quantity of landfill gas [m³]
	*(1-v)*ρ	j	Collecting factor; [ROLLAND, OLIVA, 2004]
			Concentration of CH₄ in landfill gas
		0,55	Percentage of CH ₄ , that is oxidized in the
		V	upper layer of the waste site, v=10% [IPCC default value]
			Density of CH ₄ , ρ =0.65kg/m³ (30°C)
		ρ	

^{*}For each of the 2 groups the kind of waste was specified, the quantity and the carbon-flow were listed. For each carbon flow, a formation potential of landfill gas was calculated, and the summed up formation potential was displayed as M_O.

Activity data

The quantities of "non residual waste" from 1998 to 2003 were taken from the database for solid waste disposals "Deponiedatenbank" ("Austrian landfill database"), whereas only the amount of waste with biodegradable lots was considered. The following tables (Table 222 and Table 223) present a list of waste that was considered.

Because there are no data for "non residual waste" available for the years before 1998, the value for 1998 is used for these years. For the next submission efforts will be made to improve the time series.

Table 222: Well biodegradable waste

Waste Identification No	Type of Waste	Dry matter [%]	C content [g/kg TS]
170904	Mixed construction and demolition waste	86	99
190805	Sludges from treatment of urban waste water	34	250
20 01 25	Edible oil and fat	100	300
020303	wastes from solvent extraction	100	300
190811 - 14	Sludges from treatment of industrial waste water	34	250
040106	Sludges, in particular from on-site effluent treatment containing chromium	40	450
190809	Grease and oil mixture from oil/water separation containing only edible oil and fats	100	200
040221	Wastes from unprocessed textile fibres	90	450
200101	Paper and cardboard	90	440
030310	Fibre rejects, fibre-, filler-, and coating sludges from mechanical separation	44	440
030307	Mechanically separated rejects from pulping of waste paper and cardboard	44	515
200108	Biodegradable kitchen and canteen waste	35	350
200302	Waste from markets	35	350
200201	Biodegradable wastes	50	350

Table 223: Hardly bio-degradable waste

Waste Identification No	Type of Waste	Dry matter [%]	C content [g/kg TS]
200307	bulky waste	83	173
303	wastes from pulp, paper and cardboard production and processing	80	350
1908	wastes from waste water treatment plants not otherwise specified	34	300
1909	wastes from the preparation of water intended for human consumption or water for industrial use	73	300
40109	waste from dressing and finishing	90	450
30105	sawdust, shavings, cuttings, wood, particle board and veneer	90	496
150103	wooden packaging	90	500
170201	Wood	90	507
170204	glass, plastic and wood containing or contaminated with dangerous substances	94	520
170903	other construction and demolition wastes (including mixed wastes) containing dagerous substances	80	510
170204	glass, plastic and wood containing or contaminated with dangerous substances	94	520
30105	sawdust, shavings, cuttings, wood, particle board and veneer	85	450
30304	de-inking sludges from paper recycling	44	515

	mechanically separated rejects form pulping of waste paper		
30307	and cardboard	44	515
200102	paper and cardboard	80	367
40221	wastes from unprocessed textile fibres	90	450
200111	Textiles	90	770
1905	wastes from aerobic treatment of solid waste	60	300
	wastes from the mechanical treatment of waste (for example sorting, crushing, compacting, pelletising) not otherwise		
1912	specified	70	250 000
170904	mixed construction and demolition wastes	86	99 000

Uncertainty Assessment

According to [WINIWARTER & ORTHOFER, 2000] the uncertainty for emission factors for 6 A Solid Waste Disposal is 35% and 25% for activity data, respectively.

The study refers to data of submission 2000 but since then the method was continually improved, now activity data and data for calculation of emissions refer to actual data compared to expert judgements or data from surveys of one year only that was used for all years used before: activity data is now taken from the Austrian landfill database reported from landfill operators, data on the amount of annual collected landfill gas were collected and the DOC was updated according to a new study of the Umweltbundesamt.

That's why experts of the Umweltbundesamt assumed that the uncertainty is now lower: 15% for activity data and 30% for the emission factors, respectively.

8.2.1.3 Recalculations

The following improvements have been made compared to last year's submission:

In the last submission an oxidation factor of 0.2 was used. But because recommended by the ERT in this submission the IPCC default value was used.

The activity data of "residual waste" and of "non residual waste" were updated. According to the Landfill Ordinance [Deponieverordnung (Federal Gazette BGBI. Nr 164/1996)] the operators of landfill sites have to report their data annually. Due to reports after the due-date there are minor changes of the activity data in this submission compared to the previous submission.

Due to QA/QC activities a mistake in the calculation of half-life period was identified and corrected in this submission.

Table 224: Recalculations with respect to previous submission from Category Managed Waste Disposal on Land 1990-2002

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
CH₄ [Gg Difference]	19.56	19.56	19.13	18.93	18.11	17.32	16.57	16.01	15.90	15.58	16.29	16.89	17.78

8.3 Wastewater Handling (CRF Source Category 6 B)

Key Source: Yes

Emissions: CH₄, N₂O

In the year 2003, greenhouse gas emissions from Wastewater Handling contributed 0.2% to total greenhouse gas emissions in Austria.

The trend of greenhouse gas emissions during the period is increasing. From 1990 to 2003 greenhouse gas emissions increased by 63.2% due to increasing amounts of wastewater that is treated in treatment plants and increasing amount of denitrification. Table 225 presents CH_4 and N_2O emissions from category Wastewater Handling for the period from 1990 to 2003.

Table 225: Emissions of greenhouse gases from 1990-2003 from category 6 B Wastewater Handling

6 B	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CH₄ [Gg]	13.64	13.77	13.93	14.04	14.09	14.12	14.14	14.15	14.17	14.19	14.23	14.28	14.36	14.42
N2O [Gg]	0.05	0.06	0.06	0.06	0.12	0.19	0.26	0.30	0.38	0.44	0.51	0.62	0.62	0.62

This source category is separated into the subcategories 6 B 1 Industrial Wastewater Handling and 6 B 2 Urban Wastewater Handling.

Table 226 shows CH₄ and N₂O emissions and their trend from both subcategories for the period from 1990 to 2003.

Table 226: Greenhouse gas emissions from Subcategories Industrial Wastewater Handling 6B1 and Urban Wastewater Handling 6B2 for the period 1990-2003

	6 [3 1	6 8	Total	
	Industrial Waste	ewater Handling	Urban Wastev	vater Handling	Total
	CH ₄ emissions	N ₂ O emissions	CH ₄ emissions	N ₂ O emissions	[CO ₂ equivalent
	[Gg]	[Gg]	[Gg]	[Gg]	Gg
1990	4.64	0.01	9.00	0.04	303.4
1991	4.68	0.01	9.09	0.04	306.8
1992	4.74	0.01	9.19	0.05	310.8
1993	4.78	0.01	9.26	0.05	313.5
1994	4.79	0.03	9.30	0.09	331.9
1995	4.80	0.04	9.31	0.15	356.5
1996	4.81	0.06	9.33	0.20	378.1
1997	4.81	0.07	9.34	0.23	389.5
1998	4.82	0.09	9.35	0.29	415.9
1999	4.83	0.10	9.37	0.34	433.6
2000	4.84	0.12	9.39	0.39	457.2
2001	4.86	0.14	9.43	0.48	493.1

2002	4.88	0.14	9.47	0.48	493.1
2003	4.90	0.14	9.51	0.48	495.2
Trend 1990-2002	5.7%	1 030%	5.7%	1 030%	63.2%

8.3.1 Methodology

8.3.1.1 CH₄ Emissions

The calculation of CH₄ emissions for the year 1993 is shown in Table 227 and was taken from a study [STEINLECHNER et al., 1994].

First the amount of generated methane per unit of wastewater is determined separately for each of the three different types of treatments (mechanical/ biological/ further). These factors were multiplied with the corresponding capacities of the Austrian wastewater treatment plants and then summed up, resulting in total CH₄ emissions for the sub sector urban wastewater of the year 1993. Emissions from industrial wastewater were calculated separately, its wastewater was treated like biological treated wastewater.

By dividing the emissions of 1993 by the number of inhabitants of 1993 an implied emission factor for Industrial and Urban Wastewater Treatment was obtained.

For all other years the implied emission factors of 1993 was used to calculate emissions.

IEF (Industrial wastewater handling): 604.05 g CH₄ /inhabitant
 IEF (Urban wastewater handling): 1 171.94 g CH₄ /inhabitant

Table 227: Calculation of methane emissions for the year 1993

Explanation	Calculation factors and ratings/ Calculation results
The amount of methane generated (MG) per unit of organic substance is presumed.	MG = 0.22 kg CH ₄ / kg organic substance
Apart from temperature sewage provides ideal conditions for	MCF _{20°C} = 35% (67% of a year)
methane production: moisture, pH value and nutrient supply. The temperature is too low, this is taken into account by applying a methane conversion factor (MCF). Calculations are made with an average temperature of 20°C for 8 months and 10°C for the rest of the year.	MCF _{10°C} = 10% (33% of a year)
Using MCF the effective amount of incidental methane (EM) is calculated:	EM = 0.058 kg CH₄/ kg organic substance
EM=MCF ₂₀ *MG*0,67+MCF ₁₀ *MG*0,33	
For each of the three types of wastewater treatment (1: Mechanical/ 2: Biological/ 3: Further) the quantity of organic	G ₁ = 45 g organic substance/ inhabitant/ day; including 70% dry substance
substance per inhabitant and day (G_1G_3) as well as the share of dry substance for each type was assumed.	G ₂ = 80 g organic substance/ inhabitant/ day; including 60% dry substance
	G ₃ = 45 g organic substance/ inhabitant/ day; including 35% dry substance
The factors G ₁ G ₃ are converted into the unit kg dry substance/	I ₁ = 11.5 kg/ inhabitant/ year
inhabitant/ year {e.g: I ₁ =G ₁ *days (365)*0,7 (share of dry substance)}	I ₂ = 17.5 kg/ inhabitant/ year
33333113373	I ₃ = 12.8 kg/ inhabitant/ year

_	
\sim	

Explanation	Calculation factors and ratings/ Calculation results	
Multiplying the quantity of incidental dry organic substance per	F ₁ = 0.67 kg CH ₄ / inhabitant/ year	
inhabitant and year (I ₁ I ₃) by the effective amount of incidental methane (EM) results in a factor for methane emissions per	F ₂ = 1 kg CH ₄ / inhabitant/ year	
inhabitant and year (F ₁ F ₃)	F ₃ = 0.75 kg CH ₄ / inhabitant/ /year	
The capacity (WWT) of Austrian wastewater treatment plants given	WWT ₁ = 137 420 pe	
in population equivalent [pe] for each type of wastewater treatment (1: Mechanical/ 2: Biological/ 3: Further) are:	WWT ₂ = 6 965 411 pe	
(· · · · · · · · · · · · · · · · · · ·	WWT ₃ = 1 070 065 pe	
Industrial wastewater treatment is calculated separately (IWWT):	IWWT = 4 827 000 pe	
Inhabitants without public wastewater treatment are also considered (PWWT):	PWWT = 2 263 265 pe	
Domestic and commercial wastewater.	Total CH ₄ emissions of domestic and	
By multiplying the delivery rates (WWTs) with the factor for methane emission per inhabitant and year (EM) the methane emission for each treatment type is calculated. These values are summed up (7 849 Mg/a) and also the $\mathrm{CH_4}$ emissions of inhabitants without waste water treatment (these are handled like mechanical treatment – 1 516 Mg/a) are added.	commercial wastewater treatment amount to 9 365 Mg/a	
Industrial wastewater:	CH ₄ emissions from industrial wastewater	
Industrial wastewater is managed like biological treatment, so methane emissions of biological treatment (F_2) are multiplied by the delivery rate of industrial treatment plants (IWWT).	treatment amount to 4 827 Mg/a	

Main difference between the Austrian and the IPCC method

The main difference is that the Austrian method calculates emissions using an implied emission factor per inhabitant and not per kg DOC. To calculate emissions therefore the amount of produced biogas was estimated together for industrial and urban wastewater, based on the amount of organic waste. It was not calculated on the basis of BOD (biochemical oxygen demand) and COD (chemical oxygen demand).

8.3.1.2 N₂O Emissions

 N_2O emissions from Urban Wastewater Handling were calculated in accordance with the IPCC methodology and a national study [ORTHOFER et al., 1995]. The emissions were calculated taking into account the amount of wastewater that is treated in sewage plants and the amount of nitrogen that is denitrificated. According to [ORTHOFER et al., 1995] only 1% of the total nitrogen in the denitrification process is emitted as N_2O . The formula for estimating the N_2O emissions from this category is:

$$N_2$$
O Emissions = WW_{tr} * DF * 0.01 * P * Frac_{NPR} * Inhabitants * F

Where:

WWtr amount of wastewater that is treated in sewage plants
 DF percentage of nitrogen that is denitrificated
 P annual protein intake per capita [kg protein/ person/ a]42

http://apps.fao.org/page/collections?subset=nutrition

⁴² Daily protein intake per capita taken from FAO statistics:

Frac_{NPR} Fraction of nitrogen in protein (IPCC default value - 0,16 kg N/kg

protein)

Inhabitants number of inhabitants in Austria

F Factor [1.57 kg $N_2O/$ kg N]

It is assumed that industrial wastewater handling additionally contributes 30% of N_2O emissions from urban wastewater handling.

The amount of wastewater that is treated in sewage plants as well as the denitrification rate increased over the time series as presented in Table 228. Data were taken from the Austrian reports on water pollution control [GEWÄSSERSCHUTZBERICHTE 1993 – 2002]; data in between were interpolated.

Table 228: Trend of amount of wastewater that is treated in sewage plants 1990 – 2003 and amount of nitrogen that is denitrificated

	Wastewater treatment	Denitrification
	[%]	[%]
1990	59.0	0.10
1991	60.0 *)	0.10
1992	61.4	0.10
1993	62.7	0.10
1994	64.1	0.18
1995	73.5 *)	0.27
1996	74.2	0.35 *)
1997	75.0	0.40
1998	80.9 *)	0.46
1999	81.4	0.51 *)
2000	81.9	0.60
2001	86.0 *)	0.68 *)
2002	86.0	0.68
2003	86.0	0.68

^{*)} data were taken from Austrian reports on water pollution control [GEWÄSSERSCHUTZBERICHTE 1993 - 2002];

The number of inhabitants was provided by STATISTIK AUSTRIA. The daily protein intake was updated according to FAO statistics. The data are presented in Table 229.

Table 229: Number of inhabitants and protein intake per capita 1990–2003

Year	Inhabitants	Protein intake [g/ day/ capita]
1990	7 678 000	102
1991	7 754 891	102
1992	7 840 709	103
1993	7 905 632	102

1994	7 936 118	104	
1995	7 948 278	104	
1996	7 959 016	106	
1997	7 968 041	104	
1998	7 976 789	109	
1999	7 992 323	110	
2000	8 011 566	110	
2001	8 043 046	111	_
2002	8 083 797	110	
2003	8 117 754	110	

8.3.2 Recalculation

- Emissions of N₂O have been recalculated taking into account the increasing amount of wastewater treated in sewage plants and the increasing amount of nitrogen that is denitrificated. The data were taken from the Austrian reports on water pollution control (GEWÄSSERSCHUTZBERICHTE 1993 –1996).
- The number of inhabitants was updated according to recent statistics provided by STATISTIC AUSTRIA
- The daily protein intake per capita was updated according to FAO statistics.

Table 230 Recalculations with respect to previous submission from Category Wastewater Handling 1990-2002

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
CH ₄ [Gg Difference]	-0.09	-0.10	-0.13	-0.15	-0.17	-0.18	-0.18	-0.18	-0.18	-0.18	-0.17	0.02	0.09
N2O [Gg Difference]	-0.02	-0.02	-0.01	-0.01	0.04	0.12	0.19	0.22	0.30	0.36	0.43	0.55	0.54

8.3.3 Planned Improvements

For this submission the activity data were updated, while the methodology remained unchanged. But until the next submission it is planned to review and improve the methodology of estimating emissions from wastewater handling (*IPCC Category 6 B*). Furthermore it is planned to estimate uncertainties for the new methodology.

8.4 Waste Incineration (CRF Source Category 6 C)

8.4.1 Source Category Description

Key source: No

In this category CO_2 emissions from incineration of corpses and waste oil are included as well as CO_2 , CH_4 and N_2O emissions from municipal waste incineration without energy recovery. All CO_2 emissions from Category 6 *Waste* are caused by waste incineration. The share in total emissions from sector 6 is 0.5% for the year 1990 and 0.3% for the year 2003.

In Austria waste oil is incinerated in especially designed so called "USK-facilities". The emissions of waste oil combustion for energy recovery (e.g. in cement industry) are reported under *CRF sector 1 A Fuel Combustion*.

In general, municipal, industrial and hazardous waste are combusted for energy recovery in district heating plants or in industrial sites and therefore the emissions are reported in *CRF* sector 1 A Fuel Combustion. There is only one waste incineration plant without energy recovery which has been operated until 1991 with a capacity of 22 000 tons of municipal waste per year. This plant has been rebuilt as a district heating plant starting operation in 1996. Therefore the emissions since the re-opening of this plant are reported under *CRF* sector 1 A Fuel Combustion from 1996 onwards.

Table 231: Greenhouse gas emissions from Category 6 C.

	CO ₂ [Gg]	CH₄ [Gg]	N₂O [Gg]	CO ₂ equiv. [Gg]
1990	21	0.002	0.0003	21
1991	18	0.002	0.0003	19
1992	8	0.000	0.0000	8
1993	9	0.000	0.0001	9
1994	10	0.000	0.0001	10
1995	10	0.000	0.0001	10
1996	10	0.000	0.0001	10
1997	11	0.000	0.0001	11
1998	11	0.000	0.0001	11
1999	11	0.000	0.0001	11
2000	11	0.000	0.0001	11
2001	11	0.000	0.0001	11
2002	11	0.000	0.0001	11
2003	11	0.000	0.0001	11
Trend 1990-2003	-45.6%	-99.7%	-77.4%	-45.8%

Completeness

Table 232 gives an overview of the IPCC categories included in this chapter and presents the transformation matrix from SNAP categories. It also provides information on the status of emission estimates of all subcategories. A "✓" indicates that emissions from this subcategory have been estimated.

Table 232: Overview of subcategories of Category 6 C Waste Incineration,: transformation into SNAP Codes and status of estimation

IDCC Catagon	SNAP	Status			
IPCC Category	SNAP	CO_2	CH ₄	N_2O	
6 C WASTE INCINERATION	090901 Incineration of corpses	✓	NO	NO	
	090201 Incineration of domestic or municipal waste.	✓	✓	✓	
	090208 Incineration of waste oil	✓	NA	✓	

8.4.2 Methodological Issues

CORINAIR methodology is applied: the quantity of waste is multiplied with an emission factor for CO_2 , CH_4 and N_2O .

Emission factors

National emission factors for CO_2 and CH_4 are taken from [BMWA-EB, 1990], [BMWA-EB, 1996] and [UBAVIE, 2001]. N_2O emission factors are taken from a national study [ORTHOFER et al., 1995].

For municipal solid waste, the emission factors for waste combustion in district heating plants were selected. The CO_2 emission factor in [BMWA-EB, 1996] is quoted as 100 kg CO_2 /TJ. In the national energy balance 62% of municipal solid waste is reported as non renewable waste and therefore an emission factor of 62 kg CO_2 /TJ was selected. A heating value of 8.7 GJ/Mg Municipal Waste was used to convert the emission factors from [kg/TJ] to [kg/Mg].

For waste oil, the emission factors for heavy oil were selected and a heating value of 40.3 GJ/Mg Waste Oil was used to convert the emission factors from [kg/TJ] to [kg/Mg].

Table 233: Emission factors of IPCC Category 6 C Waste Incineration.

Waste Type	CO ₂ [kg/ Mg]	CH₄ [g / Mg]	N ₂ O [g / Mg]	
Municipal Waste	539.40	104.40	12.18	
Waste Oil	3224.00	NA	24.18	

For incineration of corpses only CO_2 emissions were considered, the emission factor of 175 kg CO_2 /capita was taken from a Swiss study [BUWAL, 1995]. It was calculated based on measured values of CO_2 in the exhaust gases of crematories.

Activity data

For municipal solid waste the known capacity of 22 000 tons of waste per year of one waste incineration plant was taken.

For waste oil the activity data 1990 to 1999 were taken from [BOOS et al., 1995]. For 2000 to 2003 activity data of 1999 was taken. [PERZ, 2001] quotes that in 2001 total waste oil accumulation was about 37 500 t. Waste oil is mainly used for energy recovery in cement kilns or public power plants and considered in the energy balance as *Industrial Waste*

For incineration of corpses the activity data as presented in Table 234 were taken from STATISTIK AUSTRIA. It was assumed that 12% of the total number of corpses was incinerated every year.

Table 234: Activity data for IPCC Category 6 C Waste Incineration.

Year	Municipal Waste [Mg]	Waste Oil [Mg]	Total number of corpses	Number of incinerated corpses
1990	22 000	2 200	82 952	9 954
1991	22 000	1 500	83 428	10 011
1992	0	1 800	83 162	9 979
1993	0	2 100	82 517	9 902
1994	0	2 500	80 684	9 682
1995	0	2 600	81 171	9 741
1996	0	2 700	80 790	9 695
1997	0	2 800	79 432	9 532
1998	0	2 900	78 339	9 401
1999	0	3 000	78 200	9 384
2000	0	3 000	76 780	9 214
2001	0	3 000	74 767	8 972
2002	0	3 000	76 131	9 136
2003	0	3 000	76 131	9 136

8.5 Other Waste (CRF Source Category 6 D)

In this category compost production is addressed.

8.5.1 Compost Production

Key Source: No

Emission: CH₄, N₂O

This category includes CH₄ and N₂O emissions from compost production, which are presented in Table 235 for the period from 1990 to 2003.

CH₄ and N₂O emissions, that arise from the subcategory compost production increased over the time period as a result of the increasing amount of composted waste.

Table 235: Greenhouse gas emissions from Category Compost Production 1990-2003

	CH ₄ emissions	N ₂ O emissions	Total
	[Gg]	[Gg]	[CO ₂ equivalent Gg]
1990	0.52	0.08	34.8
1991	0.54	0.08	36.4
1992	0.65	0.10	43.4
1993	0.82	0.12	54.2
1994	0.98	0.14	64.4
1995	1.04	0.15	68.2
1996	1.09	0.16	71.4
1997	1.05	0.15	68.4
1998	1.12	0.16	72.8
1999	1.15	0.17	75.4
2000	1.16	0.17	76.6
2001	1.17	0.17	77.5
2002	1.17	0.17	78.0
2003	1.19	0.18	79.3
Trend			
1990-2003	130.2	126.8	127.8

8.5.1.1 Methodological Issues

Emissions were estimated using a country specific methodology.

To estimate the amount of composted waste it was split up into three fractions of composted waste:

- mechanical biological treated residual waste
- Bio-waste, loppings, home composting
- Sewage Sludge

CH₄ emissions were calculated by multiplying an emission factor by the quantity of waste.

Activity data

The activity data were taken from several national studies. For years where no data were available they were inter-/extrapolated or the value of the year before was used respectively.

Table 236: Activity data for IPCC Category 6 D Other Waste (Compost Production)

	Total	Bio-was loppings, l composti	home	mechanical biological treated residual waste			Sewage Sludge
	[Gg/a]	[Gg/a]	ref.	[Gg/a]	references	[Gg/a]	references
1990	765.0	413.2		345.0	[BAUMELER et al., 1998]	6.8	_
1991	800.1	448.3	_	345.0		6.8	[BAWP,1995]
1992	947.5	591.3	2003]	345.0		11.1	
1993	1 176.7	816.2		345.0		15.5	
1994	1 393.3	1 028.5	AMLINGER,	345.0		19.8	
1995	1 470.8	1 151.6	<u></u>	295.0	[ANGERER, 1997]	24.2	[SCHARF et al., 1998]
1996	1 537.5	1 233.5	₹	280.0		24.0	
1997	1 513.0	1 244.1	_	245.0	[LAHL et al., 1998]	23.9	
1998	1 564.7	1 300.9		240.0	[LAHL et al., 2000]	23.8	[BAWP, 2001]
1999	1 654.3	1 355.6	<u>a</u>	265.0	[GRECH&ROLLAND, 2001]	33.6	
2000	1 647.2	1 338.8	R et	265.0		43.	
2001	1 657.0	1 338.8	AMLINGER et	265.0		53.3	[AMLINGER et al.; 2004]
2002	1 667.0	1 348.8	AMI	265.0		53.3	
2003	1 696.8	1 348.8	ت	294.8	[DOMENIG, 2004]	53.3	

Emission factors

Due to different emission factors in different national references an average value was used for each of the three fractions of composted waste.

Table 237: Emission factors for IPCC Category 6 D Other Waste (Compost Production)

	CH₄ [kg/t FS]	N ₂ O [kg/t FS]	References
			[UBA Berlin, 1999]
mechanical biological treated	0.6	0.1	[AMLINGER et al., 2003]
residual waste	0.6	0.1	[ANGERER, FRÖHLICH, 2002]
			[DOEDENS et al., 1999]
Bio-waste, loppings, home composting	0.75	0.1	[AMLINGER et al., 2003]
Sewage Sludge	0.04	0.2	[AMLINGER et al., 2003]

8.5.1.2 Recalculations

Activity data were updated due to new available data mainly for the years 2000 to 2003. Because of interpolation the time series from 1997 onwards was updated.

Table 238: Recalculations with respect to previous submission from sub category 6 D Other Waste 1990-2002

	1997	1998	1999	2000	2001	2002
CH ₄ emissions [Gg]	0.07	0.10	0.13	0.16	0.16	0.17
N ₂ O emissions [Gg]	0.01	0.01	0.02	0.03	0.03	0.03

9 RECALCULATIONS AND IMPROVEMENTS

This chapter quantifies the changes in emissions for all six greenhouse gases compared to the previous submission – UNFCCC 2004 (in the format of the IPCC Summary Table 1A).

9.1 Explanations and Justifications for Recalculations

Compiling an emission inventory includes data collecting, data transfer and data processing. Data has to be collected from different sources, for instance national statistics, plant operators, studies, personal information or other publications. The provided data must be transferred from different data formats and units into a unique electronic format to be processed further. The calculation of emissions by applying methodologies on the collected data and the final computing of time series into a predefined format (CRF) are further steps in the preparation of the final submission. Finally the submission must be delivered in due time. Even though a QA/QC system gives assistance so that potential error sources are minimized it is sometimes necessary to make some revisions (called recalculations) under the following circumstances:

- An emission source was not considered in the previous inventory.
- A source/data supplier has delivered new data. The causes might be: Previous data were preliminary data only (by estimation, extrapolation), improvements in methodology.
- Occurrence of errors in data transfer or processing: wrong data, unit-conversion, software errors, ...
- Methodological changes: a new methodology must be applied to fulfil the reporting requirements because one of the following reasons:
 - to decrease uncertainties.
 - an emission source becomes a key source.
 - consistent input data needed for applying the methodology is no longer accessible.
 - input data for more detailed methodology is now available.
 - the methodology is no longer appropriate.

For detailed information on recalculations and their justifications see the corresponding subchapters of Chapters 3 *Energy* – 8 *Waste*.

Below an overview of recalculations made in response to the UNFCCC review process is given.

Table 239: Improvements made in response to the UNFCCC review process (centralized review 2004)

Energy

- 1 A 2 Manufacturing Industries and Construction: Sectoral division of natural gas consumption is improved by energy statistics.
- 1 A 2 a Iron and steel production: Fuel consumption and CO₂ emissions are now corresponding in a more accurate way with pig iron production and process emissions of category 2 C 1 Iron and Steel.
- 1 A 1 c Manufacture of Solid Fuels and Other Energy Industries: Includes now emissions from oil/gas extraction and compressors for storage and liquidification of natural gas only.

Industrial Processes

2 F Consumption of Halocarbons and SF₆: emissions from 2001 and 2002 were updated using extrapolation techniques (following recommendations from the ERT) and data from industries, previously the same estimated as for 2000 was used for these years.

Agriculture

- Animal Category *Other*: In Austria animals of category *Other* which mainly is deer (but not including wild living animals) have been counted from 1993 on. As recommended in the centralized review 2003, in this inventory for the years 1990 to 1992 the animal number of 1993 was used.
- Synthetic fertilizer use: The S&A report 2004 noticed high inter-annual variations in N_2O emissions of sector 4 D synthetic fertilizer use. These variations are caused by effects of storage as well as the difference between the calendar year and the agricultural economic year: the amounts of synthetic fertilizers over the years reflect the amounts sold in one calendar year. However, the economic year for the farmer does not corresponded to the calendar year. Not the whole amount purchased is applied in the year of purchase. Considering these effects, in this submission the arithmetic average of each two years was used as fertilizer application data.
- 4 A, 4 B, 4 D (Non-dairy cattle): The S&A report 2004 noticed high inter-annual variations in the CH₄ and N₂O IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.
- 4 D 3 Atmospheric nitrogen deposition: Following the recommendation of the centralized review (October 2004), in contrast to the last submission also N volatised in housing, storage and pasture was taken into account. Now, in accordance with the IPCC good practice, the value Frac_{GASM} relates to N excreted by livestock and not to Nex left for spreading.
- 4 F Field burning: As recommended in the Centralized Review 2003 the IPCC methodology using default values was applied.

CRF-Tables, background data:

According to the Centralized Review 2003 emissions from different animal waste management systems (AWMS) are reported under the appropriate AWMS in the CRF.

As recommended in the S&A report 2004 in table 4 B (b) notation keys instead of "0" have been used.

Waste

6 A 1 Managed waste disposal on land: As recommended in the Centralized Review 2004 the IPCC default CH₄ oxidation factor (0.1) was applied.

Table 240 presents the issues raised at the centralized review 2004 together with a short description of improvements made in response to the UNFCCC review. For details please refer to the respective sub chapter of the NIR.

Table 240: Issues raised in the UNFCCC review 2004 and improvements made

Paragraphs from the review Report for Austria (Centralized Review 2004) FCCC/WEB/IRI/2004/AUT

Uncertainties

10. Tier 1 of the IPCC good practice guidance has been applied to estimate uncertainties, including all sectors, CO_2 , CH_4 and N_2O for the years 1990–1997. Uncertainty compilation, the choice of priorities in assessing uncertainties, and the assessment of uncertainties using Monte Carlo analysis are described in detail in the NIR. Emissions of CO_2 have a low uncertainty (about 2 per cent) whereas the uncertainty for N_2O is up to 90 per cent. Since 1999, no improvements have been made in the uncertainty assessment. Moreover, the uncertainties are not quantified for the years 1998–2002. However, it is assumed that the uncertainty has been reduced by the application of improved QA/QC systems. Austria plans to update the uncertainty estimates for all key sources as a part of its 2005 submission.

Improvements made / Comments

In the submission 2005 an updated uncertainty estimate for all key sources is provided.

Energy

Reference and sectoral approach

20. The differences between the sectoral and reference approaches are compared and explained in the NIR. Comparing the reference approach estimates against those from the sectoral approach the differences vary between –1.18 per cent and +2.04 per cent for the total $\rm CO_2$ emissions over the time series. The negative differences for the emissions from solid fuels (–3.9 per cent for the year 1990 and –4.7 per cent for 2002) need further consideration. For the period 1996–2001, the difference is positive and as high as +7.6 per cent

This will be addressed in the inventory improvement plan.

International bunker fuels

21. Given the geographical location of the Party, no emissions are reported for marine bunker fuels. The consumption of aviation bunker fuels reported in the CRF differs from that reported by the International Energy Agency (IEA) by less than 5 per cent. The split between national and domestic aviation has been calculated based on aircraft movements and fuel calculated for international aviation has been adjusted so that total fuel corresponds to total fuel sales. There is nevertheless a discrepancy of 6 per cent in 2002 between total fuel use for aviation reported in the CRF and that given by IEA. In its response to the draft of this report, Austria stated that the split between national and international aviation for 2001 and 2002 would be recalculated for 2005 on the basis of the national energy balance.

For the submission 2005, the split of national and international aviation for 2001 and 2002 has been recalculated following data of the national energy balance (previously the split for these years was not consistent with the national energy balance as it was based on aircraft movement data).

1.A.2 Manufacturing industries and construction

22. Significant inter-annual variations of CO2 emissions are observed between 1999 and 2000 as well as between 2001 and 2002 in the subcategories of 1.A.2 as a result of differences in the way in which natural gas consumption as reported by the national energy statistics is divided between the sectors. The ERT would recommend Austria to improve the sectoral division of natural gas consumption and also check that emission sources are fully accounted for. Austria indicated that energy statistics for 2002 are preliminary and would be corrected for the next submission.

Sectoral division of energy statistics for the year 2002 is generally of low quality (the last reporting year is always a preliminary estimate) which will be corrected by the next submission. CO₂ emissions of iron & steel industry are the main driver for the fluctuating trend of total industry.

1.A.2.a Iron and steel production

24. Estimated CO_2 emissions from energy use increased by 24.7 per cent between 2001 and 2002. This does not correspond to the data on fuel consumption, according to which consumption of solid fuels decreased by 7.2 per cent, consumption of liquid fuels increased by 15.5 per cent and consumption of gaseous fuels decreased by 6.3 per cent. Furthermore, process CO_2 emissions under 2.C.1 Iron and Steel Production decreased by 6 per cent

Emissions have been recalculated for this submission.

during the same period, whereas production increased by 6.2 per cent. Some of these discrepancies may be due to inconsistencies in the allocation of emissions between the two sectors even though a reallocation of these emissions has taken place as part of the latest recalculations. If indeed some allocation problems persist, the ERT recommends a proper allocation of these emissions between the two sectors together with an appropriate explanation of these issues in Austria's next NIR. Austria indicated its intention to correct this for its next submission.

1.A.3.b Road transport — gasoline – N₂O

25. Implied emission factors (IEFs) (in kg/TJ) increased until 1994 and decreased after 1996. Emissions have been calculated using the CORINAIR methodology but country-specific EFs. The NIR only gives a general explanation of this trend. The ERT recommends that the Party explain the basis for the N_2O EFs used for different inventory years and how the average IEF has been affected by changes in technologies since 1990.

Information has been included in the NIR.

1.A.3.e Other transport – gas – CO₂

26. The CO_2 emissions reported for pipeline transport (gas turbine compressors) vary considerably from year to year. The Party has explained that the reason is the annual differences in international gas transfer. It is recommended that the Party document in the NIR the basis for the determination of gas consumption and specifically explain the emission trend, for example, by showing the annual volumes of gas transfer.

Additional information is now provided in the respective chapter of the NIR.

1.A Fuel combustion

27. The CH_4 time series for solid fuel in 1.A.1 Energy Industries seems to be inconsistent as a result of significant variation in the EF between 1990 and 2000. An explanation of this variation should be provided in the NIR.

Additional information is now provided in the respective chapter of the NIR.

28. For 1.A.1.c Manufacture of Solid Fuels and Other Energy Industries, data are provided for 1990–1995 only; for 1996–2002 no AD or emission estimates have been provided ("0" is reported in the CRF). As the statistics do not report these data, the ERT would encourage Austria to collect the data from the producers or complete the time series using methods of the IPCC good practice guidance. Moreover gaseous fuel combustion in 1.A.1.c is approximately 14 per cent of total gas throughput in 2002 and appears to be rather high. The ERT recommends the Party to verify the data reported. In its response to the draft of this report Austria explained the increase of natural consumption for pipeline compressors with the increase of natural gas transferred through Austria but not accounted for as imports/exports in the national energy balance, and indicated its intention to provide additional information in its next NIR.

Additional information is now provided in the respective chapter of the NIR.

1.B.2 Oil and natural gas - CH4 and CO2

29. There is a general lack of transparency in the emissions reported within this category. For venting and flaring, and in the case of refineries as well, some of the combustion emissions are included in fugitive losses. The NIR only provides partial information on the EFs and methods used. This makes it difficult to assess the quality of the reporting of emissions. Furthermore, the reason for changes in the IEFs over time is not given.

The corresponding chapter of the NIR was improved regarding transparency.

Industrial Processes

Sector Overview

34. The transparency of the reporting on the Industrial Processes sector could be improved, particularly the description in the NIR of methods used for F-gas emissions and for the allocation of energy and process emissions in the Cement and Iron and Steel production categories. Responding to the draft of this report, Austria stated its intention to improve transparency of the corresponding

The corresponding chapters of the NIR were improved regarding transparency.

chapters in the NIR.

2.A.1 Cement production - CO₂

35. Austria applies the IPCC good practice guidance tier 2 method by using plant-specific data. However, the AD reported for clinker production are constant for the period 1998–2002 as no additional statistical data are available. Austria states in the NIR that cement production remained stable from 1999 to 2001. The ERT notes that it is unlikely that the production and therefore emissions were exactly the same for these years and recommends that this time series be brought up to date with more recent plant-specific AD. Work has been done, for this submission, to split the energy component of the cement emissions and allocate these to the Energy sector. However, no explanation of the method used to split process and energy emissions has been provided. The ERT encourages the Party to document the methodology used for splitting the energy and process emissions more clearly.

Data has been updated and the corresponding chapters of the NIR was improved regarding transparency.

2.A.2 Lime production - CO₂

36. Emissions have been estimated using a country-specific method based on detailed production data from all lime production plants for the period 1990–2002. However, the CO_2 estimate for 2002 has been calculated using the IEF of 2001 due to lack of reported emissions data. There is no explanation of why these data were not available in time for the submission. The ERT encourages Austria to secure timely annual reporting of emissions (or specific information on calcium (Ca) or magnesium (Mg) content), as well as production data from industry.

This issue is addressed in the national inventory system (see Chapter 4.1.3).

2.F Consumption of halocarbons and SF₆ - HFCs, PFCs and SF₆

27. Both actual and potential emissions of individual F-gases are reported, potential emissions of PFCs being included for the first time in the 2002 inventory. However, 2000 is the last year for which estimates of HFC, PFC and SF₆ emissions have been made, and Austria therefore retains the 2000 values for the 2001 and 2002 inventories. This approach could very likely result in an underestimation of HFC emissions in 2002, based on the trend up to 2000. Country-specific methodologies are used for all subcategories within 2.F but only general descriptions of these methodologies and their underlying assumptions are given in the NIR. Austria plans to update the emissions for F-gases for the 2005 submission. The ERT suggests that Austria take this opportunity to acquire the necessary information for all years and to improve the transparency of reporting for all relevant sources of these gases. The Party is encouraged to apply extrapolation methods as necessary, in accordance with the UNFCCC reporting guidelines, to avoid reporting the same estimate of emissions in succeeding years.

For this submission new estimates for F-gas emissions are reported.

Agriculture

4.A.1 Enteric fermentation - Cattle- CH₄

43. The tier 2 method is used for cattle, which contributed 3.4 per cent of total GHG emissions in 2002 and 94 per cent of total CH_4 emissions from enteric fermentation. Cattle populations are based on counts made in December, but information provided during the review shows that this does not lead to the exclusion of significant numbers of animals that exist for part of the year. There is good agreement between the data on cattle populations in the CRF and those in the Food and Agriculture Organization of the United Nations (FAO) statistics. A decline in cattle numbers of 35 per cent from 1990 to 2002 should be explained in the NIR.

Additional information is now provided in the respective chapter of the NIR.

4.B Manure management - Cattle and swine - CH₄

46. Swine are characterized as breeding sows and fattening pigs, but the NIR states that the EF for the former account for emissions from nursery and growing pigs, and this introduces some lack of

Information has been included in the documentation boxes.

transparency and comparability. Austria is encouraged to improve transparency regarding the characterization of the swine population so that the EFs for individual categories are fully transparent. Default values of $B_{\rm O}$ and MCF are applied for swine and constant VS excretion rates are estimated on the basis of national studies which are referenced.

4.B Manure management - Cattle - N2O.

47. The country-specific nitrogen (N) excretion rates for cattle are significantly lower than the IPCC default values for European countries and those of other Parties. The figures for excretion of N by cattle are based on milk yield and other information taken from national studies and other referenced reports as used in deriving the CH₄ EFs for enteric fermentation and manure management. These references do not fully justify the adoption of 65 and 34 kg N/head for dairy cattle and other cattle, respectively, and the values appear to be inconsistent with the corresponding VS excretion and CH₄ EFs used by Austria for manure management. The NIR makes no reference to the N content of the typical diets presented for cattle or to the proportion of N lost from different types of forage. As N excretion rates have a major bearing on N₂O emissions, these low country-specific values should be documented more thoroughly.

Additional information will be provided in the NIR 2006 to document the N and VS excretion rates more detailed.

48. Although detailed information by animal waste management system (AWMS) is available and is used in the emission estimates, all N₂O emissions in category 4.B are reported under liquid systems. The IEF is apparently a weighted average of the IPCC default values for liquid systems, solid storage and other systems. To improve transparency, the ERT encourages the Party to report separately under the three systems applicable in the country.

This has been improved as recommended by the ERT.

49. Austria reports recalculations that address inconsistencies and errors detected in the 2003 review regarding the reporting of nitrogen per AWMS in tables 4.B(a), 4.B(b) and 4.D. However, there is still a lack of clarity and a possible underestimate in the accounting of N excreted by swine in table 4.B(b) in all years, because multiplication of total swine population by the rate of N excretion gives a greater amount of N excreted than is reported by AWMS, which could also affect N2O emissions from agricultural soils (4.D). Further information gained during the review confirmed that N excretion by swine is not underestimated but the weighted N excretion rate reported for swine in table 4.B(b) is incorrect. By using the appropriate weighting of suitable N-excretion rates for the chosen swine categories, Austria will achieve the necessary accuracy and transparency in Table 4.B(b) and maintain consistency regarding the reporting of CH₄ emissions from manure management.

Information has been included in the documentation boxes.

4.D.1 Agricultural soils - Direct N2O

50. The tier 1 method is used and all nitrogen inputs are taken into account. However, the definition of the parameter $\mathsf{Frac}_\mathsf{GASM}$ is different from that of the IPCC Guidelines, which results in a lack of transparency in the estimation of direct and indirect $N_2\mathsf{O}$ emissions. According to the IPCC good practice guidance, the value of 0.177 for $\mathsf{Frac}_\mathsf{GASM}$ given in table 4.D should represent the total ammonia (NH3) and nitrogen oxide (NO_X) losses based on the total N excretion by animals, while in the estimation of F_{AW} , as described in the NIR, $\mathsf{Frac}_\mathsf{GASM}$ is the proportion of N volatilized only during the spreading of animal wastes. Austria should clarify the rationale for the modified version of the IPCC good practice guidance equation used for estimating F_{AW} and the way in which $\mathsf{Frac}_\mathsf{GASM}$ is used.

Now the IPCC definition for $Frac_{GASM}$ is used.

51. The ERT encourages Austria to specify in the documentation box in table 4.D that emissions from sewage sludge are included under synthetic fertilizers. The NIR should also state that $F_{\rm SN}$ includes the nitrogen contribution from sludge applied to agricultural soils. The ERT recommends Austria to provide in the NIR more detailed documentation of the country-specific methodology that is

To enhance transparency, "sewage sludge" is now reported under "Other" in CRF-Table 4.D.

Additional information on the country-specific methodology

used to estimate emissions from N-fixing crops for comparison with the methodology given in the IPCC good practice guidance. will be provided in the next NIR

4.D.3 Agricultural soils - Indirect N2O

52. Austria's adaptation of the IPCC equation for estimating nitrogen input from atmospheric deposition underestimates this input because neither N volatilized in housing and storage nor that from animal waste excretion at pasture is taken into account. The Party should re-examine the methodology being used to estimate this component of N_2O emissions and the relationship to direct emissions through $Frac_{GASM}$ so that all emissions are fully accounted for in accordance with the IPCC good practice guidance. Responding to the draft of this report, Austria stated that total volatilized N and the IPCC definition of $Frac_{GASM}$ will be used for calculating indirect emissions for the next submission.

Now total N excretion is considered for calculating indirect N_2O emissions from atmospheric deposition.

53. The NIR gives no basis for the use of the default value of 0.3 for Frac_{LEACH} in Austria. Nitrogen inputs may be too low to justify the use of this default value and the Party may wish to assess its suitability as part of its future inventory development. Responding to the draft of this report, Austria indicated its intention to re-examine the suitability of this default value for its 2006 submission.

Austria will re-examine the suitability of the use of the default value for the submission 2006.

LULUCF

57. The procedure for QA/QC is well established and defined by the Party. The calculation of uncertainties takes into consideration the statistical uncertainty of the forest inventory, the calculation of annual data, and the conversion and expansion factors. However, the estimates for changes in forest and other woody biomass stocks still contain a high degree of uncertainty. The Party will improve the estimations of uncertainties through the Monte Carlo simulations.

The sector LULUCF is currently under revision, incorporating the new GPG. Data on sub sectors of LUCF is reported in this submission.

Waste

Sector Overview

62. Austria has provided all CRF tables for all years from 1990 to 2002 covering all source categories and gases relevant to the Waste sector. Information gaps were identified in category 6.B Waste-water Handling, since most of the background data are reported as "NE". The ERT noted important improvements since the 2003 submission: these include the updating of AD for SWDS and the provision of explanations on documentation requested in the previous review.

Background data for waste water handling is now reported as "NA" (the methodology is different that's why these data is not available; however, the methodology will be revised until the submission 2006).

63. Austria has performed recalculations for the whole time series for SWDS (due to the updating of AD, quantities of municipal solid waste (MSW), degradable organic carbon (DOC) and CH_4 recovery) and compost production (due to the reallocation of sludge spreading to category 4.D.1 in the Agriculture sector). The recalculations resulted in a decrease in the figures for emissions from the sector of 35.5 per cent for 2001. Though the NIR provides clear explanations, the ERT recommends that regarding this recalculation Austria provide, in next submission, a description on the differences in AD and DOC compared with the previous submission, the reasons for them, or the amount of emissions reallocated that has led to this large reduction.

Detailed data on the recalculation has been provided during the review.

Additional information on the data now used is now provided in the respective chapter of the NIR.

Solid waste disposal sites - CH₄

65. The method used for calculating the emissions from SWDS is country-specific. It separates waste into two categories, "residual waste" and "non-residual waste" for both of which country-specific AD and parameters are applied. The quantities of residual and non-residual wastes have been obtained from different referenced studies. The Party has made progress with regard to AD as it has collected and updated some additional data. However, it would be more appropriate to use extrapolation techniques for those years where no data are available (i.e., non-residual wastes before 1998) as recommended by the previous review, instead of considering it

Efforts to improve the time series of non-residual waste will be made for the submission 2006.

as constant (NIR, page 227, paragraph 8.2.1.3).

66. The methodology used is well documented with a clear explanation. However, even though Austria has provided additional information on waste composition as requested by the ERT, it was not possible to replicate the calculations for biodegradable organic carbon for directly deposited wastes (table 194 of the NIR). The ERT encourages Austria to further document and reference in the NIR the following parameters and information: degradation constant used k=0.035; the composition of wastes through the years for residual wastes and its relation to DOC reported; and the composition of non-residual wastes and its relation to the half-life periods used.

Additional information is now provided in the respective chapter of the NIR.

67. As a result of the updating of AD (quantity of solid wastes disposed in landfills, kg DOC/kg wastes, CH_4 recovery), emissions have been recalculated. This has led to an important reduction in the figures for emissions (57 per cent in 1990 and 59 per cent in 2001) which needs further explanation. The fraction of DOC in MSW decreases continuously, presenting a reduction of 40 per cent in 2001 compared to 1990, while the composition of wastes reported in the CRF is constant through the years. This trend is different from that of any other Annex I Party. The ERT encourages Austria to review these figures for its next submission.

Additional information is now provided in the respective chapter of the NIR, and parameters used will be reviewed until submission 2006 as recommended by the ERT.

68. As stated in previous review reports, Austria uses an oxidation factor of 0.2 (double the recommended IPCC maximum default value of 0.1). The Party made references to recent studies and expert judgement and stated that this figure seemed to be more appropriate to the landfill management practices in Austria. The ERT encourages Austria to reconsider using the IPCC default value for its next submission.

The IPCC default value is now used

Waste-water handling - CH₄ and N₂O

69. The methodology used for CH₄ emissions from domestic and industrial waste water, based on an IEF calculated for 1993 and held constant for all years, is not in line with the IPCC good practice guidance. In developing the already planned improvement of the methodology, Austria should consider the use of the check method described in the IPCC good practice guidance for domestic and commercial waste water and the use of default data (for Chemical Oxygen Demand (COD)) and expert judgement (IPCC good practice guidance page 5.20, decision tree) for industrial waste water, until country-specific data are available.

Some parameters used for calculating N₂O emissions from waste water handling have been updated for this submission, the methodology for CH₄ emissions will revised for submission 2006.

70. The N_2O IEF (0.00075) for human sewage is the lowest among reporting Parties (out of the range of IPCC good practice guidance 0.002–0.12). Austria has planned to improve the methodology for its next submission.

Waste incineration - CO₂

Documentation on the allocation of CO_2 emissions from the incineration of waste oil with and without energy recovery has been improved. However, the ERT recommends that Austria specify in the NIR or in the documentation box of table 6.C the quantities of waste oil that are specifically incinerated for energy recovery and those that are not.

An explanation is now provided in the NIR.

9.2 Implication for Emission Levels

Subchapters 9.2.1 to 9.2.3 present the implication of recalculations for emission levels by category for CO_2 , CH_4 , N_2O and FCs.

Table 241: IPCC codes and names of categories

0	TOTAL without sinks
1	ENERGY
1 A	FUEL COMBUSTION ACTIVITIES
1 A 1	Energy Industries
1 A 2	Manufacturing Industries and Construction
1 A 3	Transport
1 A 4	Other Sectors
1 A 5	Other
1 B	FUGITIVE EMISSIONS FROM FUELS
1 B 2	Oil and natural gas
2	INDUSTRIAL PROCESSES
2 A	MINERAL PRODUCTS
2 A 1	Cement Production
2 A 2	Lime Production
2 A 3	Limestone and Dolomite Use
2 A 4	Soda Ash Production and use
2 A 7	Other
2 B	CHEMICAL INDUSTRY
2 B 4	Carbide Production
2 B 5	Other
2 C	METAL PRODUCTION
2 D	OTHER PRODUCTION
3	SOLVENT AND OTHER PRODUCT USE
4	AGRICULTURE
5	LAND USE CHANGE AND FORESTRY
6	WASTE
6 C	WASTE INCINERATION
7	OTHER
ΙΒ	International Bunkers
Bio	CO2 Emissions from Bio-mass

9.2.1 Recalculation of CO₂ Emissions by Categories

Explanations are provided in Chapter 9.1 and in the sector specific chapters of this report.

Table 242: Recalculation Difference of CO₂ Emissions.

				CC	0 ₂ [Gg]; Di	fferences	with resp	ect to Subr	mission 20	004			
IPCC Cat.	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Total	363.38	216.67	268.08	589.90	499.60	641.07	415.42	813.88	409.74	277.94	390.07	242.52	1 323.18
1	308.22	236.50	282.15	615.45	528.97	674.11	406.49	814.11	393.48	301.66	310.15	286.59	605.03
1 A	308.22	236.50	282.15	615.45	528.97	674.11	406.49	814.11	393.48	301.66	310.15	286.59	605.03
1 A 1	147.28	150.01	201.71	459.62	365.53	239.37	66.38	-303.76	50.34	-538.35	-225.05	-1 088.9	-1 665.3
1 A 2	-61.92	-9.34	-123.10	-199.22	63.48	99.24	253.34	1 110.21	428.15	238.00	592.15	1 143.94	1 890.65
1 A 3	-354.33	-174.65	-156.98	-105.57	-245.56	47.82	-21.40	-36.43	88.97	44.69	298.10	180.52	367.36
1 A 4	577.18	270.48	360.52	460.61	345.52	287.68	108.17	44.08	-173.99	557.31	-355.05	58.23	12.07
1 A 5												-7.16	0.26
1 B													
2	55.17	-19.83	-14.08	-25.55	-29.37	-33.04	8.93	-0.23	16.26	-23.72	79.92	-44.07	718.12
2 A									19.06	19.80	124.00	132.36	144.73
2 A 1									19.06	19.80	124.00	132.36	148.10
2 A 7													-3.36
2 B	3.12	2.86	14.63	9.08	-1.63								
2 B 5	3.12	2.86	14.63	9.08	-1.63								
2 C	52.04	-22.70	-28.71	-34.63	-27.74	-33.04	8.93	-0.23	-2.80	-43.52	-44.08	-176.43	573.39
2 C 1	31.23	-43.50	-49.52	-55.44	-48.55	-53.85	-9.84	-19.54	-21.97	-62.42	-62.98	-195.34	554.48
2 C 2	20.81	20.81	20.81	20.81	20.81	20.81	18.77	19.31	19.18	18.90	18.90	18.90	18.90
3													
4													
5	201.5	1 730.8	221.6	221.6	221.6	207.6	193.6	-4 057.1	-5 073.7	-5 004.1	-6 012.6	-5 711.4	-3 677.6
6													0.03
6 C													0.03
7													
ΙB												32.70	13.91
CO ₂ [N	/lg] from E	Biomass:											
Bio	-0.13	-0.18	-33.77	-39.57	-37.70	-37.14	-32.87	-36.07	-37.81	773.81	325.77	297.93	-265.28

Blank fields indicate that no recalculation of emissions has been carried out.

9.2.2 Recalculation of CH4 Emissions by Categories

Explanations are provided in Chapter 9.1 and in the sector specific chapters of this report.

Table 243: Recalculation Difference of CH₄ Emissions.

	CH ₄ [Gg]; Differences with respect to Submission 2004												
IPCC Cat.	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Total	20.17	20.02	19.50	19.83	18.35	17.60	16.91	16.40	16.22	16.10	16.93	17.36	18.65

				CH ₄ [Gg	g]; Differ	ences v	ith resp	ect to S	ubmissi	on 2004			
IPCC Cat.	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
1	0.10	-0.06	-0.12	-0.19	-0.28	-0.28	-0.21	-0.30	-0.32	-0.05	-0.04	-0.33	0.01
1 A	0.10	-0.05	-0.12	-0.19	-0.28	-0.27	-0.20	-0.29	-0.30	-0.04	-0.02	-0.30	-0.42
1 A 1	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.01	0.01	-0.01	0.00	-0.01	-0.05
1 A 2	-0.01	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03	0.00	0.03	0.03	0.12
1 A 3	0.05	-0.08	-0.16	-0.22	-0.31	-0.30	-0.26	-0.28	-0.35	-0.32	-0.32	-0.35	-0.42
1 A 4	0.06	0.02	0.02	0.02	0.02	0.00	0.03	-0.03	0.01	0.29	0.27	0.03	-0.06
1 A 5													
1 B	0.00	-0.01	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.02	-0.02	-0.02	-0.03	0.43
1 B 1												-0.01	0.12
1 B 2	0.00	-0.01	0.00	0.00	0.00	0.00	-0.01	-0.01	-0.02	-0.02	-0.02	-0.02	0.31
2	0.03	0.03	0.02	0.03	0.04	0.06	0.06	0.06	0.06	0.08	0.08	0.07	-0.04
2 A	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.03- >NA	0.03- >NA	0.04- >NA	0.04- >NA
2 A 5	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.04- >NA	0.03- >NA	0.03- >NA	0.04- >NA	0.04- >NA
2 B	0.07	0.07	0.06	0.07	0.08	0.10	0.10	0.10	0.10	0.11	0.12	0.11	0.00
2 B 5	0.07	0.07	0.06	0.07	0.08	0.10	0.10	0.10	0.10	0.11	0.12	0.11	0.00
3													
4	0.47	0.48	0.47	1.06	0.48	0.49	0.49	0.64	0.58	0.50	0.60	0.74	0.90
4 A 1											0.18	0.34	0.50
4 A 6											-0.03	-0.06	-0.06
4 A 9	0.18	0.19	0.18	0.19	0.18	0.18	0.17	0.19	0.18	0.19	0.15	0.16	0.16
4 A 10	0.3	0.3	0.3	0.3	0.3	0.32	0.33	0.45	0.4	0.31	0.31	0.31	0.31
4 B	0.01	0.01	0.01	0.58	0.0	0.02	0.00	0.40	0.4	0.01	0.01	0.01	0.01
4 F	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	-0.01	0.00	-0.01	-0.01	-0.01
5	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.00	0.01	0.01	
6	19.56	19.56	19.13	18.93	18.11	17.32	16.57	16.01	15.90	15.58	16.29	16.89	17.78
6 A 1	19.65	19.67	19.26	19.08	18.28	17.50	16.75	16.12	15.98	15.63	16.31	16.71	17.52
6 B 1		-0.04		-0.05		-0.06	-0.06	-0.06	-0.06	-0.06	-0.06	0.01	0.03
6 B 2	-0.06	-0.07		-0.10	-0.11		-0.12	-0.12	-0.12	-0.12	-0.12	0.01	0.06
6 D 2		J.01		5.10	<u> </u>		<u>-</u>	0.07	0.10	0.13	0.16	0.16	0.17
7								- · • ·			- · · •	- · · •	
I B												0.00	0.00

Blank fields indicate that no recalculation of emissions has been carried out.

9.2.3 Recalculation of N₂O Emissions by Categories

Explanations are provided in Chapter 9.1 and in the sector specific chapters of this report.

Table 244: Recalculation Difference of N₂O Emissions.

				N₂O [Gg	j]; Differ	ences v	vith resp	ect to S	ubmissi	on 2004	1		
IPCC Cat.	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002
Total	-0.89	-1.79	0.04	-2.09	-2.47	-0.75	-1.11	-1.66	-0.68	-0.92	-0.94	-0.77	-0.36
1	-0.88	-1.26	-1.45	-1.61	-1.71	-1.68	-1.56	-1.43	-1.51	-1.33	-1.32	-1.26	-1.36
1 A	-0.88	-1.26	-1.45	-1.61	-1.71	-1.68	-1.56	-1.43	-1.51	-1.33	-1.32	-1.26	-1.36
1 A 1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
1 A 2	0.07	0.07	0.06	0.06	0.06	0.05	0.04	0.04	0.03	0.04	0.01	0.01	0.03
1 A 3	-1.02	-1.33	-1.52	-1.67	-1.78	-1.70	-1.59	-1.45	-1.49	-1.32	-1.25	-1.20	-1.33
1 A 4	0.06	0.01	0.01	0.00	0.01	-0.03	-0.01	0.00	-0.05	-0.04	-0.09	-0.07	-0.07
1 A 5												0.00	0.00
1 B													
2													
3													
4	0.01	-0.52	1.51	-0.47	-0.80	0.80	0.26	-0.47	0.51	0.02	-0.08	-0.08	0.43
4 B	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.02
4 D	0.01	-0.52	1.51	-0.46	-0.80	0.81	0.27	-0.46	0.52	0.03	-0.08	-0.09	0.41
4 D 1	-0.14	-0.46	0.78	-0.41	-0.61	0.37	0.05	-0.39	0.20	-0.09	-0.16	-0.17	0.15
4 D 2	0.02	0.02	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4 D 3	0.11	-0.10	0.68	-0.09	-0.22	0.40	0.18	-0.10	0.28	0.09	0.05	0.05	0.24
4 D 4	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03
5													
6	-0.02	-0.02	-0.01	-0.01	0.04	0.12	0.19	0.23	0.32	0.38	0.46	0.57	0.57
6 B 1	0.00	0.00	0.00	0.00	0.01	0.03	0.04	0.05	0.07	0.08	0.10	0.13	0.13
6 B 2	-0.01	-0.01	-0.01	-0.01	0.03	0.09	0.14	0.17	0.23	0.28	0.33	0.42	0.42
6 D							0.00	0.01	0.01	0.02	0.03	0.03	0.03
7													
ΙB										0.00	0.00	0.00	0.00

Blank fields indicate that no recalculation of emissions has been carried out.

9.2.4 Recalculation of National Total GHG Emissions

Table 245 compares national total GHG emissions of UNFCCC submission 2005 with UNFCCC submission 2004. Due to the recalculations national total GHG emissions are now higher: for the base year they are 0.7% higher and for the year 2002 2.1%.

Table 245: Recalculation Difference of National Total GHG Emissions

	National To	tal GHG emissions with	out LUCF
Year	Submission 2004 [Gg CO ₂ e]	Submission 2005 [Gg CO₂e]	Recalculation Difference [%]
Base year	77 998.09	78 535.22	0.7%
1990	77 746.24	78 573.05	1.1%
1991	82 154.07	82 647.00	0.6%
1992	75 135.27	76 062.64	1.2%
1993	75 412.78	76 177.63	1.0%
1994	76 480.37	77 045.38	0.7%
1995	79 355.70	80 159.10	1.0%
1996	82 775.93	83 237.39	0.6%
1997	82 340.31	83 046.10	0.9%
1998	81 999.95	82 513.72	0.6%
1999	80 082.72	80 402.96	0.4%
2000	80 640.20	81 083.55	0.5%
2001	84 398.39	84 871.78	0.6%
2002	84 620.79	86 433.79	2.1%

Table 246 and Table 247 present recalculation differences per gas.

Table 246: Recalculation Difference of National CO₂ and CH₄ Emissions.

V		CO₂ [Gg CO₂e]		CH₄ [Gg CO₂e]			
Year	Submission 2004	Submission 2005	Recalculation Difference [%]	Submission 2004	Submission 2005	Recalculation Difference [%]	
Base Year	60 899.24	61 262.62	0.6%	9 374.18	9 797.69	4.5%	
1990	60 899.24	61 262.62	0.6%	9 374.18	9 797.69	4.5%	
1991	64 535.42	64 752.08	0.3%	9 339.51	9 759.88	4.5%	
1992	59 080.06	59 348.14	0.5%	9 051.14	9 460.60	4.5%	
1993	59 309.75	59 899.64	1.0%	9 009.30	9 425.66	4.6%	
1994	59 703.64	60 203.24	0.8%	8 872.32	9 257.72	4.3%	
1995	62 474.38	63 115.45	1.0%	8 773.33	9 142.84	4.2%	
1996	66 147.04	66 562.46	0.6%	8 603.59	8 958.72	4.1%	
1997	65 713.42	66 527.30	1.2%	8 336.93	8 681.40	4.1%	
1998	65 808.07	66 217.81	0.6%	8 216.35	8 557.07	4.1%	
1999	64 336.20	64 614.14	0.4%	8 027.55	8 365.73	4.2%	

Vaar		CO₂ [Gg CO₂e]			CH₄ [Gg CO₂e]	
Year	Submission 2004	Submission 2005	Recalculation Difference [%]	Submission 2004	Submission 2005	Recalculation Difference [%]
2000	65 064.05	65 454.12	0.6%	7 790.64	8 146.25	4.6%
2001	69 037.12	69 279.64	0.4%	7 655.84	8 020.50	4.8%
2002	69 671.29	70 994.47	1.9%	7 464.64	7 856.28	5.2%

The main reason for the increase of reported CO₂ emissions are

- An improved estimation methodology of category 1 A 1 b Petroleum Refining.
- and higher emissions from Industrial Processes mainly due to update of activity data for 2 A 1 Cement Production.

The main reason for the increase of reported methane emissions are higher emissions from 6 A 1 Solid Waste disposal on Land which is mainly due to the use of the IPCC default value for methane oxidation instead of a country-specific value previously used.

Table 247: Recalculation Difference of National N₂O and HFC,PFC,SF₆ Emissions

V		N₂O [Gg]		HFC, PFC, SF ₆ [Gg CO ₂ -equivalent]			
Year	Submission 2004	Submission 2005	Recalculation Difference [%]	Submission 2004	Submission 2005	Recalculation Difference [%]	
Base Year	5 988.22	5 711.76	-4.6%	1 736.44	1 763.16	1.5%	
1990	5 988.22	5 711.76	-4.6%	1 484.60	1 800.99	21.3%	
1991	6 616.07	6 060.03	-8.4%	1 663.08	2 075.01	24.8%	
1992	5 693.93	5 706.80	0.2%	1 310.13	1 547.10	18.1%	
1993	6 210.62	5 561.46	-10.5%	883.12	1 290.86	46.2%	
1994	6 801.08	6 034.88	-11.3%	1 103.32	1 549.54	40.4%	
1995	6 371.54	6 137.65	-3.7%	1 736.44	1 763.16	1.5%	
1996	6 139.55	5 794.74	-5.6%	1 885.75	1 921.47	1.9%	
1997	6 405.61	5 890.80	-8.0%	1 884.35	1 946.60	3.3%	
1998	6 184.16	5 973.57	-3.4%	1 791.37	1 765.27	-1.5%	
1999	6 093.28	5 807.59	-4.7%	1 625.69	1 615.50	-0.6%	
2000	6 050.15	5 758.53	-4.8%	1 735.36	1 724.65	-0.6%	
2001	5 970.07	5 730.53	-4.0%	1 735.36	1 841.11	6.1%	
2002	5 749.51	5 636.41	-2.0%	1 735.36	1 946.63	12.2%	

The main reason for the decrease of reported N_2O emissions are lower emissions from 1 A 3 b Road Transport. The emission factors have been updated (updated handbook of emission factors (version 2.1).

The main reason for an increase of reported emissions of fluorinated compounds is that during an internal audit several mistakes and inconsistencies were identified and corrected and the

data quality could be improved for some sub-sectors using information from industry. Furthermore emissions from 2001 and 2002 were updated using extrapolation techniques and data from industries (previously the same estimated as for 2000 was used for these years).

Furthermore, in this year's submission emissions from industrial electricity and heat autoproducers were shifted from category 1 A 2 f Other to the corresponding industrial branches of subcategories 1 A 2 a to 1 A 2 e, 1 A 1 b, 1 A 1 c and 1 A 4 a.

For further information see Chapter 9.1 and the sector specific chapters of this report.

9.3 Implications for Emission Trends

As can be seen in Table 245 and Figure 21, Austria's greenhouse gas emissions as reported in the UNFCCC submission 2004 are higher than the values reported last year due to recalculations: for the base year they are 0.7% lower and for the year 2002 2.1%. This results in a stronger increasing trend: last year the trend from the base year to 2002 was plus 8.5% whereas now it is plus 10.1% (for explanations please refer to Chapter 9.1).

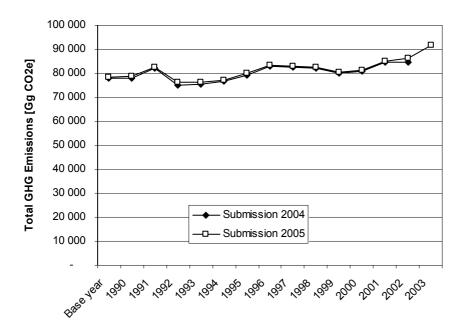


Figure 21: Emission estimate of the submission 2003 and recalculated values of the submission 2004

9.4 Planned Improvements

Source specific planned improvements are presented in the respective subchapters of Chapters 3-8.

Goals

The overall goal is to produce emission inventories which are fully consistent with the UNFCCC reporting guidelines and the IPCC Guidelines.

An improvement program has been established to help meet this goal including implementation of the Good Practice Guidance to avoid any adjustments under the Kyoto Protocol.

Linkages

The improvement programme is driven by the results of the various review processes, as e.g. the internal Austrian review, review under the European Union Monitoring Mechanism, review under the UNFCCC and/or under the Kyoto Protocol. Improvement is triggered by the improvement programme that plans improvements sector by sector and also identifies actions outside the Umweltbundesamt.

The improvement programme is supported by the QA/QC programme based on international standards (EN 45000, ISO 9000).

Updating

The improvement programme is updated every year in January.

Responsibilities

The Umweltbundesamt is responsible for the management of the improvement programme.

ABBREVIATIONS

General

AMA	Agrarmarkt Austria
DAVAD	Bundes-Abfallwirtschaftsplan
BAWP	Federal Waste Management Plan
BMLFUW	Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Federal Ministry for Agriculture, Forestry, Environment and Water Management
BMUJF	Bundesministerium für Umwelt, Jugend und Familie Federal Ministry for Environment, Youth and Family (before 2000, now domain of Environment: BMLFUW)
BMWA	Bundesministerium für Wirtschaft und Arbeit Federal Ministry for Economic Affairs and Labour
BUWAL	Bundesamt für Umwelt, Wald und Landschaft, Bern The Swiss Agency for the Environment, Forests and Landscape (SAEFL), Bern
COP	Conference of the Parties
CORINAIR	Core Inventory Air
CORINE	Coordination d'information Environmentale
CRF	Common Reporting Format
DKDB	Dampfkesseldatenbank Austrian annual steam boiler inventory
DOC	Degradable Organic Carbon
EC	European Community
EEA	European Environment Agency
EFTA	European Free Trade Association
EIONET	European Environment Information and Observation NETwork
EMEP	Cooperative Programme for Monitoring and Evaluation of the Long-range Transmission of Air Pollutants in Europe
EN	European Norm
EPER	European Pollutant Emission Register
ETC/AE	European Topic Centre on Air Emissions
EU	European Union
ERT	Expert Review Team (in context of the UNFCCC review process)
FAO	Food and Agricultural Organisation of the United Nations
GHG	Greenhouse Gas
GLOBEMI	Globale Modellbildung für Emissions- und Verbrauchsszenarien im Verkehrssektor (Global Modelling for Emission- and Fuel consumption Scenarios of the Transport Sector) see [HAUSBERGER, 1998]
GPG	Good Practice Guidance [IPCC GPG, 2000]
GWP	Global Warming Potential
IPCC	Intergovernmental Panel on Climate Change
IEA	International Energy Agency
ISO	International Standards Organisation
LTO	Landing/Take-Off cycle
LUCF	Land Use Change and Forestry – IPCC-CRF Category 5
LULUCF	Land Use and Land Use Change and Forestry

NAPFUE	Nomenclature for Air Pollution Fuels
NFI	National Forest Inventory
NFR	Nomenclature for Reporting (Format of Reporting under the UNECE/CLRTAP Convention)
NISA	National Inventory System Austria
OECD	Organisation for Economic Co-operation and Development
OLI	Österreichische Luftschadstoff Inventur Austrian Air Emission Inventory
OMV	Österreichische Mineralölverwaltung Austrian Mineraloil Company
PHARE	Phare is the acronym of the Programme's original name: 'Poland and Hungary: Action for the Restructuring of the Economy'. It covers now 14 partner countries: Albania, Bosnia and Herzegovina, Bulgaria, Croatia, the Czech Republic, Estonia, the Former Yugoslav Republic of Macedonia (FYROM), Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia. (However, Croatia was suspended from the Phare Programme in July 1995.)
QA/QC	Quality Assurance/ Quality Control
QMS	Quality Management System
RWA	Raiffeisen Ware Austria (see www.rwa.at)
SNAP	Selected Nomenclature on Air Pollutants
UMWELTBUN DESAMT	"Austria's Federal Environment Agency"
UNECE / CLRTAP	United Nations Economic Commission for Europe, Convention on Long-range Transboundary Air Pollution
UNFCCC	United Nations Framework Convention on Climate Change

Notation Keys

according to UNFCCC guidelines on reporting and review [FCCC/CP/2002/8]

"NO" (not occurring)	for activities or processes in a particular source or sink category that do not occur within a country;
"NE" (not estimated)	for existing emissions by sources and removals by sinks of greenhouse gases which have not been estimated. Where "NE" is used in an inventory for emissions or removals of CO_2 , CH_4 , N_2O , HFCs, PFCs, or SF_6 , the Party should indicate in both the NIR and the CRF completeness table why emissions or removals have not been estimated
"NA" (not applicable)	for activities in a given source/sink category that do not result in emissions or removals of a specific gas. If categories in the CRF for which "NA" is applicable are shaded, they do not need to be filled in;
"IE" (included	for emissions by sources and removals by sinks of greenhouse gases estimated but included elsewhere in the inventory instead of the expected source/sink category.
elsewhere)	Where "IE" is used in an inventory, the Annex I Party should indicate, using the CRF completeness table, where in the inventory the emissions or removals from the displaced source/sink category have been included and the Annex I Party should explain such a deviation from the expected category;
"C" (confidential)	for emissions by sources and removals by sinks of greenhouse gases which could lead to the disclosure of confidential information, given the provisions of paragraph 27 of above];

Chemical Symbols

Symbol	Name			
Greenhouse gases	3			
CH ₄	Methane			
CO ₂	Carbon Dioxide			
N ₂ O	Nitrous Oxide			
HFCs	Hydroflurocarbons			
PFCs	Perfluorocarbons			
SF ₆	Sulphur hexafluoride			
Further chemical compounds				
CO	Carbon Monoxide			
Cd	Cadmium			
NH ₃	Ammonia			
Hg	Mercury			
NO_X	Nitrogen Oxides (NO plus NO ₂)			
NO ₂	Nitrogen Dioxide			
NMVOC	Non-Methane Volatile Organic Compounds			
PAH	Polycyclic Aromatic Hydrocarbons			
Pb	Lead			
POP	Persistent Organic Pollutants			
SO ₂	Sulfur Dioxide			
SO _X	Sulfur Oxides			

Units and Metric Symbols

UNIT	Name	Unit for
g	gram	mass
t	ton	mass
W	watt	power
J	joule	calorific value
m	meter	length
Mass Unit Conversion		
1g		
1kg	= 1 000g	
1t	= 1 000kg	= 1Mg
1kt	= 1 000t	= 1Gg
1Mt	= 1 Mio t	= 1Tg

Metric Symbol	Prefix	Factor
Р	peta	10 ¹⁵
Т	tera	10 ¹²
G	giga	10 ⁹
М	mega	10 ⁶
k	kilo	10 ³
h	hecto	10 ²
da	deca	10 ¹
d	deci	10 ⁻¹
С	centi	10 ⁻²
m	milli	10 ⁻³
μ	micro	10 ⁻⁶
n	nano	10 ⁻⁹

REFERENCES

- ABFALLWIRTSCHAFT (2003): Artikel "Situation der Monoverbrenner, E.H.Reil, Fernwärme Wien" aus "Abfallwirtschaft und Klimaschutz, Umweltbundesamt, Oktober 2003, Wien"
- AMLINGER et al.: Stand der Technik der Kompostierung Vorläufiger Endbericht 2004;
- ANGERER, T.: Stand der Mechanisch-Biologischen Restabfallbehandlung vor der Deponierung (MBRVD) in Österreich - November 1997 - MUL Leoben
- ANGERER, T.; FRÖHLICH, M. (2002): "Thermisch Regenerative Oxidation als Verfahren der Abluftreinigung bei mechanisch-biologischen Anlagen zur Behandlung von Abfällen". Schriftenreihe des BMLFUW; Study is not published but can be made available to the ERT upon request.
- BARBER, M.A.; (1996): (Alcan International Limited) Alcans's P-FKW Emission Reduction Program. A Case Study, Lecture at the U.S. EPA Workshop on P-FKW's, Washington DC, May 8th-9th 1996.
- BARNERT (1998): Österreichisches Lackinstitut: Möglichkeiten und Grenzen umweltverträglicher Beschichtung (Lacke, Klebstoffe, Bautenschutzmittel, Holzschutzmittel), Wien.
- BAUMELER, A.; BRUNNER, H.P.; FEHRINGER, R.; SCHACHERMAYER, E. (1998): Reduktion von Treibhausgasen durch Optimierung der Abfallwirtschaft. Schriftenreihe der Energieforschungsgemeinschaft im Verband der E-Werke Österreichs.
- BAUMELER, BRUNNER, FEHRINGER; KISLIAKOVA, SCHACHMAYER: Reduktion von Treibhausgasen durch Optimierung der Abfallwirtschaft (CH4). Schriftenreihe der Energieforschungsgemeinschaft im Verband der E-Werke Österreichs; Wien 1998
- BFW (2004a): Österreichische Waldinventur 2000/02. CD-Rom, Bundesamt und Forschungszentrum für Wald.
- BFW (2004b): Österreichische Waldinventur 2000/02 Hauptergebnisse. Praxis Information Nr. 3, BFW, Wien
- BITTERMANN, W.; GERHOLD, S. (1995): Wirtschaftliche Aspekte und Holzbilanz. In: Östereichisches Statistisches Zentralamt, Forstliche Bundesversuchsanstalt (eds.): Ökobilanz Wald. Statistik Austria, Wien, 99-110.
- BMLF (1964-1998): Österreichische Waldberichte; Jahresberichte über die Forstwirtschaft.
 Edited annually by the Federal Ministry for Agriculture, Forestry, Environment and Water Management, Wien.
- BMLFUW (2002): Gewässerschutzbericht 2002 gemäß § 33e Wasserrechtsgesetz BGBI.
 Nr. 215/1959 in der Fassung BGBI. I Nr. 156/2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2002
- BMLFUW (2003): Grüner Bericht 2002. Bericht über die Lage der österreichischen Landwirtschaft 2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2003.
- BMLFUW (2004): Grüner Bericht 2004. Bericht über die Situation der österreichischen Land- und Forstwirtschaft im Jahr 2003. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2004

- BMLFUW (2004): Abschätzung der Auswirkungen des Tanktourismus auf den Treibstoffverbrauch und die Entwicklung der CO₂-Emissionen in Österreich. November 2004, Wien.
- BMUJF (1994) CH₄-Emissionen in Österreich, Reihe Dokumentation, Band 6. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BMUJF (1994): N₂O-Emissionen in Österreich. Endbericht zum Forschungsauftrag des BMUJF GZ 01 2943/2-I/7/94 vom 18.Mai 1994. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BMUJF–BAWP (1998): Bundes-Abfallwirtschaftsplan, Bundesabfallbericht 1998. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BMWA–EB (1990): Energiebericht der Österreichischen Bundesregierung. Bundesministerium für wirtschaftliche Angelegenheiten, Wien.
- BMWA–EB (1996): Energiebericht der Österreichischen Bundesregierung. Bundesministerium für wirtschaftliche Angelegenheiten, Wien.
- BOOS, R., F.NEUBACHER, B. REITER, H. SCHINDLBAUER, F. TWRDIK (1995)
 Zusammensetzung und Behandlung von Altölen in Österreich. UBA-Monographien Bd.54.
 Wien.
- BUNDESABFALLWIRTSCHAFTSPLAN (BAWP): Bundesabfallbericht 1995. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BUNDESABFALLWIRTSCHAFTSPLAN (BAWP): Bundesabfallbericht 2001, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2001
- BUWAL (1995): Emissionsfaktoren für stationäre Quellen. Bundesamt für Umwelt, Wald und Landschaft, Bern.
- CHARLES, D.; JONES, B.M.R.; SALWAY, A.G.; EGGLESTON, H.S.; MILNE, R. (1998): Treatment of Uncertainties for National Estimates of Greenhouse Gas Emissions, AEA Technology: Culham, UK.; AEAT-2688-1.
- DOEDENS, H.; CUHLS, C.; MÖNKEBERG, F.; LEVSEN, K.; KRUPPA, J.; SÄNGER, U.; KOCK, H. (1999): Bilanzierung von Umweltchemikalien bei der biologischen Vorbehandlung von Restabfällen, Phase 2: Emissionen, Schadstoffbilanzen und Abluftbehandlung. BMB+F Verbundvorhaben: Mechanisch-biologische Vorbehandlung von zu deponierenden Abfällen.
- DÖHLER, H., DÄMMGEN, U., BERG, W., BERGSCHMIDT, A., BRUNSCH, R., EURICH-MENDEN, B., LÜTTICH, M., OSTERBURG, B. (2001). Anpassung der deutschen Methodik zur rechnerischen Emissionsermittlung an internationale Richtlinien und Prognose der Ammoniak-Emissionen der deutschen Landwirtschaft und Szenarien zu deren Minderung bis zum Jahre 2010. Final Report for Bundesministerium für Verbraucherschutz, Ernährung und Landwirtschaft and Umweltbundesamt.
- EIDGENÖSSISCHE FORSCHUNGSANSTALT FÜR AGRARÖKOLOGIE UND LANDBAU ZÜRICH-RECKENHOLZ, INSTITUT FÜR UMWELTSCHUTZ UND LANDWIRTSCHAFT LIEBEFELD (eds.) (1997). Ammoniak-Emissionen in der Schweiz: Ausmass und technische Beurteilung des Reduktionspotentials. Schriftenreihe FAL 26. Eidgenössische Forschungsanstalt für Agrarökologie und Landbau, Zürich.
- ELECTRONIC DATA HANDBOOK (2001), Bundesanstalt für Agrarwirtschaft (Federal Institute of Agricultural Economics).
 http://www.awi.bmlf.gv.at/docs/3.offer/statistic/dhb/dhbunten.htm.
- EMEP/CORINAIR Guidebook (1999): Atmospheric Emission Inventory Guidebook, Second

- Edition, Prepared by the EMEP Task Force on Emission Inventories, Edited by Stephen Richardson Task Force Secretary.
- FAO AGR. STATISTICAL SYSTEM, (2001): FAO Agricultural Statistical System. http://apps.fao.org/page/-collections?-subset-=agriculture.
- FBVA (1992): Österreichische Waldbodenzustandsinventur. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien, Vol. 168/I, Vol. 168/II, Federal Forest Research Centre, Wien.
- FBVA (1997): Waldinventur 1992/96. CD-Rom, Federal Forest Research Centre, Wien.
- FELLNER, J.; SCHÖNGRUNDNER, P.; BRUNNER, P.H.: Methanemissionen aus Deponien, Bewertung von Messdaten; Wien 2003; Study will be published in summer 2004;
- FISTER G., SCHÖNSTEIN R., SCHÖRNER G. (1999): Studie über die Luftschadstoffinventur für die SNAP Kategorie 06 "Lösungsmittel" sowie Ergänzung zur Studie über die Luftschadstoffinventur. Forschungsinstitut für Energie- und Umweltplanung, Wien.
- FISTER G., SCHÖNSTEIN R., SCHÖRNER G. (1999): Studie über die Luftschadstoffinventur für die SNAP Kategorie 06 "Lösungsmittel" – Ergänzung Lösungsmittelbilanz 1998. Forschungsinstitut für Energie- und Umweltplanung, Wien.
- FREIBAUER, A. & KALTSCHMITT, M. (2001). Biogenic greenhouse gas emissions from agriculture in Europe. European Summary Report (Project Report Task 3) of the EU-Concerted Action FAIR3-CT96-1877 "Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture".
- GEWÄSSERSCHUTZBERICHT (1993-2003): Gewässerschutzbericht gemäß §33e Wasserrechtsgesetz BGBI. Nr. 215/1959 i.d.F. BGBI. I Nr. 156/2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.
- GIBBS, M. (ICF Inc.); JACOBS, C. (US EPA); (1996): Reducing P-FKW Emissions from Primary Aluminium Production in the USA, from: Light Metal Age, February 1996.
- Good Practice Guidance for CLRTAP Emission Inventories Draft chapter for the UNECE Corinair Guidebook on Emissions inventories, Tino Pulles, Jon van Aardenne, European Topic centre on air and climate change (ETC/ACC), November 2001.
- GÖTZ, B. (1998): Stickstoffbilanz der österreichischen Landwirtschaft nach den Vorgaben der OECD. Aktualisierte und erweiterte Fassung. Umweltbundesamt, Wien, UBA BE-087a. July 1998.
- GRECH H., ROLLAND C.: Stand der Abfallbehandlung in Österreich im Hinblick auf das Jahr 2004. Wien, Jänner 2001
- GRUBER & STEINWIDDER, (1996): Einfluß der Fütterung auf die Stickstoff- und Phosphorausscheidung landwirtschaftlicher Nutztiere – Modellkalkulationen auf Basis einer Literaturübersicht in: Die Bodenkultur – Austrian Journal of Agricultural Research, 47. Band / Heft 4 / Dezember 1996 / ISBN 0006-5471, WUV-Universitätsverlag, Wien.
- HACKL, A.; MAUSCHITZ, G. (1995/1997/2001/2004): Emissionen der österreichischen Zementindustrie.
- HACKL, A.; MAUSCHITZ, G. (1999): Beiträge zum Klimaschutz durch nachhaltige Restmüllbehandlung. Studie im Auftrag des Bundesministeriums für Umwelt, Jugend und Familie, Weitra.
- HACKL, A.; MAUSCHITZ, G. (1999): Beiträge zum Klimaschutz durch nachhaltige Restmüllbehandlung. Studie im Auftrag des Bundesministeriums für Umwelt, Jugend und

Familie, Weitra.

- HACKL, MAUSCHITZ (1994): Methangas und Kohlendioxid aus der Bereitstellung in Österreich genutzter Energieträger, TU-Wien, Wien, 1996.
- HANDLER, F. (2003): Abschätzung des Dieselverbrauches in der österreichischen Landwirtschaft; Bundesanstalt für Landtechnik; BLT-Wieselburg 2003
- HASENAUER, H.; NEMANI, R.R.; SCHADAUER, K.; RUNNING, S.W. (1999a): Forest growth response to changing climate between 1961 and 1990. Forest Ecology and Management 122, 209-219.
- HASENAUER, H.; NEMANI, R.R.; SCHADAUER, K.; RUNNING, S.W. (1999b): Climate variations and tree growth between 1961 and 1995 in Austria. In: KARJALAINEN, T.; SPIECKER, H.; LAROUSSINI, O. (eds.): Causes and consequences of accelerating tree growth in Europe. European Forest Institute Joensuu, Proceedings No. 27, 75-86.
- HAUSBERGER (2004): Straßenverkehrsemissionen und Emissionen sonstiger mobiler Quellen Österreichs – gemäß CORINAIR-Methodik – für die Jahre 1990 bis 2002. FVT – Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik mbH. Erstellt im Auftrag des Umweltbundesamtes GmbH. Graz 2004.
- HAUSBERGER, S. (1998): GLOBEMI Globale Modellbildung für Emissions- und Verbrauchsszenarien im Verkehrssektor; Institute for Internal Combustion and Thermodynamics. University of Technology Graz; Volume 71; Graz.
- HIEBLER/GAMSJÄGER/GOD: Vergleich von metallurgisch und thermisch bedingten CO₂ Emissionen. Montanuniversität Leoben.
- IEA JQ (2003): IEA/EUROSTAT Joint Questionnaire submission 2003. Statistik Austria, Vienna.
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU
 (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2002): Gegenüberstellung
 und Abgleich der Daten von Top-down zu Bottom-up für Lösungsmittel im Jahr 2000.
 Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und
 Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Juni 2002
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU
 (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2002): Verbesserung von
 Emissionsdaten (Inventur und Projektion bis 2010 für den Bereich Lösungsmittel in
 Österreich. Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und
 Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Dezember 2002
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2004): Studie zur Anpassung der Zeitreihe der Lösungsmittelemissionen der österreichischen Luftschadstoffinventur (OLI) 1980 2002. Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Februar 2004
- IPCC Guidelines (1997): Revised 1996 IPCC Guidelines for Natinal Greenhouse Gas Inventories, Vol. 1: Reporting Instructions, Vol. 2: Workbook, Vol. 3: Reference Manual. Intergovernmental Panel on Climate Change, Edited by J.T. Houghton, L.G. Meira Filho, B. Lim, K. Tréanton, I. Mamaty, Y. Bonduki, D.J. Griggs and B.A. Callander, Genf.
- IPCC-GPG (2000): Report on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC Good Practice Report). Edited by J. Penman, D. Kruger, I. Galbally, T. Hiraishi, B. Nyenzi, S. Emmanuel, L. Buendia, R. Hoppaus, T.

- Martinsen, J. Meijer, K. Miwa and K. Tanabe, Japan.
- IPCC-GPG (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry. Edited by J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner.
- JONAS, M. & NIELSEN, S. (2002): The Austrian Carbon Database (ACDb) Study. International Institute for Applied Systems Research Laxenburg, Report IR-01-064, 133 pp. http://www.iiasa.ac.at/Research/FOR/acdb.html#top
- KALIVODA, M. et al (2002): Air Traffic Emission Calculation for Austria 1990-2000, study commissioned by UMWELTBUNDESAMT⁴³, Vienna.
- KIRNER & SCHNEEBERGER (1999): Strukturanalyse der Betriebe mit der ÖPUL-Maßnahme "Verzicht auf bestimmte ertragssteigernde Betriebsmittel (Betrieb)". Der Förderungsdienst 47(6).
- KOLLMANN F. 1982: Technologie des Holzes und der Holzwerkstoffe. 1. Band, 2. Aufl., Springer-Verlag, Berlin, Heidelberg, New York.
- KONRAD, S. (1995): Die Rinder-, Schweine- und Legehennenhaltung in Österreich aus ethologischer Sicht, WUV Universitätsverlag, Wien.
- KÖRNER, C.; SCHILCHER, B.; PELAEZ-RIEDL, S. (1993): Vegetation und Treibhausproblematik: Eine Beurteilung der Situation in Österreich unter besonderer Berücksichtigung der Kohlenstoff-Bilanz. In: ÖAW (eds.): Anthropogene Klimaänderungen: Mögliche Auswirkungen auf Österreich – mögliche Maßnahmen in Österreich. Dokumentation, Austrian Academy of Sciences, Wien, 6.1-6.46.
- LAHL U., ZESCHMAR-LAHL B., ANGERER T.: Entwicklungspotentiale der mechanischbiologischen Abfallbehandlung. Eine ökologische Analyse. Wien 2000.
- LAHL U., ZESCHMAR-LAHL B., SCHEIDL K., et.al.: Abluftemissionen aus der mechanischbiologischen Abfallbehandlung in Österreich. Klagenfurt, 1998.
- LEISEWITZ (1996): Aktuelle und künftige Emissionen treibhauswirksamer flourierter Verbindungen in Deutschland. Dr. Schwarz und Dr. Leisewitz, UBA Berlin.
- LOHMANN, U. (1987): Holzhandbuch. 3. Aufl., DRW-Verlag, Leinfelden-Echterdingen.
- LÖHR, L. (1990): Faustzahlen für die Landwirtschaft.
- MEET (1999): MEET Methodology for calculating transport emissions and energy consumption. European Commission, DG VII, Belgium.
- MINONZIO, G., A. GRUB & J. FUHRER (1998). Methan Emissionen der schweizerischen Landwirtschaft. Schriftenreihe Umwelt, 298. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.
- ÖKOINSTITUT (2002): Öko Institut e.V., Institut für angewandte Ökologie, April 2002, Freiburg, Darmstadt, Berlin.ORTHOFER, R., KNOFLACHER, M., ZÜGER, J. (1995): № Emissionen in Österreich.
- OZONBERICHT (1997): Ozonbericht, Bundesministerium für Umwelt. http://www.bmu.gv.at/u luft/bodennah ozon/ozonbericht 1997/ozon91.htm.
- PERZ K. (2001): Materialien zum Bundesabfallwirtschaftsplan 2001, Umweltbundesamt Monographie 138, Klagenfurt 2001.

⁴³ Study has not been published but can be made available upon request.

- PHILIPPITSCH, R., GRATH, J., SCHIMON, W. GMEINER, C. DEUTSCH, K. GRUBER, D. TOMEK, H. BONANI, M. LASSNIG M. (2001): Wassergüte in Österreich. Jahresbericht 2000 ("Austrian water protection report"). Erhebung der Wassergüte gemäß Hydrographiegesetz (BGBL.-Nr. 252/90, i.d.g.F.). Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft in Zusammenarbeit mit der Umweltbundesamt GmbH, Wien.
- PISCHINGER, R. (2000): Emissionen des Off-Road-Verkehrs im Bundesgebiet Österreich für die Bezugsjahre 1990 bis 1999. Institut für Verbrennungskraftmaschinen und Thermodynamik TU Graz, Graz
- RYPDAL, K. (1999): Evaluation of uncertainty in the Norwegian emission inventory, Norwegian Pollution Control Authority, Oslo, Norway, Report 99:01.
- SAEFL 2004: National Inventory Report 2004. Submission to the UNFCCC. Swiss Agency for the Environment, Forests and Landscape.
- SCHARF, S., M. SCHNEIDER and G. ZETHNER (1997). Zur Situation der Verwertung und Entsorgung des kommunalen Klärschlamms in Österreich. UBA Monographien Band 95, Umweltbundesamt, Wien.
- SCHECHTNER, (1991): Wirtschaftsdünger Richtige Gewinnung und Anwendung, Sonderausgabe des Förderungsdienst 1991, BMLF, Wien.
- SCHIELER, K. & HAUK, E. (2001): Instruktion für die Feldarbeit Österreichische Waldinventur 2000/2002, Fassung 2001. Federal Forest Research Centre, Wien.
- SCHIELER, K.; BÜCHSENMEISTER, R.; SCHADAUER, K. (1995): Österreichische Forstinventur Ergebnisse 1986/90. Bericht 92, Federal Forest Research Centre, Wien.
- SCHMIDT A., VITOVEC W., PUXBAUM H., KNIERIDER R. (1998): TU Wien, Gesellschaft Österreichischer Chemiker: Die ökologischen Auswirkungen der Lösungsmittelverordnung 1991 und 1995. September 1998, Wien.
- SCHÖRNER, G. & SCHÖNSTEIN, R. (1999): Studie über die Luftschadstoffinventur für die SNAP Kategorie 06 "Lösungsmittel" sowie Ergänzung zur Studie über die Luftschadstoffinventur43, Wien.
- STANZEL, G., JUNGMEIER, J., SPITZER, J. (1995): Emissionsfaktoren und Energetische Parameter für die Erstellung von Energie- und Emissionsbilanzen im Bereich Raumwärmeversorgung, Joanneum Research Graz.
- STAT. ZENTRALAMT (1991): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1991, Beiträge zur Österreichischen Statistik Heft 1.062, Österreichisches Statistisches Zentralamt, Wien.
- STAT. ZENTRALAMT (1993): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1993, Beiträge zur Österreichischen Statistik Heft 1.137. Österreichisches Statistisches Zentralamt, Wien.
- STAT. ZENTRALAMT (1995): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1995, Beiträge zur Österreichischen Statistik Heft 1.205. Österreichisches Statistisches Zentralamt, Wien.
- STATISTIK AUSTRIA (2002): National livestock counting December 2002 published in [BMLFUW 2003]

- STATISTIK AUSTRIA⁴⁴: Statistisches Jahrbuch Österreich 1992-2002; Industrie und Gewerbestatistik (1. Teil) 1990-1995; Konjunkturerhebung im Produzierenden Bereich (Band 1, 2, 3) 1997-2001; Der Außenhandel Österreichs 1. bis 4. Vierteljahr 1980 2001, Spezialhandel nach Waren und Ländern; Wien.
- STEINLECHNER, E.; BERGHOLD, H.; CATE, F.M.; JUNGMEIER, G.; SPITZER, J.; WUTZL, C. (1994): Möglichkeiten zur Vermeidung und Nutzung anthropogener Methanemissionen. Report des Joanneum Research: Institut für Umweltgeologie und Ökosystemforschung.
- TABERAUX, A. (1996): Relationship between Operating Parameters and Emissions, Lecture at the U.S. EPA Workshop on P-FKW's, Washington DC, May 8th-9th 1996.
- UMWELTBUNDESAMT (2001): Emissionsfaktoren als Grundlage für die Österreichische Luftschadstoff-Inventur Stand 1999, IB-614, Wien.
- UMWELTBUNDESAMT (2004): Austria's Informative Inventory Report 2004, Submission under the UNECE Convention on Long-range Transboundary Air Pollution, BE-257, Wien.
- UMWELTBUNDESAMT (2004): Emissionsfaktoren als Grundlage für die Österreichische Luftschadstoff-Inventur Stand 2003, BE-254, Wien.
- WEISS, P.; SCHIELER, K.; SCHADAUER, K.; RADUNSKY, K.; ENGLISCH, M. (2000): Die Kohlenstoffbilanz des Österreichischen Waldes und Betrachtungen zum Kyoto-Protokoll. Monographie 106, Umweltbundesamt, Wien.
- WINDSPERGER, A., TURI, K. (1997): Emissionserhebung der Industrie für 1993 und 1994. Technische Universität Wien, Forschungsinstitut für Chemie und Umwelt, Wien.
- WINIWARTER, W. & ORTHOFER, R. (2000): Unsicherheit der Emissionsinventur für Treibhausgase in Österreich.
- WINIWARTER, W.; RYPDAL, K.. (2001): Assessing the Uncertainty Associated with National Greenhouse Gas Emission Inventories: A Case Study for Austria, Accepted for publication in Atmospheric Environment.
- WINKLER, N. (1997): Country report for Austria. In: Study on European Forestry Information and Communication System Reports - Reports on Forest Inventory and Survey Systems, Volume 1, Office for Official Publications of the European Communities, Luxembourg, 5-74.

STATISTIK AUSTRIA (or Statistics Austria): collects national information on the demographic, social and economical structure and development of Austria and provides information and expert services, in particular statistical analyses, as well as statistical data partly free-of-charge (e.g. published in the "The Statistical Yearbook" = a comprehensive reference book on official statistics or in separate technical papers.) Homepage: http://www.statistik.at/

DATA SOURCES BY SECTOR

All Sectors

- EMEP/CORINAIR Guidebook (1999): Atmospheric Emission Inventory Guidebook, Second Edition, Prepared by the EMEP Task Force on Emission Inventories. [also referenced as "CORINAIR guidebook" in the NIR]
- IPCC-GPG (2000): Report on Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories (IPCC Good Practice Report). Japan. [also referenced as "IPCC GPG" in the NIR]
- IPCC Guidelines (1997): Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories, Vol. 3: Reference Manual. Intergovernmental Panel on Climate Change, Genf. [also referenced as "IPCC guidelines" in the NIR]

Energy

- ABFALLWIRTSCHAFT (2003): Artikel "Situation der Monoverbrenner, E.H.Reil, Fernwärme Wien" aus "Abfallwirtschaft und Klimaschutz, Umweltbundesamt, Oktober 2003, Wien"
- BMUJF (1994) CH₄-Emissionen in Österreich, Reihe Dokumentation, Band 6. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BMUJF (1994): N₂O-Emissionen in Österreich. Endbericht zum Forschungsauftrag des BMUJF GZ 01 2943/2-I/7/94 vom 18.Mai 1994. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BMWA–EB (1990): Energiebericht der Österreichischen Bundesregierung 1990. Bundesministerium für wirtschaftliche Angelegenheiten, Wien.
- BMWA–EB (1996): Energiebericht der Österreichischen Bundesregierung 1996. Bundesministerium für wirtschaftliche Angelegenheiten, Wien.
- BMWA–EB (2003): Energiebericht der Österreichischen Bundesregierung 2003. Bundesministerium für wirtschaftliche Angelegenheiten, Wien.
- HACKL, MAUSCHITZ (1994): Methangas und Kohlendioxid aus der Bereitstellung in Österreich genutzter Energieträger, TU-Wien, Wien, 1996.
- IEA JQ (2003): IEA/EUROSTAT Joint Questionnaire Submission 2003. Statistik Austria, Vienna.
- ÖKOINSTITUT (2002): Öko Institut e.V., Institut für angewandte Ökologie, April 2002, Freiburg, Darmstadt, Berlin.
- STANZEL, G., JUNGMEIER, J., SPITZER, J. (1995): Emissionsfaktoren und Energetische Parameter für die Erstellung von Energie- und Emissionsbilanzen im Bereich Raumwärmeversorgung, Joanneum Research Graz.
- UMWELTBUNDESAMT (2001): Emissionsfaktoren als Grundlage für die Österreichische Luftschadstoff-Inventur Stand 1999, IB-614, Wien.
- UMWELTBUNDESAMT (2004): Emissionsfaktoren als Grundlage für die Österreichische Luftschadstoff-Inventur Stand 2003, BE-254, Wien.

Transport

- BMLFUW (2004): Abschätzung der Auswirkungen des Tanktourismus auf den Treibstoffverbrauch und die Entwicklung der CO₂-Emissionen in Österreich. November 2004, Wien.
- HANDLER, F. (2003): Abschätzung des Dieselverbrauches in der österreichischen Landwirtschaft; Bundesanstalt für Landtechnik; BLT-Wieselburg 2003
- HAUSBERGER, S. (1998): GLOBEMI Globale Modellbildung für Emissions- und Verbrauchsszenarien im Verkehrssektor; Institute for Internal Combustion and Thermodynamics. University of Technology Graz; Volume 71; Graz.
- HAUSBERGER (2004): Straßenverkehrsemissionen und Emissionen sonstiger mobiler Quellen Österreichs – gemäß CORINAIR-Methodik – für die Jahre 1990 bis 2002. FVT – Forschungsgesellschaft für Verbrennungskraftmaschinen und Thermodynamik mbH. Erstellt im Auftrag des Umweltbundesamtes GmbH. Graz 2004.
- KALIVODA, M. et al (2002): Air Traffic Emission Calculation for Austria 1990-2000, study commissioned by UBAVIE43, Vienna.
- MEET (1999): MEET Methodology for calculating transport emissions and energy consumption. European Commission, DG VII, Belgium.
- PISCHINGER, R. (2000): Emissionen des Off-Road-Verkehrs im Bundesgebiet Österreich für die Bezugsjahre 1990 bis 1999. Institut für Verbrennungskraftmaschinen und Thermodynamik TU Graz, Graz.

Industry

Activity Data

- STATISTIK AUSTRIA: Statistisches Jahrbuch Österreich 1992-2005; Industrie und Gewerbestatistik (1. Teil) 1990-1995; Konjunkturerhebung im Produzierenden Bereich (Band 3) 1997-2002; Statistik Austria, Wien.
- HIEBLER/GAMSJÄGER/GOD: Vergleich von metallurgisch und thermisch bedingten CO2 Emissionen. Montanuniversität Leoben.

Emission Data

Cement Production:

• HACKL, A.; MAUSCHITZ, G. (1995/1997/2001/2004): Emissionen aus Anlagen der österreichischen Zementindustrie.

SF₆ used in Aluminum and Magnesium Foundries:

• LEISEWITZ (1996): Aktuelle und künftige Emissionen treibhauswirksamer flourierter Verbindungen in Deutschland. Dr. Schwarz und Dr. Leisewitz, UBA Berlin.

Emission Factors

Electric Steel Production:

WINDSPERGER, A., TURI, K. (1997): Emissionserhebung der Industrie für 1993 und 1994.
 Technische Universität Wien, Forschungsinstitut für Chemie und Umwelt, Wien.

Aluminium Production:

 BARBER, M.A.; (1996): (Alcan International Limited) Alcans's P-FKW Emission Reduction Program. A Case Study, Lecture at the U.S. EPA Workshop on P-FKW's, Washington DC, May 8th-9th 1996.

- GIBBS, M. (ICF Inc.); JACOBS, C. (US EPA); (1996): Reducing P-FKW Emissions from Primary Aluminium Production in the USA, from: Light Metal Age, February 1996.
- TABERAUX, A.; (1996): Relationship between Operating Parameters and Emissions, Lecture at the U.S. EPA Workshop on P-FKW's, Washington DC, May 8th-9th 1996.

Solvent and Other Product Use

- BARNERT (1998): Österreichisches Lackinstitut: Möglichkeiten und Grenzen umweltverträglicher Beschichtung (Lacke, Klebstoffe, Bautenschutzmittel, Holzschutzmittel), Wien.
- FISTER G., SCHÖNSTEIN R., SCHÖRNER G. (1999): Studie über die Luftschadstoffinventur für die SNAP Kategorie 06 "Lösungsmittel" sowie Ergänzung zur Studie über die Luftschadstoffinventur. Forschungsinstitut für Energie- und Umweltplanung, Wien.
- FISTER G., SCHÖNSTEIN R., SCHÖRNER G. (1999): Studie über die Luftschadstoffinventur für die SNAP Kategorie 06 "Lösungsmittel" – Ergänzung Lösungsmittelbilanz 1998. Forschungsinstitut für Energie- und Umweltplanung, Wien.
- Good Practice Guidance for CLRTAP Emission Inventories Draft chapter for the UNECE Corinair Guidebook on Emissions inventories, Tino Pulles, Jon van Aardenne, European Topic centre on air and climate change (ETC/ACC), November 2001.
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2002): Gegenüberstellung und Abgleich der Daten von Top-down zu Bottom-up für Lösungsmittel im Jahr 2000. Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Juni 2002.
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2002): Verbesserung von Emissionsdaten (Inventur und Projektion bis 2010 für den Bereich Lösungsmittel in Österreich. Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Dezember 2002.
- IIÖ (WINDSPERGER, S. STEINLECHNER, H. SCHMIDT-STEJSKAL) & FIEU (S.DRAXLER, G.FISTER, R. SCHÖNSTEIN, G.SCHÖRNER) (2004): Studie zur Anpassung der Zeitreihe der Lösungsmittelemissionen der österreichischen Luftschadstoffinventur (OLI) 1980 2002. Institut für Industrielle Ökologie (IIÖ) und Forschungsinstitut für Energie und Umweltplanung, Wirtschaft- und Marktanalysen GmbH (FIEU), Februar 2004.
- SCHMIDT A., VITOVEC W., PUXBAUM H., KNIERIDER R. (1998): TU Wien, Gesellschaft Österreichischer Chemiker: Die ökologischen Auswirkungen der Lösungsmittelverordnung 1991 und 1995. September 1998, Wien.
- STATISTIK AUSTRIA, Wien:
 - Statistisches Jahrbuch Österreich 1992-2002;
 - Industrie und Gewerbestatistik (1. Teil) 1990-1995;
 - Konjunkturerhebung im Produzierenden Bereich (Band 2 bzw. 3) 1997-2001;
 - Der Außenhandel Österreichs 1. bis 4. Vierteljahr 1980 2001, Spezialhandel nach Waren und Ländern;

Agriculture

Emission estimation for 4 A, 4 B and 4 D were carried out by scientific institutes, results were provided as in the following studies:

Gebetsroither E., Strebl F., Orthofer R., (2002): Greenhouse Gas Emissions from Enteric Fermentation in Austria; ARC Seibersdorf research, July 2002

Amon B., Hopfner- Sixt K., Amon T. (2002): Emission Inventory for the Agricultural Sector in Austria - Manure Management, Institute of Agricultural, Environmental and Energy Engineering (BOKU - University of Agriculture, Vienna), July 2002

Strebl F., Gebetsroither E., Orthofer R., (2002): Greenhouse Gas Emissions from Agricultural Soils in Austria; ARC Seibersdorf research, revised version, Nov. 2002

As these studies are not published, a detailed description of the applied methods is given in the NIR. In the following data sources used in the studies mentioned above are summarized.

- BMLFUW (2002): Gewässerschutzbericht 2002 gemäß § 33e Wasserrechtsgesetz BGBI.
 Nr. 215/1959 in der Fassung BGBI. I Nr. 156/2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2002
- BMLFUW (2003): Grüner Bericht 2002. Bericht über die Lage der österreichischen Landwirtschaft 2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2003.
- BMLFUW (2004): Grüner Bericht 2004. Bericht über die Situation der österreichischen Land- und Forstwirtschaft im Jahr 2003. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2004
- ELECTRONIC DATA HANDBOOK (2001), Bundesanstalt für Agrarwirtschaft (Federal Institute of Agricultural Economics). http://www.awi.bmlf.gv.at/docs/3.offer/statistic/dhb/dhbunten.htm.
- FAO AGR. STATISTICAL SYSTEM, (2001): FAO Agricultural Statistical System. http://apps.fao.org/page/-collections?-subset-=agriculture.
- FREIBAUER, A. & KALTSCHMITT, M. (2001). Biogenic greenhouse gas emissions from agriculture in Europe. European Summary Report (Project Report Task 3) of the EU-Concerted Action FAIR3-CT96-1877 "Biogenic Emissions of Greenhouse Gases Caused by Arable and Animal Agriculture".
- GRUBER & STEINWIDDER, (1996): Einfluß der Fütterung auf die Stickstoff- und Phosphorausscheidung landwirtschaftlicher Nutztiere – Modellkalkulationen auf Basis einer Literaturübersicht in: Die Bodenkultur – Austrian Journal of Agricultural Research, 47. Band / Heft 4 / Dezember 1996 / ISBN 0006-5471, WUV-Universitätsverlag, Wien.
- GÖTZ, B. (1998): Stickstoffbilanz der österreichischen Landwirtschaft nach den Vorgaben der OECD. Aktualisierte und erweiterte Fassung. Umweltbundesamt, Wien, UBA BE-087a. July 1998.
- JONAS , M. & NIELSEN, S. (2002): The Austrian Carbon Database (ACDb) Study. International Institute for Applied Systems Research Laxenburg, Report IR-01-064, 133 pp. http://www.iiasa.ac.at/Research/FOR/acdb.html#top
- KIRNER & SCHNEEBERGER, (1999): Strukturanalyse der Betriebe mit der ÖPUL-Maßnahme "Verzicht auf bestimmte ertragssteigernde Betriebsmittel (Betrieb)". Der Förderungsdienst 47(6).

- KONRAD, S. (1995): Die Rinder-, Schweine- und Legehennenhaltung in Österreich aus ethologischer Sicht, WUV Universitätsverlag, Wien.
- LÖHR, L. (1990): Faustzahlen für die Landwirtschaft.
- MINONZIO, G., A. GRUB & J. FUHRER (1998). Methan Emissionen der schweizerischen Landwirtschaft. Schriftenreihe Umwelt, 298. Bundesamt für Umwelt, Wald und Landschaft (BUWAL), Bern.
- OZONBERICHT (1997): Ozonbericht, Bundesministerium für Umwelt. http://www.bmu.gv.at/u_luft/bodennah_ozon/ozonbericht_1997/ozon91.htm.
- PHILIPPITSCH, R., GRATH, J., SCHIMON, W. Gmeiner, C. Deutsch, K. Gruber, D. Tomek, H. Bonani, M. Lassnig M. (2001): Wassergüte in Österreich. Jahresbericht 2000 ("Austrian water protection report"). Erhebung der Wassergüte gemäß Hydrographiegesetz (BGBL-Nr. 252/90, i.d.g.F.). Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft in Zusammenarbeit mit der Umweltbundesamt GmbH, Wien.
- SCHARF, S., M. SCHNEIDER and G. ZETHNER (1997). Zur Situation der Verwertung und Entsorgung des kommunalen Klärschlamms in Österreich. UBA Monographien Band 95, Umweltbundesamt, Wien.
- SCHECHTNER, (1991): Wirtschaftsdünger Richtige Gewinnung und Anwendung, Sonderausgabe des Förderungsdienst 1991, BMLF, Wien.
- SAEFL (2004): National Inventory Report 2004. Submission to the UNFCCC. Swiss Agency for the Environment, Forests and Landscape.
- STAT. ZENTRALAMT (1991): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1991, Beiträge zur Österreichischen Statistik Heft 1.062, Österreichisches Statistisches Zentralamt, Wien.
- STAT. ZENTRALAMT (1993): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1993, Beiträge zur Österreichischen Statistik Heft 1.137. Österreichisches Statistisches Zentralamt, Wien.
- STAT. ZENTRALAMT (1995): Ergebnisse der Landwirtschaftlichen Statistik im Jahre 1995, Beiträge zur Österreichischen Statistik Heft 1.205. Österreichisches Statistisches Zentralamt, Wien.
- STATISTIK AUSTRIA: Statistische Jahrbücher Österreich 1992-2002; Statistik Austria, Wien.
- STATISTIK AUSTRIA (2003): Allgemeine Viehzählung 1. Dezember 2003; Statistik Austria,
 Wien
- STATISTIK AUSTRIA (2002): National livestock counting December 2002 published in [BMLFUW 2003]

LULUCF

- BFW (2004a): Österreichische Waldinventur 2000/02. CD-Rom, Bundesamt und Forschungszentrum für Wald.
- BFW (2004b): Österreichische Waldinventur 2000/02 Hauptergebnisse. Praxis Information Nr. 3, BFW, Wien
- BITTERMANN, W.; GERHOLD, S. (1995): Wirtschaftliche Aspekte und Holzbilanz. In: Östereichisches Statistisches Zentralamt, Forstliche Bundesversuchsanstalt (eds.): Ökobilanz Wald. Statistik Austria, Wien, 99-110.

- BMLF (1964-2003): Österreichische Waldberichte; Jahresberichte über die Forstwirtschaft.
 Edited annually by the Federal Ministry for Agriculture, Forestry, Environment and Water Management, Wien.
- FBVA (1992): Österreichische Waldbodenzustandsinventur. Mitteilungen der Forstlichen Bundesversuchsanstalt Wien, Vol. 168/I, Vol. 168/II, Federal Forest Research Centre, Wien.
- HASENAUER, H.; NEMANI, R.R.; SCHADAUER, K.; RUNNING, S.W. (1999a): Forest growth response to changing climate between 1961 and 1990. Forest Ecology and Management 122, 209-219.
- HASENAUER, H.; NEMANI, R.R.; SCHADAUER, K.; RUNNING, S.W. (1999b): Climate variations and tree growth between 1961 and 1995 in Austria. In: KARJALAINEN, T.;
- IPCC (2003): Good Practice Guidance for Land Use, Land-Use Change and Forestry.
 Edited by J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe and F. Wagner.
- KOLLMANN F. 1982: Technologie des Holzes und der Holzwerkstoffe. 1. Band, 2. Aufl., Springer-Verlag, Berlin, Heidelberg, New York.
- LOHMANN, U. 1987: Holzhandbuch. 3. Aufl., DRW-Verlag, Leinfelden-Echterdingen.
- KÖRNER, C.; SCHILCHER, B.; PELAEZ-RIEDL, S. (1993): Vegetation und Treibhausproblematik: Eine Beurteilung der Situation in Österreich unter besonderer Berücksichtigung der Kohlenstoff-Bilanz. In: ÖAW (eds.): Anthropogene Klimaänderungen: Mögliche Auswirkungen auf Österreich – mögliche Maßnahmen in Österreich. Dokumentation, Austrian Academy of Sciences, Wien, 6.1-6.46.
- SCHIELER, K.; BÜCHSENMEISTER, R.; SCHADAUER, K. (1995): Österreichische Forstinventur Ergebnisse 1986/90. Bericht 92, Federal Forest Research Centre, Wien.
- SCHIELER, K.; HAUK, E. (2001): Instruktion für die Feldarbeit Österreichische Waldinventur 2000/2002, Fassung 2001. Federal Forest Research Centre, Wien.
- SPIECKER, H.; LAROUSSINI, O. (eds.): Causes and consequences of accelerating tree growth in Europe. European Forest Institute Joensuu, Proceedings No. 27, 75-86.
- WEISS, P.; SCHIELER, K.; SCHADAUER, K.; RADUNSKY, K.; ENGLISCH, M. (2000): Die Kohlenstoffbilanz des Österreichischen Waldes und Betrachtungen zum Kyoto- Protokoll. Monographie 106, Federal Environment Agency, Wien.
- WINKLER, N. (1997): Country report for Austria. In: Study on European Forestry Information and Communication System Reports - Reports on Forest Inventory and Survey Systems, Volume 1, Office for Official Publications of the European Communities, Luxembourg, 5-74.

Waste

- AMLINGER et al. (2004): Stand der Technik der Kompostierung Vorläufiger Endbericht 2004, (not yet published).
- AMLINGER (2003): information from Dipl.Ing. Florian Amlinger Compost Consulting & Development, Hochbergstrasse A-2380 Perchtoldsdorf;
- ANGERER, T. (1997): Stand der Mechanisch-Biologischen Restabfallbehandlung vor der Deponierung (MBRVD) in Österreich November 1997 MUL Leoben.
- ANGERER, T.; FRÖHLICH, M. (2002): "Thermisch Regenerative Oxidation als Verfahren der Abluftreinigung bei mechanisch-biologischen Anlagen zur Behandlung von Abfällen". Schriftenreihe des BMLFUW43.

- BAUMELER, BRUNNER, FEHRINGER; KISLIAKOVA, SCHACHMAYER (1998): Reduktion von Treibhausgasen durch Optimierung der Abfallwirtschaft (CH4). Schriftenreihe der Energieforschungsgemeinschaft im Verband der E-Werke Österreichs; Wien 1998
- BOOS, R., F.NEUBACHER, B. REITER, H. SCHINDLBAUER, F. TWRDIK (1995)
 Zusammensetzung und Behandlung von Altölen in Österreich. UBA-Monographien Bd.54.
 Wien.
- BUNDESABFALLWIRTSCHAFTSPLAN (BAWP): Bundesabfallbericht 1995. Bundesministerium für Umwelt, Jugend und Familie, Wien.
- BUNDESABFALLWIRTSCHAFTSPLAN (BAWP): Bundesabfallbericht 2001, Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien 2001
- DOEDENS, H.; CUHLS, C.; MÖNKEBERG, F.; LEVSEN, K.; KRUPPA, J.; SÄNGER, U.; KOCK, H. (1999): Bilanzierung von Umweltchemikalien bei der biologischen Vorbehandlung von Restabfällen, Phase 2: Emissionen, Schadstoffbilanzen und Abluftbehandlung. BMB+F Verbundvorhaben: Mechanisch-biologische Vorbehandlung von zu deponierenden Abfällen.
- DOMENIG (2004): information from Mag. Manfred Domenig, expert for waste management at the Umweltbundesamt Klagenfurt.
- GEWÄSSERSCHUTZBERICHT (1993-2003): Gewässerschutzbericht gemäß §33e Wasserrechtsgesetz BGBI. Nr. 215/1959 i.d.F. BGBI. I Nr. 156/2002. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien.
- GRECH H., ROLLAND C. (2001): Stand der Abfallbehandlung in Österreich im Hinblick auf das Jahr 2004. Wien, Jänner 2001
- HACKL, A.; MAUSCHITZ, G. (1999): Beiträge zum Klimaschutz durch nachhaltige Restmüllbehandlung. Studie im Auftrag des Bundesministeriums für Umwelt, Jugend und Familie, Weitra.
- LAHL U., ZESCHMAR-LAHL B., SCHEIDL K., et.al. (1998): Abluftemissionen aus der mechanisch-biologischen Abfallbehandlung in Österreich. Klagenfurt, 1998.
- LAHL U., ZESCHMAR-LAHL B., ANGERER T. (2000): Entwicklungspotentiale der mechanisch-biologischen Abfallbehandlung. Eine ökologische Analyse. Wien 2000.
- PERZ K. (2001): Materialien zum Bundesabfallwirtschaftsplan 2001, Umweltbundesamt Monographie 138, Klagenfurt 2001.
- ROLLAND, CH.; SCHEIBENGRAF, M. (2003): Biologisch abbaubarer Kohlenstoff im Restmüll. Umweltbundesamt BE 236, Wien 2003
- ROLLAND, CH.; OLIVA, J. (2004): Erfassung von Deponiegas Statusbericht von österreichischen Deponien. Umweltbundesamt BE 238, Wien 200443;
- SCHARF S., SCHNEIDER M., ZETHNER G. (1998): Zur Situation der Verwertung und Entsorgung des kommunalen Klärschlammes in Österreich. Wien, 1998.
- UBA Berlin (1999): MBA Bericht: Ökologische Vertretbarkeit mechanisch-biologischer Vorbehandlung von Restabfällen.

ANNEX 1: KEY SOURCE ANALYSIS

The following tables present results from the key source analysis, the methodology of the analysis is presented in Chapter 1.5 of the NIR 2005.

- Table A1.1 presents results from the Level Assessment of the key source analysis.
- Table A1.2 presents results from the Trend Assessment of the key source analysis.
- **Table A1.3** presents emission sources in the level of aggregation as used for the key source analysis. Emissions from 1990 to 2003 for these sources are also included.
- **Table A1.4** summarizes the key sources identified including their ranking in the level and trend assessments.

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	14,12%	14,12%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	10,07%	24,19%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	9,41%	33,60%
4	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	7,95%	41,55%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	5,99%	47,55%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	5,28%	52,82%
7	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	5,11%	57,93%
8	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4,51%	62,45%
9	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	4,29%	66,74%
10	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	3,75%	70,49%
11	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	3,51%	74,00%
12	2 A 1	Cement Production	CO2	Gg	2.033,4	2,59%	76,59%
13	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2,49%	79,08%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	2,10%	81,18%
15	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.314,3	1,67%	82,85%
16	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1,56%	84,42%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1,53%	85,95%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.016,0	1,29%	87,24%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	1,16%	88,41%
20	4 B 1	Cattle	N2O	Gg CO2e	662,7	0,84%	89,25%
21	4 B 1	Cattle	CH4	Gg CO2e	547,3	0,70%	89,95%
22	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	0,70%	90,64%
23	2F6	Semiconductor Manufacture	FCs	GgCO2e	505,7	0,64%	91,29%
24	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	0,61%	91,90%
25	4 B 8	Swine	CH4	Gg CO2e	447,7	0,57%	92,47%
	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	443,1	0,56%	93,03%
27	2 A 2	Lime Production	CO2	Gg	396,2	0,50%	93,54%
28	2 B 1	Ammonia Production	CO2	Gg	396,0	0,50%	94,04%
29	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	0,40%	94,44%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	286,4	0,36%	94,81%
31	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	0,36%	95,17%

Table A1.1: Level Assessment 1/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1990	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	14,11%	14,11%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	10,07%	24,18%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	9,40%	33,58%
4	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	7,95%	41,53%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	5,99%	47,52%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	5,27%	52,80%
7	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	5,11%	57,90%
8	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4,51%	62,42%
9	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	4,29%	66,71%
10	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	3,75%	70,46%
11	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	3,51%	73,97%
12	2 A 1	Cement Production	CO2	Gg	2.033,4	2,59%	76,56%
13	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2,49%	79,04%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	2,10%	81,14%
15	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.314,3	1,67%	82,81%
16	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1,56%	84,38%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1,53%	85,91%
18	2C3	Aluminium production	PFCs	GgCO2e	1.050,2	1,34%	87,25%
19	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.016,0	1,29%	88,54%
20	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	1,16%	89,70%
21	4 B 1	Cattle	N2O	Gg CO2e	662,7	0,84%	90,54%
22	4 B 1	Cattle	CH4	Gg CO2e	547,3	0,70%	91,24%
23	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	0,61%	91,85%
24	4 B 8	Swine	CH4	Gg CO2e	447,7	0,57%	92,42%
25	2 A 2	Lime Production	CO2	Gg	396,2	0,50%	92,93%
26	2 B 1	Ammonia Production	CO2	Gg	396,0	0,50%	93,43%
27	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	0,40%	93,83%
28	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	286,4	0,36%	94,19%
29	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	0,36%	94,55%
30	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	253,3	0,32%	94,88%
31	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	238,1	0,30%	95,18%

Table A1.1: Level Assessment 2/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1991	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.686,2	14,14%	14,14%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	8.678,7	10,50%	24,64%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.784,5	9,42%	34,06%
4	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.817,0	8,25%	42,31%
5	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.829,9	5,84%	48,15%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.638,8	5,61%	53,77%
7	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.133,3	5,00%	58,77%
8	2 C 1	Iron and Steel Production	CO2	Gg	3.508,4	4,24%	63,01%
9	4 A 1	Cattle	CH4	Gg CO2e	3.319,3	4,02%	67,03%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	3.143,5	3,80%	70,83%
11	1 A 4 solid	Other Sectors	CO2	Gg	3.053,3	3,69%	74,53%
12	2 A 1	Cement Production	CO2	Gg	2.005,0	2,43%	76,95%
13	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.904,6	2,30%	79,26%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.814,8	2,20%	81,45%
	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.498,0	1,81%	83,26%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.291,4	1,56%	84,83%
17	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.174,0	1,42%	86,25%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.056,8	1,28%	87,53%
19	2C3	Aluminium production	PFCs	GgCO2e	1.050,2	1,27%	88,80%
20	2 B 2	Nitric Acid Production	N2O	Gg CO2e	927,3	1,12%	89,92%
21	4 B 1	Cattle	N2O	Gg CO2e	652,9	0,79%	90,71%
22	4 B 1	Cattle	CH4	Gg CO2e	538,0	0,65%	91,36%
23		Swine	CH4	Gg CO2e	441,7	0,53%	91,89%
24	2 B 1	Ammonia Production	CO2	Gg	408,0	0,49%	92,39%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	391,6	0,47%	92,86%
26	2 A 2	Lime Production	CO2	Gg	361,3	0,44%	93,30%
27	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	341,7	0,41%	93,71%
28	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	331,5	0,40%	94,11%
29	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	289,2	0,35%	94,46%
30	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	277,2	0,34%	94,80%

Table A1.1: Level Assessment 3/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1992	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.748,9	15,45%	15,45%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	8.297,1	10,91%	26,35%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.293,6	9,59%	35,94%
4	1 A 3 b diesel oil	Road Transportation	CO2	Gg	5.156,8	6,78%	42,72%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.116,0	5,41%	48,13%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.042,6	5,31%	53,45%
7	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	4.009,5	5,27%	58,72%
8	4 A 1	Cattle	CH4	Gg CO2e	3.164,3	4,16%	62,88%
9	2 C 1	Iron and Steel Production	CO2	Gg	3.073,9	4,04%	66,92%
10	1 A 4 solid	Other Sectors	CO2	Gg	2.551,1	3,35%	70,28%
11	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.414,2	3,17%	73,45%
12	2 A 1	Cement Production	CO2	Gg	2.105,0	2,77%	76,22%
13	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.912,4	2,51%	78,73%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.675,6	2,20%	80,93%
15	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.481,6	1,95%	82,88%
16	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.216,1	1,60%	84,48%
	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.178,3	1,55%	86,03%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.068,1	1,40%	87,43%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	837,5	1,10%	88,54%
20	4 B 1	Cattle	N2O	Gg CO2e	624,0	0,82%	89,36%
21	4 B 1	Cattle	CH4	Gg CO2e	514,6	0,68%	90,03%
22	4 B 8	Swine	CH4	Gg CO2e	451,6	0,59%	90,63%
23	2C3	Aluminium production	PFCs	GgCO2e	417,6	0,55%	91,18%
24	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	382,5	0,50%	91,68%
25	2 B 1	Ammonia Production	CO2	Gg	371,1	0,49%	92,17%
	2 A 2	Lime Production	CO2	Gg	355,1	0,47%	92,63%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	336,1	0,44%	93,07%
28	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	316,4	0,42%	93,49%
29	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	296,5	0,39%	93,88%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	292,4	0,38%	94,27%
	2F6	Semiconductor Manufacture	FCs	GgCO2e	287,8	0,38%	94,64%
	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	253,3	0,33%	94,98%
33	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	233,4	0,31%	95,28%

Table A1.1: Level Assessment 4/15

			0110		4000	Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1993	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	12.250,4	16,08%	16,08%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.958,7	10,45%	26,53%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.198,2	9,45%	35,98%
4	1 A 3 b diesel oil	Road Transportation	CO2	Gg	5.677,5	7,45%	43,43%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.283,2	5,62%	49,05%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.995,5	5,24%	54,30%
7	4 A 1	Cattle	CH4	Gg CO2e	3.155,7	4,14%	58,44%
8	2 C 1	Iron and Steel Production	CO2	Gg	3.122,3	4,10%	62,54%
9	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	3.088,9	4,05%	66,59%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.913,6	3,82%	70,42%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.188,3	2,87%	73,29%
12	1 A 4 solid	Other Sectors	CO2	Gg	2.184,9	2,87%	76,16%
13	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	2.052,0	2,69%	78,85%
14	2 A 1	Cement Production	CO2	Gg	2.031,9	2,67%	81,52%
15	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.516,6	1,99%	83,51%
16	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.228,2	1,61%	85,12%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.086,0	1,43%	86,55%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.034,0	1,36%	87,91%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	878,7	1,15%	89,06%
20	4 B 1	Cattle	N2O	Gg CO2e	625,6	0,82%	89,88%
21	4 B 1	Cattle	CH4	Gg CO2e	509,1	0,67%	90,55%
22	4 B 8	Swine	CH4	Gg CO2e	463,7	0,61%	91,16%
23	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	438,8	0,58%	91,74%
24	2 B 1	Ammonia Production	CO2	Gg	402,9	0,53%	92,26%
25	2 A 2	Lime Production	CO2	Gg	365,2	0,48%	92,74%
26	2F6	Semiconductor Manufacture	FCs	GgCO2e	360,4	0,47%	93,22%
27	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	324,6	0,43%	93,64%
28	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	316,1	0,41%	94,06%
29	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	294,8	0,39%	94,44%
30	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	277,2	0,36%	94,81%
31	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	249,2	0,33%	95,14%

Table A1.1: Level Assessment 5/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1994	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	12.868,3	16,70%	16,70%
_	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.673,0	9,96%	26,66%
	1 A 4 stat-liquid	Other Sectors	CO2	Gg	6.585.9	8,55%	35,21%
	1 A 3 b diesel oil	Road Transportation	CO2	Gg	5.914.7	7,68%	42,89%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.350,2	5,65%	48,53%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.829,3	4,97%	53,50%
7	2 C 1	Iron and Steel Production	CO2	Gg	3.376,9	4,38%	57,89%
8	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	3.279,1	4,26%	62,14%
9	4 A 1	Cattle	CH4	Gg CO2e	3.202,0	4,16%	66,30%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.829,4	3,67%	69,97%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.328,3	3,02%	72,99%
12	2 A 1	Cement Production	CO2	Gg	2.102,3	2,73%	75,72%
13	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.901,7	2,47%	78,19%
	1 A 4 solid	Other Sectors	CO2	Gg	1.853,4	2,41%	80,59%
	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.821,3	2,36%	82,96%
	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.308,9	1,70%	84,66%
	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.251,2	1,62%	86,28%
	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.061,3	1,38%	87,66%
	2 B 2	Nitric Acid Production	N2O	Gg CO2e	825,2	1,07%	88,73%
	4 B 1	Cattle	N2O	Gg CO2e	636,6	0,83%	89,56%
	4 B 1	Cattle	CH4	Gg CO2e	512,0	0,66%	90,22%
	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	498,4	0,65%	90,87%
	4 B 8	Swine	CH4	Gg CO2e	457,1	0,59%	91,46%
	2F6	Semiconductor Manufacture	FCs	GgCO2e	430,9	0,56%	92,02%
	2 A 2	Lime Production	CO2	Gg	390,5	0,51%	92,53%
	2 B 1	Ammonia Production	CO2	Gg	381,4	0,50%	93,02%
	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	372,8	0,48%	93,51%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	322,9	0,42%	93,92%
29	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	296,0	0,38%	94,31%
	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	286,6	0,37%	94,68%
31	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	262,4	0,34%	95,02%

Table A1.1: Level Assessment 6/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	·	1995	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	13.957,4	17,41%	17,41%
2	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.411,3	9,25%	26,66%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.247,4	9,04%	35,70%
4	1 A 3 b diesel oil	Road Transportation	CO2	Gg	6.553,4	8,18%	43,87%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	4.529,8	5,65%	49,53%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.512,3	5,63%	55,15%
7	2 C 1	Iron and Steel Production	CO2	Gg	3.886,9	4,85%	60,00%
8	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.667,5	4,58%	64,58%
9	4 A 1	Cattle	CH4	Gg CO2e	3.222,6	4,02%	68,60%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.628,9	3,28%	71,88%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.172,4	2,71%	74,59%
12	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.825,2	2,28%	76,87%
13		Other Sectors	CO2	Gg	1.796,4	2,24%	79,11%
14	2 A 1	Cement Production	CO2	Gg	1.631,3	2,04%	81,14%
15	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.556,3	1,94%	83,08%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.268,9	1,58%	84,67%
17		Other Sectors	CO2	Gg	1.217,2	1,52%	86,19%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.036,2	1,29%	87,48%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	857,2	1,07%	88,55%
20	4 B 1	Cattle	N2O	Gg CO2e	646,9	0,81%	89,35%
	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	0,68%	90,04%
22	4 B 1	Cattle	CH4	Gg CO2e	507,0	0,63%	90,67%
23	2F6	Semiconductor Manufacture	FCs	GgCO2e	505,7	0,63%	91,30%
24	2 B 1	Ammonia Production	CO2	Gg	468,3	0,58%	91,88%
25		Swine	CH4	Gg CO2e	458,5	0,57%	92,46%
	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	443,1	0,55%	93,01%
27	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	409,9	0,51%	93,52%
28	2 A 2	Lime Production	CO2	Gg	394,6	0,49%	94,01%
29	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	302,4	0,38%	94,39%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	296,4	0,37%	94,76%
31	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	257,3	0,32%	95,08%

Table A1.1: Level Assessment 7/15

					4000	Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit		Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	15.109,1	18,15%	18,15%
2	1 A 3 b diesel oil	Road Transportation	CO2	Gg	8.688,2	10,44%	28,59%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	8.386,0	10,07%	38,66%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.855,7	8,24%	46,90%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	4.695,9	5,64%	52,54%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.370,7	5,25%	57,79%
7	2 C 1	Iron and Steel Production	CO2	Gg	3.675,0	4,42%	62,21%
8	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.511,8	4,22%	66,43%
9	4 A 1	Cattle	CH4	Gg CO2e	3.170,4	3,81%	70,24%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.444,2	2,94%	73,17%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.185,5	2,63%	75,80%
12	1 A 4 solid	Other Sectors	CO2	Gg	1.754,8	2,11%	77,91%
13		Cement Production	CO2	Gg	1.634,2	1,96%	79,87%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.573,7	1,89%	81,76%
15	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.550,0	1,86%	83,62%
16	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.335,8	1,60%	85,23%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.134,6	1,36%	86,59%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.008,0	1,21%	87,80%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	874,2	1,05%	88,85%
20	4 B 1	Cattle	N2O	Gg CO2e	637,9	0,77%	89,62%
21	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	627,8	0,75%	90,37%
22	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	610,6	0,73%	91,11%
23	4 B 1	Cattle	CH4	Gg CO2e	500,4	0,60%	91,71%
24	2 B 1	Ammonia Production	CO2	Gg	465,3	0,56%	92,27%
25	4 B 8	Swine	CH4	Gg CO2e	447,6	0,54%	92,80%
26	2F6	Semiconductor Manufacture	FCs	GgCO2e	403,9	0,49%	93,29%
27	2 A 2	Lime Production	CO2	Gg	382,7	0,46%	93,75%
28	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	355,4	0,43%	94,18%
29	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	324,4	0,39%	94,57%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	296,8	0,36%	94,92%
31	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	292,8	0,35%	95,27%

Table A1.1: Level Assessment 8/15

					400=	Level	Cumulative
Rank		IPCC Source Categories	GHG	U	1997	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	14.573,0	17,55%	17,55%
2	1 A 3 b diesel oil	Road Transportation	CO2	Gg	7.968,6	9,60%	27,14%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.245,6	8,72%	35,87%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.497,0	7,82%	43,69%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	5.062,1	6,10%	49,79%
6	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	5.002,2	6,02%	55,81%
7	2 C 1	Iron and Steel Production	CO2	Gg	4.063,4	4,89%	60,70%
8	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	3.394,5	4,09%	64,79%
9	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.379,7	4,07%	68,86%
10	4 A 1	Cattle	CH4	Gg CO2e	3.116,2	3,75%	72,61%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.159,4	2,60%	75,21%
12	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.925,2	2,32%	77,53%
		Cement Production	CO2	Gg	1.760,9	2,12%	79,65%
14		Direct Soil Emissions	N2O	Gg CO2e	1.650,6	1,99%	81,64%
15	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.430,1	1,72%	83,36%
16	1 A 4 solid	Other Sectors	CO2	Gg	1.348,0	1,62%	84,98%
17		Indirect Emissions	N2O	Gg CO2e	1.167,1	1,41%	86,39%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.024,9	1,23%	87,62%
	2 B 2	Nitric Acid Production	N2O	Gg CO2e	862,6	1,04%	88,66%
20	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	720,5	0,87%	89,53%
21	4 B 1	Cattle	N2O	Gg CO2e	627,6	0,76%	90,29%
22	2F6	Semiconductor Manufacture	FCs	GgCO2e	593,8	0,71%	91,00%
23	4 B 1	Cattle	CH4	Gg CO2e	496,8	0,60%	91,60%
24	2 B 1	Ammonia Production	CO2	Gg	457,1	0,55%	92,15%
	4 B 8	Swine	CH4	Gg CO2e	448,3	0,54%	92,69%
	2 A 2	Lime Production	CO2	Gg	412,5	0,50%	93,19%
27	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	384,3	0,46%	93,65%
	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	349,2	0,42%	94,07%
29	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	314,4	0,38%	94,45%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	297,2	0,36%	94,81%
31	2F8	Other Sources of SF6	SF6	GgCO2e	256,1	0,31%	95,11%

Table A1.1: Level Assessment 9/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	1998	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	14.886,5	18,04%	18,04%
2	1 A 3 b diesel oil	Road Transportation	CO2	Gg	9.738,1	11,80%	29,84%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.267,3	8,81%	38,65%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.810,2	8,25%	46,90%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.340,8	5,26%	52,16%
6	2 C 1	Iron and Steel Production	CO2	Gg	3.867,4	4,69%	56,85%
7	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	3.498,1	4,24%	61,09%
8	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.278,7	3,97%	65,06%
9	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	3.151,3	3,82%	68,88%
10	4 A 1	Cattle	CH4	Gg CO2e	3.094,0	3,75%	72,63%
11	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	2.211,2	2,68%	75,31%
12	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.184,5	2,65%	77,96%
13	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.673,2	2,03%	79,99%
14	2 A 1	Cement Production	CO2	Gg	1.598,7	1,94%	81,93%
15	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.376,7	1,67%	83,59%
16	1 A 4 solid	Other Sectors	CO2	Gg	1.180,2	1,43%	85,02%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.167,3	1,41%	86,44%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.040,1	1,26%	87,70%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	896,7	1,09%	88,79%
20	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	809,9	0,98%	89,77%
21	4 B 1	Cattle	N2O	Gg CO2e	622,9	0,75%	90,52%
22	2 B 1	Ammonia Production	CO2	Gg	501,2	0,61%	91,13%
23	4 B 1	Cattle	CH4	Gg CO2e	494,2	0,60%	91,73%
24	2F6	Semiconductor Manufacture	FCs	GgCO2e	477,8	0,58%	92,31%
25	4 B 8	Swine	CH4	Gg CO2e	462,4	0,56%	92,87%
	2 A 2	Lime Production	CO2	Gg	453,8	0,55%	93,42%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	345,4	0,42%	93,84%
28	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	301,6	0,37%	94,20%
29	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	297,5	0,36%	94,56%
30	2F8	Other Sources of SF6	SF6	GgCO2e	286,1	0,35%	94,91%
31	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	242,4	0,29%	95,20%

Table A1.1: Level Assessment 10/15

						Lovel	Cumulathra
		ID000	OHO		4000	Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit		Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	15.037,8	18,70%	18,70%
_	1 A 3 b diesel oil	Road Transportation	CO2	Gg	9.525,1	11,85%	30,55%
_	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.219,0	8,98%	39,53%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.317,8	7,86%	47,39%
5	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.370,7	5,44%	52,82%
6	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	3.779,5	4,70%	57,52%
	2 C 1	Iron and Steel Production	CO2	Gg	3.730,3	4,64%	62,16%
	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.173,9	3,95%	66,11%
	4 A 1	Cattle	CH4	Gg CO2e	3.067,1	3,81%	69,92%
	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.409,5	3,00%	72,92%
11	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.998,3	2,49%	75,41%
12	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.867,6	2,32%	77,73%
	2 A 1	Cement Production	CO2	Gg	1.607,4	2,00%	79,73%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.566,6	1,95%	81,68%
15	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.400,0	1,74%	83,42%
16	1 A 4 solid	Other Sectors	CO2	Gg	1.172,0	1,46%	84,88%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.093,8	1,36%	86,24%
18	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.046,8	1,30%	87,54%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	923,5	1,15%	88,69%
20	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	864,1	1,07%	89,76%
21	4 B 1	Cattle	N2O	Gg CO2e	618,6	0,77%	90,53%
22	4 B 1	Cattle	CH4	Gg CO2e	487,8	0,61%	91,14%
23	2 B 1	Ammonia Production	CO2	Gg	472,1	0,59%	91,72%
24	2F6	Semiconductor Manufacture	FCs	GgCO2e	453,9	0,56%	92,29%
25	2 A 2	Lime Production	CO2	Gg	453,1	0,56%	92,85%
26	4 B 8	Swine	CH4	Gg CO2e	416,6	0,52%	93,37%
27	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	350,0	0,44%	93,81%
28	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	298,1	0,37%	94,18%
29	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	270,4	0,34%	94,51%
30	2F8	Other Sources of SF6	SF6	GgCO2e	246,4	0,31%	94,82%
31	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	245,7	0,31%	95,13%

Table A1.1: Level Assessment 11/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	2000	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	14.460.7	17,83%	17,83%
_	1 A 3 b diesel oil	Road Transportation	CO2	Gg	10.771,8	13,28%	31,12%
	1 A 4 stat-liquid	Other Sectors	CO2	Gg	6.526.0	8.05%	39,17%
	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.107.5	7.53%	46,70%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	5.004,2	6,17%	52,87%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.726,1	5,83%	58,70%
7	2 C 1	Iron and Steel Production	CO2	Gg	4.165,8	5,14%	63,84%
8	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	3.056,6	3,77%	67,61%
9	4 A 1	Cattle	CH4	Gg CO2e	3.028,4	3,73%	71,34%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.294,4	2,83%	74,17%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.849,4	2,28%	76,45%
12	2 A 1	Cement Production	CO2	Gg	1.711,6	2,11%	78,56%
13	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.526,8	1,88%	80,45%
	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.313,6	1,62%	82,07%
	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.214,2	1,50%	83,56%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.088,5	1,34%	84,91%
17	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.060,6	1,31%	86,21%
	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	1.015,6	1,25%	87,47%
	1 A 4 solid	Other Sectors	CO2	Gg	952,4	1,17%	88,64%
	2 B 2	Nitric Acid Production	N2O	Gg CO2e	951,6	1,17%	89,82%
	4 B 1	Cattle	N2O	Gg CO2e	613,9	0,76%	90,57%
	2 A 2	Lime Production	CO2	Gg	497,5	0,61%	91,19%
	4 B 1	Cattle	CH4	Gg CO2e	476,7	0,59%	91,77%
	2 B 1	Ammonia Production	CO2	Gg	463,0	0,57%	92,35%
	2F6	Semiconductor Manufacture	FCs	GgCO2e	407,1	0,50%	92,85%
	4 B 8	Swine	CH4	Gg CO2e	404,3	0,50%	93,35%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	339,2	0,42%	93,76%
28	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	320,8	0,40%	94,16%
29	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	298,8	0,37%	94,53%
	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	282,1	0,35%	94,88%
31	2F8	Other Sources of SF6	SF6	GgCO2e	265,2	0,33%	95,20%

Table A1.1: Level Assessment 12/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	2001		Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	15.371,0	18,11%	18,11%
2	1 A 3 b diesel oil	Road Transportation	CO2	Ga	11.961,8	14,09%	32,20%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.308,5	8,61%	40,82%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.151,9	7,25%	48,06%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	5.956,5	7,02%	55,08%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.480,5	5,28%	60,36%
7	2 C 1	Iron and Steel Production	CO2	Gg	4.125,2	4,86%	65,22%
8	4 A 1	Cattle	CH4	Gg CO2e	2.974,0	3,50%	68,73%
9	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	2.948,2	3,47%	72,20%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.270,8	2,68%	74,88%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.810,3	2,13%	77,01%
12	2 A 1	Cement Production	CO2	Gg	1.719,9	2,03%	79,04%
13	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.586,1	1,87%	80,90%
14	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.382,2	1,63%	82,53%
15		Public Electricity and Heat Production	CO2	Gg	1.365,1	1,61%	84,14%
	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	1.118,9	1,32%	85,46%
	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.116,0	1,31%	86,77%
18		Manufacturing Industries and Construction	CO2	Gg	1.075,6	1,27%	88,04%
19	1 A 4 solid	Other Sectors	CO2	Gg	865,3	1,02%	89,06%
20	2 B 2	Nitric Acid Production	N2O	Gg CO2e	786,5	0,93%	89,99%
21	4 B 1	Cattle	N2O	Gg CO2e	603,5	0,71%	90,70%
	2 A 2	Lime Production	CO2	Gg	506,6	0,60%	91,30%
23	4 B 1	Cattle	CH4	Gg CO2e	464,6	0,55%	91,84%
	2 B 1	Ammonia Production	CO2	Gg	442,0	0,52%	92,36%
25	4 B 8	Swine	CH4	Gg CO2e	422,5	0,50%	92,86%
	2F6	Semiconductor Manufacture	FCs	GgCO2e	416,9	0,49%	93,35%
27	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	414,7	0,49%	93,84%
28	2A7b	Magnesit Sinter Plants	CO2	Gg	334,0	0,39%	94,24%
29	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	333,0	0,39%	94,63%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	300,0	0,35%	94,98%
31	2F8	Other Sources of SF6	SF6	GgCO2e	268,3	0,32%	95,30%

Table A1.1: Level Assessment 13/15

						Level	Cumulative
Rank		IPCC Source Categories	GHG	Unit	2002	Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	15.339,8	17,75%	17,75%
2	1 A 3 b diesel oil	Road Transportation	CO2	Gg	13.515,0	15,64%	33,38%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	6.951,9	8,04%	41,43%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.622,6	7,66%	49,09%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	5.510,0	6,37%	55,46%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.982,1	5,76%	61,23%
7	2 C 1	Iron and Steel Production	CO2	Gg	4.618,1	5,34%	66,57%
8	4 A 1	Cattle	CH4	Gg CO2e	2.921,5	3,38%	69,95%
9	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	2.882,7	3,34%	73,29%
10	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.145,7	2,48%	75,77%
11	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	1.860,5	2,15%	77,92%
12	2 A 1	Cement Production	CO2	Gg	1.735,7	2,01%	79,93%
13	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.533,8	1,77%	81,70%
14	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.422,0	1,65%	83,35%
15	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	1.215,1	1,41%	84,75%
16	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.091,7	1,26%	86,02%
17	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.074,7	1,24%	87,26%
18	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	849,5	0,98%	88,24%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	807,2	0,93%	89,18%
20	1 A 4 solid	Other Sectors	CO2	Gg	777,3	0,90%	90,08%
21	4 B 1	Cattle	N2O	Gg CO2e	593,8	0,69%	90,76%
22	2 A 2	Lime Production	CO2	Gg	546,6	0,63%	91,40%
23	4 B 1	Cattle	CH4	Gg CO2e	454,5	0,53%	91,92%
24	2 B 1	Ammonia Production	CO2	Gg	445,1	0,51%	92,44%
25	2F6	Semiconductor Manufacture	FCs	GgCO2e	425,8	0,49%	92,93%
26	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	423,2	0,49%	93,42%
27	4 B 8	Swine	CH4	Gg CO2e	403,3	0,47%	93,89%
28	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	373,5	0,43%	94,32%
29	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	366,0	0,42%	94,74%
30	6 B	WASTEWATER HANDLING	CH4	Gg CO2e	301,5	0,35%	95,09%

Table A1.1: Level Assessment 14/15

15/15

							0
			0110		0000	Level	Cumulative
Rank		IPCC Source Categories	GHG	· · · · ·		Assessment	Total
1	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	16.569,4	18,10%	18,10%
2	1 A 3 b diesel oil	Road Transportation	CO2	Gg	15.099,5	16,49%	34,59%
3	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.701,6	8,41%	43,00%
4	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.913,3	7,55%	50,55%
5	1 A 3 b gasoline	Road Transportation	CO2	Gg	6.783,4	7,41%	57,95%
6	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.545,3	4,96%	62,92%
7	2 C 1	Iron and Steel Production	CO2	Gg	4.513,1	4,93%	67,85%
8	4 A 1	Cattle	CH4	Gg CO2e	2.887,7	3,15%	71,00%
9	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	2.828,9	3,09%	74,09%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.347,6	2,56%	76,65%
11	1 A 1 b liquid	Petroleum refining	CO2	Gg	2.051,0	2,24%	78,89%
12	2 A 1	Cement Production	CO2	Gg	1.735,7	1,90%	80,79%
13	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.418,7	1,55%	82,34%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.414,1	1,54%	83,88%
15	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	1.304,7	1,42%	85,31%
16	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.110,7	1,21%	86,52%
17	1 A 2 mobile-liquid	Manufacturing Industries and Construction	CO2	Gg	1.104,7	1,21%	87,73%
18	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.016,1	1,11%	88,84%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	883,4	0,96%	89,80%
20	1 A 4 solid	Other Sectors	CO2	Gg	669,9	0,73%	90,53%
21	4 B 1	Cattle	N2O	Gg CO2e	588,3	0,64%	91,18%
22	2 A 2	Lime Production	CO2	Gg	546,6	0,60%	91,77%
23	2 B 1	Ammonia Production	CO2	Gg	493,6	0,54%	92,31%
24	2F6	Semiconductor Manufacture	FCs	GgCO2e	483,0	0,53%	92,84%
25	4 B 1	Cattle	CH4	Gg CO2e	449,5	0,49%	93,33%
26	4 B 8	Swine	CH4	Gg CO2e	410,3	0,45%	93,78%
27	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	402,7	0,44%	94,22%
28	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	373,5	0,41%	94,63%
29	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	344,8	0,38%	95,00%

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	1996	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	8.688,2	10,44%	0,050	23,52%	23,52%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	15.109,1	18,15%	0,038	17,81%	41,33%
3	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	4.695,9	5,64%	0,022	10,21%	51,54%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.855,7	8,24%	0,017	8,11%	59,65%
5	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	1.754,8	2,11%	0,016	7,26%	66,92%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	3.511,8	4,22%	0,010	4,67%	71,59%
7	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.370,7	5,25%	0,007	3,27%	74,86%
8	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	8.386,0	10,07%	0,006	2,94%	77,80%
9	2 A 1	Cement Production	CO2	Gg	2.033,4	1.634,2	1,96%	0,006	2,76%	80,56%
10	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	2.444,2	2,94%	0,005	2,53%	83,09%
11	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	3.170,4	3,81%	0,005	2,14%	85,23%
12	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1.550,0	1,86%	0,003	1,31%	86,55%
13	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.573,7	1,89%	0,002	0,93%	87,47%
14	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	292,8	0,35%	0,002	0,89%	88,36%
15	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	355,4	0,43%	0,002	0,82%	89,18%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.134,6	1,36%	0,002	0,75%	89,93%
17	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	443,1	610,6	0,73%	0,002	0,75%	90,68%
18	2F6	Semiconductor Manufacture	FCs	GgCO2e	505,7	403,9	0,49%	0,001	0,70%	91,38%
19	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	172,8	0,21%	0,001	0,67%	92,05%
20	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2.185,5	2,63%	0,001	0,61%	92,66%
21	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	126,5	239,0	0,29%	0,001	0,56%	93,22%
22	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	238,1	159,8	0,19%	0,001	0,49%	93,71%
23	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	874,2	1,05%	0,001	0,49%	94,20%
24	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	3.675,0	4,42%	0,001	0,44%	94,64%
25	4 B 1	Cattle	CH4	Gg CO2e	547,3	500,4	0,60%	0,001	0,42%	95,06%

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	1997	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	7.968,6	9,60%	0,042	20,68%	20,68%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	14.573,0	17,55%	0,032	15,81%	36,49%
3	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.497,0	7,82%	0,021	10,37%	46,86%
4	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	1.348,0	1,62%	0,020	9,82%	56,68%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	5.002,2	6,02%	0,018	8,90%	65,58%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	3.379,7	4,07%	0,011	5,56%	71,14%
7	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1.925,2	2,32%	0,007	3,47%	74,62%
	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	7.245,6	8,72%	0,006	3,15%	77,76%
9	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	3.394,5	4,09%	0,005	2,67%	80,43%
	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	3.116,2	3,75%	0,005	2,50%	82,93%
	2 A 1	Cement Production	CO2	Gg	2.033,4	1.760,9	2,12%	0,004	2,16%	85,09%
12	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4.063,4	•	•	•	86,84%
	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	314,4	0,38%	0,002	1,05%	87,89%
	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	720,5	0,87%	0,002	0,79%	88,68%
	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	384,3	•	0,001	0,69%	89,37%
	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	443,1	349,2	0,42%	0,001	0,66%	90,03%
17	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	190,1	0,23%	0,001	0,60%	90,63%
18	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.167,1	1,41%	0,001	0,59%	91,22%
19	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	862,6	1,04%	0,001	0,57%	91,79%
20	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2.159,4	2,60%	0,001	0,52%	92,31%
21	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.650,6			0,52%	92,83%
22	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	126,5	223,7	0,27%	0,001	0,50%	93,32%
23	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	5.062,1	6,10%	0,001	0,48%	93,81%
24	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	248,8	0,30%	0,001	0,47%	94,27%
25	4 B 1	Cattle	CH4	Gg CO2e	547,3	496,8	0,60%	0,001	0,45%	94,73%
26	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	92,3	0,11%	0,001	0,41%	95,14%

Austria's National Inventory Report 2005

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	1998	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	9.738,1	11,80%	0,064	24,64%	24,64%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	14.886,5	18,04%	0,037	14,45%	39,09%
3	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	3.498,1	4,24%	0,035	13,68%	52,77%
4	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	1.180,2	1,43%	0,022	8,56%	61,33%
5	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.810,2	8,25%	0,017	6,70%	68,03%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	3.278,7	3,97%	0,012	4,80%	72,83%
7	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	2.211,2	2,68%	0,011	4,11%	76,93%
8	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.340,8	5,26%	0,007	2,69%	79,62%
9	2 A 1	Cement Production	CO2	Gg	2.033,4	1.598,7	1,94%	0,006	2,40%	82,02%
10	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	7.267,3	8,81%	0,006	2,21%	84,24%
11	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	3.094,0	3,75%	0,005	2,01%	86,24%
12	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	443,1	164,2	0,20%	0,003	1,34%	87,59%
13	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	3.151,3	3,82%	0,003	1,14%	88,73%
14	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	809,9	0,98%	0,003	1,05%	89,78%
15	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	301,6	0,37%	0,002	0,79%	90,57%
16	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	345,4	0,42%	0,002	0,71%	91,29%
17	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	3.867,4	4,69%	0,002	0,63%	91,92%
18	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2.184,5	2,65%	0,002	0,59%	92,51%
19	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	172,2	0,21%	0,001	0,56%	93,07%
20	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	118,4	0,14%	0,001	0,45%	93,51%
21	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	238,1	150,5	0,18%	0,001	0,44%	93,96%
22	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.167,3	1,41%	0,001	0,43%	94,39%
23	1 A 3 b gasoline	Road Transportation	N2O	Gg CO2e	126,5	226,7	0,27%	0,001	0,42%	94,81%
	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	242,4	0,29%	0,001	0,39%	95,21%

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	1999	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	9.525,1	11,85%	0,066	24,46%	24,46%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	15.037,8	18,70%	0,045	16,65%	41,11%
3	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	3.779,5	4,70%	0,032	11,82%	52,93%
4	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	1.172,0	1,46%	0,022	8,34%	61,26%
5	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.317,8	7,86%	0,022	8,05%	69,31%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	3.173,9	3,95%	0,013	4,83%	74,14%
7	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1.998,3	2,49%	0,009	3,34%	77,48%
8	2 A 1	Cement Production	CO2	Gg	2.033,4	1.607,4	2,00%	0,006	2,14%	79,62%
9	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.370,7	5,44%	0,005	2,02%	81,64%
10	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	443,1	22,2	0,03%	0,005	1,95%	83,59%
11	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	2.409,5	3,00%	0,005	1,86%	85,45%
12	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	3.067,1	3,81%	0,005	1,74%	87,19%
13	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	7.219,0	8,98%	0,004	1,56%	88,75%
14	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	864,1	1,07%	0,004	1,37%	90,12%
15	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	350,0	0,44%	0,002	0,64%	90,76%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.093,8	1,36%	0,002	0,63%	91,39%
17	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	1.867,6	2,32%	0,002	0,60%	91,99%
18	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	158,4	0,20%	0,002	0,59%	92,58%
19	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.566,6	1,95%	0,001	0,55%	93,13%
20	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	239,2	0,30%	0,001	0,53%	93,67%
21	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	135,5	0,17%	0,001	0,53%	94,20%
22	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	3.730,3	4,64%	0,001	0,45%	94,65%
23	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	245,7	0,31%	0,001	0,35%	95,00%

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	2000	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	10.771,8	13,28%	0,079	28,80%	28,80%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	14.460,7	17,83%	0,036	13,09%	41,89%
3	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	952,4	1,17%	0,025	9,09%	50,97%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.107,5	7,53%	0,025	8,95%	59,92%
5	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	5.004,2	6,17%	0,017	6,28%	66,20%
6	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	3.056,6	3,77%	0,015	5,31%	71,51%
7	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	6.526,0	8,05%	0,013	4,79%	76,30%
8	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	2.294,4	2,83%	0,007	2,39%	78,69%
9	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4.165,8	5,14%	0,006	2,19%	80,89%
10	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	3.028,4	3,73%	0,005	1,97%	82,86%
11	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	1.015,6	1,25%	0,005	1,96%	84,81%
12	2C4	SF6 Used in Al and Mg Foundries	SF6	GgCO2e	443,1	7,6	0,01%	0,005	1,95%	86,77%
13	2 A 1	Cement Production	CO2	Gg	2.033,4	1.711,6	2,11%	0,005	1,68%	88,45%
14	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.526,8	1,88%	0,002	0,77%	89,22%
15	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	1.849,4	2,28%	0,002	0,73%	89,95%
16	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	282,1	0,35%	0,002	0,70%	90,64%
17	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	339,2	0,42%	0,002	0,68%	91,33%
18	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.088,5	1,34%	0,002	0,67%	92,00%
19	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	158,4	0,20%	0,002	0,61%	92,61%
20	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.726,1	5,83%	0,002	0,57%	93,18%
21	2F6	Semiconductor Manufacture	FCs	GgCO2e	505,7	407,1	0,50%	0,001	0,50%	93,68%
22	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	181,0	0,22%	0,001	0,48%	94,16%
23	1 A 4 biomass	Other Sectors	CH4	Gg CO2e	314,7	232,3	0,29%	0,001	0,40%	94,57%
24	2 A 2	Lime Production	CO2	Gg	396,2	497,5	0,61%	0,001	0,38%	94,95%
25	4 B 1	Cattle	CH4	Gg CO2e	547,3	476,7	0,59%	0,001	0,38%	95,33%

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	2001	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	11.961,8	14,09%	0,083	29,76%	29,76%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	15.371,0	18,11%	0,037	13,22%	42,99%
3	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.151,9	7,25%	0,026	9,36%	52,34%
4	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	865,3	1,02%	0,025	9,06%	61,40%
5	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	2.948,2	3,47%	0,017	5,97%	67,37%
6	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	5.956,5	7,02%	0,009	3,10%	70,47%
7	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	2.270,8	2,68%	0,008	2,76%	73,23%
8	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	7.308,5	8,61%	0,007	2,64%	75,87%
9	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	2.974,0	3,50%	0,007	2,62%	78,49%
10	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.480,5	5,28%	0,007	2,36%	80,85%
11	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	1.118,9	1,32%	0,006	2,06%	82,91%
12	2 A 1	Cement Production	CO2	Gg	2.033,4	1.719,9	2,03%	0,005	1,86%	84,77%
13	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	443,1	7,6	0,01%	0,005	1,84%	86,61%
14	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	1.810,3	2,13%	0,003	1,17%	87,78%
15	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4.125,2	4,86%	0,003	1,15%	88,93%
16	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	333,0	0,39%	0,002	0,80%	89,73%
17	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	786,5	0,93%	0,002	0,78%	90,51%
18	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.586,1	1,87%	0,002	0,77%	91,27%
19	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	334,0	0,39%	0,002	0,73%	92,00%
20	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.116,0	1,31%	0,002	0,72%	92,72%
21	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	193,1	0,23%	0,002	0,68%	93,40%
22	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	238,1	414,7	0,49%	0,002	0,61%	94,02%
23	2F6	Semiconductor Manufacture	FCs	GgCO2e	505,7	416,9	0,49%	0,001	0,51%	94,52%
24	4 B 1	Cattle	CH4	Gg CO2e	547,3	464,6	0,55%	0,001	0,50%	95,02%

Austria's National Inventory Report 2005

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	2002	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	13.515,0	15,64%	0,096	31,24%	31,24%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	15.339,8	17,75%	0,033	10,77%	42,01%
3	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	777,3	0,90%	0,026	8,47%	50,48%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.622,6	7,66%	0,022	7,16%	57,63%
5	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	2.882,7	3,34%	0,018	5,76%	63,40%
6	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	5.510,0	6,37%	0,014	4,69%	68,08%
	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	6.951,9	8,04%	0,012	4,05%	72,13%
8	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	1.860,5	2,15%	0,012	4,02%	76,16%
	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	2.921,5	3,38%	0,008	2,71%	78,87%
	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4.618,1	5,34%	0,008	•	81,33%
11	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	1.215,1	1,41%	0,006	2,10%	83,43%
	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	849,5	0,98%	0,005	•	85,16%
	2 A 1	Cement Production	CO2	Gg	2.033,4	1.735,7	2,01%	0,005	1,72%	86,88%
	2C4	SF6 Used in AI and Mg Foundries	SF6	GgCO2e	443,1	7,6	0,01%	0,005		88,53%
15	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.533,8	1,77%	0,003	0,97%	89,50%
16	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.074,7	1,24%	0,003	0,86%	90,36%
	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	366,0	0,42%	0,002	0,81%	91,17%
18	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	807,2	0,93%	0,002	0,67%	91,84%
19	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.982,1	5,76%	0,002	0,67%	92,52%
20	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	191,6	0,22%	0,002	0,59%	93,11%
21	1 A 2 other	Manufacturing Industries and Construction	CO2	Gg	238,1	423,2	0,49%	0,002	0,55%	93,66%
22	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	373,5	0,43%	0,002	0,54%	94,20%

Table A1.2: Trend Assessment 7/8

							Level	Trend	Contribution	Cumulative
Rank		IPCC Source Categories	GHG	Unit	BY	2003	Assessment	Assessment	to Trend	Total
1	1 A 3 b diesel oil	Road Transportation	CO2	Gg	4.012,9	15.099,5	16,49%	0,098	32,94%	32,94%
2	1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	16.569,4	18,10%	0,034	11,51%	44,46%
3	1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	669,9	0,73%	0,026	8,75%	53,21%
4	1 A 3 b gasoline	Road Transportation	CO2	Gg	7.911,2	6.783,4	7,41%	0,023	7,72%	60,92%
5	6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg CO2e	4.144,1	2.828,9	3,09%	0,019	6,33%	67,25%
6	4 A 1	Cattle	CH4	Gg CO2e	3.372,5	2.887,7	3,15%	0,010	3,30%	70,55%
7	1 A 2 solid	Manufacturing Industries and Construction	CO2	Gg	4.705,2	4.545,3	4,96%	0,009	2,97%	73,53%
8	1 A 4 stat-liquid	Other Sectors	CO2	Gg	7.388,4	7.701,6	8,41%	0,009	2,89%	76,41%
9	1 A 2 stat-liquid	Manufacturing Industries and Construction	CO2	Gg	2.755,3	2.347,6	2,56%	0,008	2,73%	79,15%
10	2F1/2/3	ODS Substitutes	HFCs	GgCO2e	547,1	1.304,7	1,42%	0,006	2,11%	81,26%
11	2 A 1	Cement Production	CO2	Gg	2.033,4	1.735,7	1,90%	0,006	2,01%	83,27%
12	4 D 1	Direct Soil Emissions	N2O	Gg CO2e	1.649,4	1.414,1	1,54%	0,005	1,61%	84,87%
13	4 D 3	Indirect Emissions	N2O	Gg CO2e	1.203,7	1.016,1	1,11%	0,004	1,22%	86,10%
	2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	4.513,1	4,93%	0,004	1,20%	87,30%
15	1 A 1 a solid	Public Electricity and Heat Production	CO2	Gg	6.247,0	6.913,3	7,55%	0,003	1,17%	88,47%
16	1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1.110,7	1,21%	0,003	1,02%	89,48%
17	1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	402,7	0,44%	0,002	0,84%	90,32%
18	1 A 1 b liquid	Petroleum refining	CO2	Gg	1.953,4	2.051,0	2,24%	0,002	0,72%	91,04%
19	4 B 1	Cattle	CH4	Gg CO2e	547,3	449,5	0,49%	0,002	0,60%	91,64%
20	2 A 7 b	Magnesit Sinter Plants	CO2	Gg	481,2	373,5	0,41%	0,002	0,59%	92,23%
21	4 B 1	Cattle	N2O	Gg CO2e	662,7	588,3	0,64%	0,002	0,58%	92,81%
22	2 B 2	Nitric Acid Production	N2O	Gg CO2e	912,0	883,4	0,96%	0,002	0,57%	93,38%
23	6 B	WASTEWATER HANDLING	N2O	Gg CO2e	17,0	192,4	0,21%	0,002	0,55%	93,93%
24	3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	193,6	0,21%	0,001	0,43%	94,36%
25	1 A 4 mobile-diesel	Other Sectors	CO2	Gg	1.314,3	1.418,7	1,55%	0,001	0,36%	94,72%
26	4 B 8	Swine	CH4	Gg CO2e	447,7	410,3	0,45%	0,001	0,35%	95,07%

Table A1.2: Trend Assessment

IPCC 96	Bezeichnung	Gas	Unit I	ВҮ	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
1 A 1 a biomas	s Public Electricity and Heat Production	CH4		0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,3	0,3	0,4	0,3	0,5	0,6	0,7	0,8
1 A 1 a gaseo	Public Electricity and Heat Production	CH4	Gg C	0,5	0,5	0,5	0,5	0,6	0,6	0,7	1,1	0,9	1,2	1,0	1,0	0,8	1,1	2,5
1 A 1 a liquid	Public Electricity and Heat Production	CH4	Gg C	0,3	0,3	0,4	0,4	0,6	0,5	0,4	0,5	0,5	0,6	0,5	0,3	0,4	0,2	0,3
1 A 1 a other	Public Electricity and Heat Production	CH4		0,6	0,6	0,7	1,2	1,2	1,3	1,3	1,5	1,6	1,5	1,3	1,5	1,9	2,2	2,5
1 A 1 a solid	Public Electricity and Heat Production	CH4	-	1,5	1,5	1,7	0,9	0,7	0,6	0,5	0,4	0,4	0,1	0,1	0,2	0,3	0,2	0,3
•	u: Manuf. of Solid fuels and Other Energy Inc		-	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	Manuf. of Solid fuels and Other Energy Inc		_	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Manufacturing Industries and Construction		_	1,2	1,2	1,2	1,2	1,3	1,4	1,4	1,4	1,5	1,3	1,8	1,5	1,6	1,7	1,8
•	Manufacturing Industries and Construction		_	2,2	2,2	2,3	2,3	2,4	2,9	2,9	3,0	3,4	3,1	2,8	3,1	3,0	3,2	3,1
	c Manufacturing Industries and Construction			1,6	1,6	1,6	1,7	1,6	1,6	1,6	1,5	1,5	1,5	1,3	1,3	1,2	1,2	1,1
1 A 2 other	Manufacturing Industries and Construction		_	1,1	1,1	1,3	1,6	1,2	1,3	1,4	1,6	1,4	1,5	1,7	1,7	1,8	2,2	2,0
1 A 2 solid	Manufacturing Industries and Construction		-	1,3	1,3	1,5	1,5	1,5	1,4	1,4	1,5	1,7	1,7	1,5	1,7	1,6	1,5	1,4
•	c Manufacturing Industries and Construction			0,9	0,9	1,1	0,8	0,9	0,9	0,8	0,7	0,9	0,8	0,6	0,6	0,5	0,4	0,5
1 A 3 a jet ker		CH4	_	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
	c Road Transportation	CH4	- 0 -	2,5	2,5	2,7	2,7	2,8	2,7	2,8	3,4	2,8	3,1	2,8	2,9	3,1	3,3	3,4
-	Road Transportation	CH4	- 0	58,0	58,0	57,2	51,5	47,0	42,7	38,5	34,2	30,8	29,0	25,9	23,3	21,2	19,9	18,3
1 A 3 c liquid	•	CH4 CH4	-	0,1 0,0	0,1	0,1	0,1 0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1 0,0	0,1 0,0	0,1 0,0	0,1
1 A 3 c solid 1 A 3 d gas/di	· · · · · · · · · · · · · · · · · · ·	CH4	_	0,0	0,0 0,0	0,0 0,0	0,0	0,0 0,0	0,0	0,0	0,0	0,0 0,0						
1 A 3 d gas/di	•	CH4	- 0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
1 A 3 e gaseo	•	CH4		0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
•	Other Sectors	CH4	-	314,7	314,7	341,7	316,4	316,1	286,6	302,4	324,4	248,8	242,4	245,7	232,3	261,4	249,0	271,9
	Other Sectors	CH4	- 0 -	4,0	4,0	4,0	3,5	2,9	1,8	1,2	1,2	1,2	1,2	1,5	1,3	1,6	1,3	1,4
0	li Other Sectors	CH4		2,9	2.9	2,5	2,5	2.6	2,7	2,5	2,7	2,8	2,6	2,5	2,2	2,2	2,2	2,2
	i Other Sectors	CH4	-	1,2	1,2	1,2	1,2	1,1	1,2	1,2	1,2	1,2	1,2	1,1	1,1	1,1	1,0	1,0
-	c Other Sectors	CH4	_	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,2	2,1	2,1	2,0	1,8	1,7	1,5	1,3
1 A 4 other	Other Sectors	CH4		0.6	0.6	0,5	0.5	0.3	0.4	0,4	0,7	0.7	0,4	0.6	0.3	0,2	0,2	0,3
1 A 4 solid	Other Sectors	CH4	_	70,3	70,3	71,7	60,3	51,9	44,8	44,2	44,0	28,7	25,2	25,0	20,3	18,5	16,6	14,3
	c Other Sectors	CH4		0,8	0.8	0,8	0,8	0.8	0,7	0,7	0,7	0,6	0,7	0,7	0,6	0,6	0,7	0,7
1 A 5 liquid	Other	CH4	- 0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0.0	0,0	0.0	0,0
1 B 1 a .	Coal Mining	CH4		11,0	11,0	9,4	7,8	7,6	6,2	5,8	5,0	5,1	5,1	5,1	5,6	5,4	8,1	8,1
1 B 2 a	Oil	CH4	Gg C	101,0	101,0	101,3	101,6	101,0	100,3	98,3	99,7	101,7	98,2	92,8	90,2	91,9	93,8	88,2
1 B 2 b	Natural gas	CH4		165,6	165,6	170,7	170,2	178,4	175,3	189,0	208,6	204,4	207,4	217,2	210,4	212,4	210,6	224,8
2 B	CHEMICAL INDUSTRY	CH4	Gg C	7,4	7,4	7,3	6,6	7,3	7,6	7,0	7,2	7,4	8,0	7,2	7,2	6,7	7,4	7,2
2 C	METAL PRODUCTION	CH4	Gg C	0,0	0,0	0,0	0,0	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
4 A 1	Cattle	CH4	Gg C	3.372,5	3.372,5	3.319,3	3.164,3	3.155,7	3.202,0	3.222,6	3.170,4	3.116,2	3.094,0	3.067,1	3.028,4	2.974,0	2.921,5	2.887,7
4 A 3	Sheep	CH4	Gg C	52,1	52,1	54,8	52,4	56,1	57,5	61,4	64,0	64,5	60,6	59,2	57,0	53,8	51,1	54,7
4 A 4	Goats	CH4	- 0	3,9	3,9	4,3	4,1	5,0	5,2	5,7	5,7	6,1	5,7	6,1	5,9	6,2	6,1	5,7
4 A 6	Horses	CH4	_	18,6	18,6	21,8	23,2	24,5	25,2	27,4	27,7	28,0	28,5	30,8	30,8	30,8	30,8	32,9
4 A 8	Swine	CH4	-	116,2	116,2	114,6	117,2	120,3	117,5	116,7	115,4	115,9	120,0	108,1	105,5	108,4	104,1	102,2
4 A 9	Poultry	CH4	- 0 -	3,7	3,7	3,9	3,7	3,9	3,8	3,8	3,5	4,0	3,9	3,9	3,2	3,4	3,4	3,5
4 A-10	Other	CH4		6,2	6,2	6,2	6,2	6,2	6,3	6,8	7,0	9,4	8,5	6,6	6,5	6,5	6,5	6,9
4 B 1	Cattle	CH4	-	547,3	547,3	538,0	514,6	509,1	512,0	507,0	500,4	496,8	494,2	487,8	476,7	464,6	454,5	449,5
4 B 3	Sheep	CH4	_	1,2	1,2	1,3	1,2	1,3	1,4	1,5	1,5	1,5	1,4	1,4	1,4	1,3	1,2	1,3
4 B 4	Goats	CH4		0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
4 B 6	Horses	CH4	-	1,4	1,4	1,7	1,8	1,9	1,9	2,1	2,1	2,2	2,2	2,4	2,4	2,4	2,4	2,5
4 B 8	Swine	CH4		447,7	447,7	441,7	451,6	463,7	457,1	458,5	447,6	448,3	462,4	416,6	404,3	422,5	403,3	410,3
4 B 9	Poultry Other Animale	CH4	- 0	22,6	22,6	23,6	22,4	23,8	23,2	22,9	21,3	24,2	23,4	23,7	19,3	20,6	20,6	21,3
4 B-13	Other Animals	CH4	Gg C	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2

4 D	AGRICULTURAL SOILS	CH4	Gg C	6,9	6,9	6,9	6,6	9,8	8,4	9,3	9,4	9,4	9,4	9,4	9,4	9,1	9,1	9,1
4 F	FIELD BURNING OF AGRICULTURAL RE		Gg C	1,4	1,4	1,4	1,3	1,3	1,4	1,4	1,3	1,4	1,4	1,4	1,3	1,4	1,4	1,3
6 A	SOLID WASTE DISPOSAL ON LAND	CH4	Gg C	4.144,1	4.144,1	4.133,3	4.042,6	3.995,5	3.829,3	3.667,5	3.511,8	3.379,7	3.278,7	3.173,9	3.056,6	2.948,2	2.882,7	2.828,9
6 B	WASTEWATER HANDLING	CH4	Gg C	286,4	286,4	289,2	292,4	294,8	296,0	296,4	296,8	297,2	297,5	298,1	298,8	300,0	301,5	302,8
6 C	WASTE INCINERATION		Gg C	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0
6 D	OTHER WASTE		Gg C	10,9	10,9	11,4	13,7	17,2	20,6	21,9	23,0	22,7	23,5	24,7	24,5	24,5	24,6	25,0
1 A 1 a liquid	Public Electricity and Heat Production	CO2	Gg	1.228,7	1.228,7	1.498,0	1.481,6	2.052,0	1.901,7	1.556,3	1.550,0	1.925,2	2.211,2	1.998,3	1.214,2	1.365,1	849,5	1.110,7
1 A 1 a other	Public Electricity and Heat Production	CO2	Gg	118,0	118,0	141,7	233,4	240,9	246,0	247,4	292,8	314,4	301,6	239,2	282,1	333,0	366,0	402,7
1 A 1 a solid	Public Electricity and Heat Production		Gg	6.247,0	6.247,0	6.817,0	4.009,5	3.088,9	3.279,1	4.529,8	4.695,9	5.002,2	3.498,1	3.779,5	5.004,2	5.956,5	5.510,0	6.913,3
1 A 1 b liquid 1 A 1 c liquid	Petroleum refining Manufacture of Solid fuels and Other Energy	CO2	Gg	1.953,4 0.0	1.953,4 0.0	1.904,6 0.0	1.912,4 0.0	2.188,3 0.0	2.328,3 0.0	2.172,4 0.0	2.185,5 0.0	2.159,4 0,0	2.184,5 0.0	1.867,6 0.0	1.849,4 0.0	1.810,3 0.0	2.145,7 0.0	2.051,0 6.4
	ic Manufacturing Industries and Construction		_	1.016.0	1.016.0	1.056.8	1.068.1	1.034.0	1.061.3	1.036,2	1.008.0	1.024.9	1.040,1	1.046.8	1.060.6	1.075.6	1.091.7	1.104,7
1 A 2 mobile-i	Manufacturing Industries and Construction		Ga	238,1	238,1	213,0	296,5	118,4	170,1	161,9	159,8	201,6	150,5	270,4	320,8	414,7	423,2	344,8
1 A 2 solid	Manufacturing Industries and Construction		Ga	4.705,2	4.705,2	4.638,8	4.116,0	4.283,2	4.350.2	4.512,3	4.370,7	5.062,1	4.340,8	4.370,7	4.726,1	4.480,5	4.982.1	4.545.3
	ic Manufacturing Industries and Construction			2.755.3	2.755,3	3.143.5	2.414,2	2.913,6	2.829.4	2.628.9	2.444.2	3.394.5	3.151,3	2.409.5	2.294.4	2.270.8	1.860.5	2.347,6
	on Civil Aviation	CO2	•	7,8	7,8	8,1	8,3	8.6	8,8	7,1	6,8	7,6	8,2	8,7	6,4	6,4	6.4	6,4
	o Civil Aviation	CO2		24.2	24.2	29,4	34,7	40.0	45.3	50.5	56.7	62.9	69.1	72.4	75,7	60.3	68.8	60.3
•	c Road Transportation	CO2	Ga	4.012.9	4.012,9	4.829.9	5.156.8	5.677.5	5.914.7	6.553.4	8.688.2	7.968.6	9.738.1	9.525.1		11.961,8	,-	15.099.5
	Road Transportation		Gg	7.911,2	7.911,2	8.678,7	8.297,1	7.958,7	7.673,0	7.411,3	6.855,7	6.497,0	6.810,2	6.317,8	6.107,5	6.151,9	6.622,6	6.783,4
1 A 3 c liquid	•		Gg	167,3	167,3	174,2	173,5	169,6	171,2	159,2	143,5	145,0	143,1	177,1	176,9	176,5	174,3	171,8
1 A 3 c solid	Railways	CO2	Gg	6.6	6.6	6.0	6.3	5.7	5.6	5.8	5.8	3,3	2.9	2,8	2.5	2,4	2,3	2,2
1 A 3 d gas/di	•	CO2	Gg	42,8	42,8	37,9	37,0	37,3	46,3	44,6	44,7	52,6	53,2	53,9	54,5	63,7	70,6	75,3
1 A 3 d gasoli	n Navigation	CO2	Gg	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,3	9,2	9,2	9,1	9,1	9,0	9,0	8,9
1 A 4 mobile-o	di Other Sectors	CO2	Gg	1.314,3	1.314,3	1.174,0	1.216,1	1.228,2	1.308,9	1.217,2	1.335,8	1.430,1	1.376,7	1.400,0	1.313,6	1.382,2	1.422,0	1.418,7
1 A 4 mobile-g	g: Other Sectors	CO2	Gg	42,9	42,9	42,7	43,3	42,3	44,5	43,9	45,1	44,8	44,1	44,1	43,9	43,8	43,7	43,5
1 A 4 mobile-l	ic Other Sectors	CO2	Gg	141,8	141,8	142,2	143,6	144,5	143,5	144,3	143,3	142,3	141,4	140,6	140,5	140,4	140,5	140,2
1 A 4 other	Other Sectors	CO2	Gg	22,9	22,9	18,7	20,6	11,9	14,1	14,2	29,0	26,0	15,1	25,3	13,9	6,3	6,2	10,4
1 A 4 solid	Other Sectors	CO2	Gg	2.947,9	2.947,9	3.053,3	2.551,1	2.184,9	1.853,4	1.796,4	1.754,8	1.348,0	1.180,2	1.172,0	952,4	865,3	777,3	669,9
	ic Other Sectors	CO2	Gg	7.388,4	7.388,4	7.784,5	7.293,6	7.198,2	6.585,9	7.247,4	8.386,0	7.245,6	7.267,3	7.219,0	6.526,0	7.308,5	6.951,9	7.701,6
1 A 5 liquid	Other	CO2	Gg	35,0	35,0	37,1	33,7	39,4	41,6	32,6	38,9	37,1	42,4	41,6	45,0	36,2	41,0	36,2
1 A gaseous	Fuel Combustion (stationary)	CO2	Gg	11.088,0	· · · · · · · · · · · · · · · · · · ·	•	11.748,9		12.868,3		15.109,1	14.573,0	•		14.460,7	15.371,0	•	16.569,4
1 B 2 a	Oil	CO2	Gg	43,0	43,0	43,0	40,0	37,0	47,5	38,0	41,0	31,1	61,0	90,0	72,0	88,0	84,0	133,0
1B2b	Natural gas	CO2	Gg	59,0	59,0	68,0	80,0	75,0	80,0	89,0	30,0	89,4	80,8	80,5	92,5	94,7	83,0	100,0
2 A 1	Cement Production	CO2	Gg	2.033,4	2.033,4	2.005,0	2.105,0	2.031,9	2.102,3	1.631,3	1.634,2	1.760,9	1.598,7	1.607,4	1.711,6	1.719,9	1.735,7	1.735,7
2 A 2	Lime Production		Gg	396,2	396,2	361,3	355,1	365,2	390,5	394,6	382,7	412,5	453,8	453,1	497,5	506,6	546,6	546,6
2 A 3 2 A 4	Limestone and Dolomite Use Soda Ash Production and use	CO2 CO2	Gg	200,3 19,4	200,3 19.4	202,9 22,3	181,1 19.7	180,9 19.8	195,4 21,1	225,4 21,2	201,3 21,2	228,5 19,7	238,4 19.7	221,6 21.6	249,9 18,2	245,3 21,4	264,7 18.9	269,7 18,8
2 A 4 2 A 7 a	Bricks and Tiles (decarbonizing)	CO2	Gg	112,3	112,3	117,5	121,5	130,6	134,7	143,4	143,4	132,2	128,8	116,7	111,7	119,3	115,9	115,9
2A7a 2A7b	Magnesit Sinter Plants		Gg	481,2	481,2	391,6	336,1	324,6	322,9	409,9	355,4	384,3	345,4	350,0	339,2	334,0	373,5	373,5
2B1	Ammonia Production	CO2	Gg	396.0	396.0	408.0	371,1	402,9	381,4	468,3	465,3	457,1	501,2	472,1	463.0	442,0	445,1	493,6
2B2	Nitric Acid Production	CO2	Gg	0,4	0.4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0.4	0,4	0,4	0,4	0,4	0,4
2B4	Carbide Production	CO2	Gg	37,5	37,5	35,2	41,3	32,9	25,1	26,2	32.8	32.8	35,0	32,5	48.1	46,7	40.8	40,6
2B5	Other	CO2	Gg	30.5	30.5	28.0	38.0	33.8	22.6	20.0	18.4	17.6	19.0	19.9	20.8	20.0	24.0	24,2
2 C 1	Iron and Steel Production	CO2	Gg	3.545,7	3.545.7	3.508,4	3.073,9	3.122,3	3.376,9	3.886,9	3.675.0	4.063.4	3.867,4	3.730,3	4.165,8	4.125,2	4.618,1	4.513,1
2 C 2	Ferroalloys Production	CO2	Gg	20,8	20,8	20,8	20,8	20,8	20,8	20,8	18,8	19,3	19,2	18,9	18,9	18,9	18,9	18,9
2 C 3	Aluminium production	CO2	Gg	158,4	158,4	158,4	63,0	•	•	•	•			NO	•	•	•	NO
3	SOLVENT AND OTHER PRODUCT USE	CO2	Gg	282,7	282,7	236,8	187,7	187,4	171,5	189,9	172,8	190,1	172,2	158,4	181,0	193,6	193,6	193,6
6 C	WASTE INCINERATION	CO2	Gg	20,7	20,7	18,5	7,5	8,5	9,8	10,1	10,4	10,7	11,0	11,3	11,3	11,2	11,3	11,3
2F6	Semiconductor Manufacture	FCs	GgC(505,7	133,1	215,2	287,8	360,4	430,9	505,7	403,9	593,8	477,8	453,9	407,1	416,9	425,8	483,0
2F1/2/3	ODS Substitutes	HFCs	GgC(547,1	217,2	331,5	382,5	438,8	498,4	547,1	627,8	720,5	809,9	864,1	1.015,6	1.118,9	1.215,1	1.304,7

1 A 1 a bioma	s: Public Electricity and Heat Production	NaO	Gg C	2,5	2.5	3,7	4,3	4,5	4,7	5,5	7,6	76	8,7	8,7	11,4	15,0	17,1	10.7
	u Public Electricity and Heat Production		Gg C	10,2	2,5 10,2	10.0	9,2	9,2	10.6	11,2	7,0 12,0	7,6 8,3	11,2	10.8	9,2	10,6	11,0	19,7 7,1
	Public Electricity and Heat Production		Gg C	6.7	6,7	7,8	7.0	9,2	9,5	7,5	7,7	10,0	11,5	10,8	6,0	6,5	4,2	5,2
•	Public Electricity and Heat Production		Gg C	1,0	1,0	1,3	2,1	2,1	2,2	2,2	2,6	2,8	2,7	2,2	2,5	3,3	3,9	4,2
1 A 1 a solid	<u> </u>		Gg C	23,0	23,0	27,3	17,4	15,0	14,9	19,6	2,0 15,4	14,2	14,9	16,5	2,5 22,1	24,3	22,9	28,3
	u Petroleum refining		Gg C	0,3	0,3	0,3	0,3	0,3	0,2	0,2	0,3	0,3	0.3	0,2	0,2	0,2	0,2	0,3
•	Petroleum refining	N2O		2,6	2,6	2,6	2,5	3,3	3,6	3,4	3,1	0,3 3,1	3,1	2,5	2,8	2,4	3,3	3,4
	u: Manufacture of Solid fuels and Other Ene		- 0	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,1	0,1	0.1	0,1	0.1	0.1	0,1	0,1
•	Manufacture of Solid fuels and Other Ene	•	_	0,2	0,2	0,2	0,2	0,2	0,0	0,2	0,1	0,0	0,1	0.0	0.0	0,1	0,1	0,0
•	Manufacturing Industries and Construction	•	_	20.5	20,5	21,0	21,6	24,9	25,3	24,6	23,3	27,9	20,9	33,1	25,8	28,7	30,5	34,8
	Manufacturing Industries and Construction Manufacturing Industries and Construction		-	2,4	2,4	2,4	2,5	2,5	3,0	3,1	3,3	3,6	3,3	3,1	3,3	3,3	3,4	3,3
-	ic Manufacturing Industries and Construction		-	109,9	109,9	114,3	115,4	111,7	118,4	115,6	113,5	118,2	121,8	114,9	112,1	109,8	107,9	97,5
1 A 2 other	Manufacturing Industries and Construction		_	1,9	1,9	2,3	2,8	2,1	2,3	2,4	2,8	2,4	2,6	3,0	3,0	3,1	3,8	3,5
1 A 2 solid	Manufacturing Industries and Construction		-	15.2	15,2	16.1	14.7	14,5	14.8	16.1	15.7	18.1	18.6	16.9	19.7	18,3	19.8	18,3
	ic Manufacturing Industries and Construction			9,5	9,5	11.0	8,3	9.8	9,9	9,1	8,3	11,2	10,5	8.0	7.9	7,9	6,0	7,5
•	o Civil Aviation		Gg C	0,3	0,3	0,4	0,5	0.5	0,6	0,6	0,7	0,8	0,9	0,9	1,0	0,8	0,9	0,8
•	c Road Transportation		Gg C	33,2	33,2	39.0	40,8	44,0	45,3	49,2	62.1	58,2	69,9	69,2	77,1	83,8	94,0	103,8
	n Road Transportation		Gg C	126,5	126,5	186,9	220,9	249,2	262,4	257,3	239,0	223,7	226,7	202,8	188,0	176,9	175,7	164,6
1 A 3 c liquid	•		Gg C	6,6	6,6	6,9	6,7	6,5	6,4	5,9	5,2	5,2	5,1	6,2	6,1	6,0	5,8	5,6
1 A 3 c solid	· ·		Gg C	0.1	0,1	0.1	0,1	0.1	0.1	0,1	0.1	0,1	0.1	0.1	0.1	0.1	0.1	0,0
1 A 3 d gas/di	•	N2O	_	3,8	3,8	3.4	3,2	3,2	3.9	3,7	3,7	4,3	4,2	4,2	4,2	4,8	5,3	5,5
1 A 3 d gasolii	n Navigation	N2O	_	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
1 A 3 e gaseo	•	N2O	-	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,2	0,2	0,3	0,3	0,3	0,3
1 A 4 biomass	S Other Sectors	N2O	Gg C	85,4	85,4	94,2	88,5	90,0	82,8	89,1	96,8	90,8	88,4	89,5	84,7	95,5	90,9	99,2
1 A 4 gaseous	s Other Sectors	N2O	Gg C	14,3	14,3	17,4	19,4	21,2	19,0	22,5	22,8	22,2	22,1	26,9	23,1	29,0	24,4	26,6
1 A 4 mobile-o	di Other Sectors	N2O	Gg C	137,8	137,8	123,5	127,8	129,0	138,4	130,2	144,7	156,8	151,2	151,2	139,2	142,9	142,6	137,5
1 A 4 mobile-g	ga Other Sectors	N2O	Gg C	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2	0,2
1 A 4 mobile-l	ic Other Sectors	N2O	Gg C	7,4	7,4	7,4	7,5	7,6	7,8	8,0	7,9	7,9	7,9	7,0	6,9	6,8	6,7	5,8
1 A 4 other	Other Sectors	N2O	Gg C	1,0	1,0	0,8	0,9	0,5	0,6	0,6	1,3	1,1	0,7	1,1	0,6	0,3	0,3	0,5
1 A 4 solid	Other Sectors	N2O	Gg C	22,6	22,6	23,5	19,7	16,8	14,3	13,8	13,4	10,4	8,9	9,0	7,3	6,6	5,9	5,2
	ic Other Sectors		Gg C	25,8	25,8	28,4	26,8	27,4	25,4	27,7	31,8	28,7	28,8	28,4	25,5	28,5	27,3	30,1
1 A 5 liquid	Other		Gg C	0,9	0,9	0,9	0,9	1,0	1,0	0,8	1,0	0,9	1,0	0,9	1,1	0,9	1,0	1,0
2 B 2	Nitric Acid Production	N2O		912,0	912,0	927,3	837,5	878,7	825,2	857,2	874,2	862,6	896,7	923,5	951,6	786,5	807,2	883,4
3	SOLVENT AND OTHER PRODUCT USE		Gg C	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5	232,5
4 B 1	Cattle		Gg C	662,7	662,7	652,9	624,0	625,6	636,6	646,9	637,9	627,6	622,9	618,6	613,9	603,5	593,8	588,3
4 B 3	Sheep		Gg C	2,9	2,9	3,0	2,9	3,1	3,2	3,4	3,5	3,6	3,3	3,3	3,1	3,0	2,8	3,0
4 B 4	Goats	N20	_	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
4 B 6	Horses	N20	- 0 -	0,2	0,2	0,3	0,3	0,3	0,3	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4	0,4
4 B 8	Swine	N20	- 0	94,2	94,2	92,9	95,0	97,5	96,0	96,0	93,5	93,7	97,6	88,1	85,5	89,3	85,0	87,0
4 B 9	Poultry	N20	_	26,2	26,2	27,8	26,3	28,0	27,4	26,8	24,9	28,2	27,3	27,4	22,7	24,0	24,0	24,8
4 B-13	Other Animals	N2O	_	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1	0,1
4 D 1	Direct Soil Emissions	N2O	- 0	1.649,4	1.649,4	1.814,8	1.675,6	1.516,6	1.821,3	1.825,2	1.573,7	1.650,6	1.673,2	1.566,6	1.526,8	1.586,1	1.533,8	1.414,1
4 D 2	Animal Production		Gg C	206,9	206,9	212,9	206,4	218,8	223,6	232,5	232,7	234,5	227,4	226,3	220,5	216,3	211,9	216,0
4 D 3	Indirect Emissions		Gg C	1.203,7	1.203,7	1.291,4	1.178,3	1.086,0	1.251,2	1.268,9	1.134,6	1.167,1	1.167,3	1.093,8	1.088,5	1.116,0	1.074,7	1.016,1
4 D 4 4 F	Other FIELD BURNING OF AGRICULTURAL R		Gg C	7,5	7,5	7,5	7,1	10,7	9,1	10,1	10,2	10,2	10,3 0.3	10,3	10,3	9,5	9,5	9,5
4 F 6 B	WASTEWATER HANDLING		Gg C	0,3 17.0	0,3 17,0	0,3 17,6	0,3	0,3 19.7	0,3 35,9	0,3 60,1	0,3 81.3	0,4		0,4 135,5	0,3 158,4	0,4 193,1	0,4 191,6	0,3 192,4
6 C	WASTEWATER HANDLING WASTE INCINERATION		Gg C	0,1	0,1	0,1	18,3 0,0	18,7	35,9 0,0	0,0	81,3	92,3 0,0	118,4 0,0	0.0	0.0	0,0	0,0	0,0
6 D	OTHER WASTE		Gg C	23.9	23,9	25.0	29.7	0,0 37,0	43,8	46,3	0,0 48,4	47,6	49,2	52,3	52,4	53,0	53,3	•
2C3	Aluminium production		Gg C	23,9	23,9 1.050,2	25,0 1.050,2	29,7 417,6	37,0 0.0	43,6	46,3 0.0	40,4 0.0	47,6 0.0	49,2 0.0	5∠,3 0.0	5∠,4 0.0	0.0	0.0	54,3 0,0
203	Auminium production	FFG8	s G gCl	0,0	1.000,2	1.000,2	417,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0

		TOTAL		GgC(78.535,2	78.573,0	82.647,0	76.062,6	76.177,6	77.045,4	80.159,1	83.237,4	83.046,1	82.513,7	80.403,0	81.083,5	84.871,8	86.433,8	91.566,4	
2	2F8	Other Sources of SF6	SF6	GgC(241,2	126,6	179,2	183,1	190,6	222,5	241,2	252,2	256,1	286,1	246,4	265,2	268,3	268,0	185,1	
2	2 F7	Electrical Equipment	SF6	GgC(26,1	20,6	21,7	22,8	23,9	25,0	26,1	26,9	27,1	27,2	28,9	29,1	29,4	30,0	31,5	
2	2C4	SF6 Used in Al and Mg Foundries	SF6	GgC(443,1	253,3	277,2	253,3	277,2	372,8	443,1	610,6	349,2	164,2	22,2	7,6	7,6	7,6	0,0	

				8	٣	22	83	4	35	96	76	8	6	8	2	22	93	96	97	86	66	8	2	22	33
IPCC Category I	Description	Gas	BY	6¥1	F§	LA92	LA93	LA94	LA95	LA96	_A97	-A98	LA99	LA00	ξ	LA02	LA03	TA96	TA97	TA98	TA99	TA00	TA01	TA02	TA03
1 A gaseous	Fuel Combustion (stationary)	CO2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2
1 A 1 a liquid	Public Electricity and Heat Production	CO2	16	16	15	15	13	13	15	15	12	11	11	15	15	18	16	12	7	7	7			12	16
1 A 1 a other	Public Electricity and Heat Production	CO2				33				31	29	28		30	29	29	27	14	13	15	20	16	16	17	17
1 A 1 a solid	Public Electricity and Heat Production	CO2	4	4	4	7	9	8	5	5	6	7	6	5	5	5	4	3	5	3	3	5	6	6	15
1 A 1 b liquid	Petroleum refining	CO2	13	13	13	13	11	11	11	11	11	12	12	11	11	10	11	20	20	18	17	15	14		18
1 A 2 mob-liquid	Manufacturing Industries and Constr.	CO2	18	19	18	18	18	18	18	18	18	18	18	17	18	16	17								
1 A 2 other	Manufacturing Industries and Constr.	CO2		31		29							29	28	27	26	29	22		21			22	21	
1 A 2 solid	Manufacturing Industries and Constr.	CO2	5	5	6	5	5	5	6	6	5	5	5	6	6	6	6	7	23	8	9	20	10	19	7
1 A 2 stat-liquid	Manufacturing Industries and Constr.	CO2	11	11	10	11	10	10	10	10	8	9	10	10	10	11	10	10	9	13	11	8	7	8	9
1 A 3 b diesel oil	Road Transportation	CO2	7	7	5	4	4	4	4	2	2	2	2	2	2	2	2	1	1	1	1	1	1	1	1
1 A 3 b gasoline	Road Transportation	CO2	2	2	2	2	2	2	2	4	4	4	4	4	4	4	5	4	3	5	5	4	3	4	4
1 A 3 b gasoline	Road Transportation	N2O					31	31	31									21	22	23					
1 A 4 biomass	Other Sectors	CH4	29	27	27	28	28	30	29	29		31	31						24	24	23	23			
1 A 4 mob-diesel	Other Sectors	CO2	15	15	17	16	16	16	17	16	15	15	15	14	14	14	13								25
1 A 4 solid	Other Sectors	CO2	10	10	11	10	12	14	13	12	16	16	16	19	19	20	20	5	4	4	4	3	4	3	3
1 A 4 stat-liquid	Other Sectors	CO2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	8	8	10	13	7	8	7	8
2 A 1	Cement Production	CO2	12	12	12	12	14	12	14	13	13	14	13	12	12	12	12	9	11	9	8	13	12	13	11
2 A 2	Lime Production	CO2	27	25	26	26	25	25	28	27	26	26	25	22	22	22	22					24			
2 A 7 b	Magnesit Sinter Plants	CO2	24	23	25	27	27	28	27	28	27	27	27	27	28	28	28	15	15	16	15	17	19	22	20
2 B 1	Ammonia Production	CO2	28	26	24	25	24	26	24	24	24	22	23	24	24	24	23								
2 B 2	Nitric Acid Production	N2O	19	20	20	19	19	19	19	19	19	19	19	20	20	19	19	23	19				17	18	22
2 C 1	Iron and Steel Production	CO2	8	8	8	9	8	7	7	7	7	6	7	7	7	7	7	24	12	17	22	σ	15	10	14
2 C 3	Aluminium production	PFCs		18	19	23																			
2 C 4	SF6 used in Al and Mg Foundries	SF6	26	30	30	32	30	27	26	22	28							17	16	12	10	12	13	14	
2 F 1/2/3	ODS Substitutes	HFCs	22		28	24	23	22	21	21	20	20	20	18	16	15	15		14	14	14	11	11	11	10
2 F 6	Semiconductor Manufacture	FCs	23			31	26	24	23	26	22	24	24	25	26	25	24	18				21	23		
2 F 8	Other Sources of SF6	SF6									31	30	30	31	31										
3	Solvent and Other Product Use	CO2	31	29														19	17	19	18	22			24
4 A 1	Cattle	CH4	9	9	9	8	7	9	9	9	10	10	9	9	8	8	8	11	10	11	12	10	9	9	6
4 B 1	Cattle	N2O	20	21	21	20	20	20	20	20	21	21	21	21	21	21	21								21
4 B 1	Cattle	CH4	21	22	22	21	21	21	22	23	23	23	22	23	23	23	25	25	25			25	24		19
4 B 8	Swine	CH4	25	24	23	22	22	23	25	25	25	25	26	26	25	27	26								26
4 D 1	Direct Soil Emissions	N2O	14	14	14	14	15	15	12	14	14	13	14	13	13	13	14	13	21		19	14	18	15	12
4 D 3	Indirect Emissions	N2O	17	17	16	17	17	17	16	17	17	17	17	16	17	17	18	16	18	22	16	18	20	16	13
6 A	Solid Waste disposal on land	CH4	6	6	7	6	6	6	8	8	9	8	8	8	9	9	9	6	6	6	6	6	5	5	5
6 B	Wastewater handling	N2O	30	28	29	30	29	29	30	30	30	29	28	29	30	30			26	20	21	19	21	20	23
	LA00= Level Assessment 2000																							\dashv	-
	TA00= Trend Assessment BY-2001					 	 				 		 											-	

Table A1.4: Ranking of Key Sources

ANNEX 2: SECTOR 1 A FUEL COMBUSTION

This annex includes a description of the national energy balance (including fuel and fuel categories) and a description of the methodology applied to extract activity data from the energy balance for the calculation of emissions for *Sector 1 A Fuel Combustion* (e.g. correspondence of categories of the energy balance to IPCC categories). Activity data used for estimating emissions in the sectoral approach as taken from the energy balance is also presented.

Furthermore, at the beginning of this Annex, the revision of the national energy balance as well as the implication of this revision on activity data is described.

Recalculations

In 2004 STATISTIK AUSTRIA revised the energy balance and the following improvements have been made.

Changes in methodology

The energy balance was revised regarding consumption of households and the commercial sector. The new estimates are now based on a model which considers space heating and water heating demand. As for most fuels gross inland deliveries were not changed this mostly implied shifts to or from the industrial sector.

Implications on activity data by fuels

102A Hard Coal, 105A Lignite, 107A Coke oven Coke

Minor adjustments of gross inland deliveries from 1995 onwards due to error correction and better information from industry that has become available.

110A Petrol Coke

This new fuel category has been introduced (petrol coke was reported as "Other Oil Products" in the previous submission).

301A Natural Gas

For 2001 and 2002 Gross inland deliveries have been corrected following new statistical data that has become available.

For 1990, 1995 to 2002 shifts between Public Transformation Plants and Autoproducers.

For the whole time series shifts between industry and small combustion sector as already mentioned above under "Changes in methodology".

203x Residual Fuel Oil, 224A Other Oil Products

Gross inland deliveries were updated for 1990 to 2001 as better information on refinery fuel types used for CHP and electricity generation has become avialable. For 1990 to 1992 up to 63 kt of "Other Oil Products" were shifted from Refinery to Industrial Auto Producers as "Residual Fuel Oil" to improve time series consistency.

116A Wood Waste, 111 A Fuel Wood

From 1999 on an increase of gross inland deliveries based on new statistical data on consumption and on production and foreign trade of wood pellets.

115A Industrial waste

From 1999 on an increase of gross inland deliveries, mainly due to new information on cement industry. Update of heating values according to national cement study which is consistent with data used for the national allocation plan for the European Emissions Trading System (CO₂ trading).

309A Biogas, 309B Sewage Sludge Gas, 310A Landfill Gas

From 1999 on slightly corrections between fuel types and gross inland deliveries. Furthermore, an error regarding the heating values used was corrected.

Table 1 presents the recalculation difference of fuel consumption for the base year 1990 and the years 2001 and 2002.

Table 1: Recalculation difference of fuel consumption [PJ] with respect to previous submission.

-				Fuel C	Consumptio	n [PJ]			
		1990			2001			2002	
IPCC Category / Fuel Group	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce
1 A FUEL COMBUSTION ACTIVITIES	825.48	822.61	-2.87	996.63	1 002.98	6.35	989.88	1 017.88	28.00
1 A liquid	380.40	376.78	-3.62	462.16	458.10	-4.06	468.98	474.08	5.10
1 A solid	140.87	140.86	-0.01	124.63	121.87	-2.76	114.60	119.65	5.05
1 A gaseous	201.60	201.60	0.00	272.29	279.47	7.19	264.68	278.91	14.23
1 A biomass	94.38	94.38	0.00	125.27	128.08	2.80	129.16	126.86	-2.30
1 A other	8.23	8.99	0.76	12.28	15.46	3.18	12.47	18.38	5.91
1 A 1 Energy Industries	193.60	186.25	-7.35	213.99	197.54	-16.44	227.17	203.23	-23.94
1 A 1 liquid	54.05	46.29	-7.76	52.72	44.85	-7.87	39.73	42.74	3.01
1 A 1 solid	61.47	61.40	-0.07	61.13	60.73	-0.40	59.80	56.13	-3.67
1 A 1 gaseous	73.62	74.10	0.48	82.41	71.96	-10.44	104.83	81.39	-23.44
1 A 1 biomass	2.04	2.04	-	11.91	12.38	0.46	13.60	14.07	0.47
1 A 1 other	2.41	2.41	-	5.81	7.62	1.81	9.22	8.90	-0.31
1 A 1 a Public Electricity and Heat Production	143.63	140.95	-2.68	159.90	159.24	-0.67	180.25	160.72	-19.53
1 A 1 a liquid	17.47	15.63	-1.84	19.97	17.30	-2.67	10.55	10.72	0.17
1 A 1 a solid	61.47	61.40	-0.07	61.13	60.73	-0.40	59.80	56.13	-3.67
1 A 1 a gaseous	60.23	59.46	-0.77	61.08	61.21	0.13	87.09	70.90	-16.20
1 A 1 a biomass	2.04	2.04		11.91	12.38	0.46	13.60	14.07	0.47
1 A 1 a other	2.41	2.41	-	5.81	7.62	1.81	9.22	8.90	-0.31
1 A 1 b Petroleum refining	43.70	39.80	-3.90	40.13	34.93	-5.20	36.54	39.39	2.85
1 A 1 b liquid	35.66	30.66	-5.00	32.75	27.55	-5.20	29.18	32.02	2.84

				Fuel C	Consumption	on [P.I]			
		1990		1 401 0	2001			2002	
IPCC Category / Fuel Group	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce
1 A 1 b solid	NO	NO	-	NO	NO	-	NO	NO	-
1 A 1 b gaseous	8.04	9.14	1.10	7.38	7.38	0.00	7.36	7.37	0.02
1 A 1 b biomass	NO	NO	-	NO	NO	-	NO	NO	-
1 A 1 b other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 1 c Manufacture of Solid fuels and Other Energy Industries	6.26	5.49	-0.77	13.95	3.37	-10.58	10.38	3.12	-7.26
1 A 1 c liquid	0.92	NO	-0.92	NO	NO	-	NO	NO	-
1 A 1 c solid	NO	NO	-	NO	NO	-	NO	NO	-
1 A 1 c gaseous	5.34	5.49	0.15	13.95	3.37	-10.58	10.38	3.12	-7.26
1 A 1 c biomass	NO	NO	-	NO	NO	-	NO	NO	
1 A 1 c other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 2 Manufacturing Industries and Construction	208.68	207.17	-1.50	233.67	247.54	13.87	208.40	252.12	43.72
1 A 2 liquid	43.85	49.30	5.45	37.93	44.00	6.07	38.65	38.53	-0.13
1 A 2 solid	48.05	48.10	0.05	52.23	51.88	-0.34	45.54	55.19	9.66
1 A 2 gaseous	83.09	77.38	-5.70	98.81	105.86	7.05	77.63	109.77	32.14
1 A 2 biomass	28.11	28.11	0.00	39.16	38.58	-0.57	43.76	39.77	-4.00
1 A 2 other	5.58	4.28	-1.30	5.55	7.21	1.66	2.82	8.86	6.04
1 A 2 a Iron and Steel	53.50	56.65	3.15	67.26	68.86	1.60	65.04	69.52	4.48
1 A 2 a liquid	3.83	5.72	1.89	11.03	11.38	0.35	12.73	6.80	-5.93
1 A 2 a solid	39.21	39.20	-0.01	40.99	40.16	-0.83	38.02	44.33	6.32
1 A 2 a gaseous	10.46	11.73	1.27	15.25	17.32	2.07	14.28	18.38	4.09
1 A 2 a biomass	NO	NO	-	0.00	NO	-	0.00	0.00	0.00
1 A 2 a other	NO	NO	-	NO	NO	-	NO	NO	
1 A 2 b Non- ferrous Metals	1.89	1.89	0.00	3.49	3.39	-0.10	2.57	3.49	0.92
1 A 2 b liquid	0.51	0.50	-0.01	0.51	0.68	0.18	0.56	0.68	0.12
1 A 2 b solid	0.04	0.04	0.00	0.40	0.12	-0.28	0.15	0.16	0.01
1 A 2 b gaseous	1.34	1.35	0.01	2.58	2.58	0.00	1.86	2.65	0.79
1 A 2 b biomass	NO	NO	-	NO	NO	-	NO	NO	-
1 A 2 b other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 2 c Chemicals	14.49	16.60	2.11	15.28	23.03	7.75	15.88	24.46	8.58
1 A 2 c liquid	0.93	0.99	0.05	0.25	0.95	0.70	0.16	0.84	0.68
1 A 2 c solid	0.23	0.78	0.55	1.74	2.75	1.00	1.22	2.64	1.42
1 A 2 c gaseous	7.66	9.67	2.01	7.48	16.38	8.89	7.26	16.06	8.80

				Fuel C	Consumption	on [PJ]			
		1990			2001			2002	
IPCC Category / Fuel Group	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce
1 A 2 c biomass	2.90	2.90	-	2.37	1.52	-0.85	5.65	2.31	-3.34
1 A 2 c other	2.76	2.27	-0.49	3.43	1.43	-2.00	1.59	2.62	1.03
1 A 2 d Pulp, Paper and Print	36.39	53.87	17.48	42.60	58.40	15.81	36.84	58.95	22.12
1 A 2 d liquid	5.09	10.54	5.45	1.80	2.53	0.73	1.14	1.99	0.85
1 A 2 d solid	2.31	3.68	1.37	3.04	3.79	0.75	2.53	4.36	1.84
1 A 2 d gaseous	12.78	17.11	4.33	17.20	26.44	9.24	12.41	24.53	12.12
1 A 2 d biomass	16.21	21.88	5.67	20.53	25.53	4.99	20.75	27.97	7.22
1 A 2 d other	NO	0.66	0.66	0.02	0.11	0.09	0.01	0.10	0.09
1 A 2 e Food Processing, Beverages and Tobacco	12.31	13.54	1.22	14.51	18.36	3.85	10.60	21.60	11.00
1 A 2 e liquid	3.31	4.21	0.90	1.41	2.77	1.36	1.23	2.31	1.08
1 A 2 e solid	0.06	0.06	0.00	0.30	0.31	0.00	0.14	0.30	0.16
1 A 2 e gaseous	8.82	9.14	0.32	12.77	15.07	2.30	9.21	18.81	9.60
1 A 2 e biomass	0.13	0.13	-	0.02	0.21	0.19	0.01	0.18	0.16
1 A 2 e other	NO	NO	-	0.01	NO	-0.01	0.00	NO	0.00
1 A 2 f Other	90.10	64.63	-25.47	90.53	75.49	-15.04	77.48	74.10	-3.38
1 A 2 f liquid	30.18	27.34	-2.84	22.93	25.68	2.74	22.83	25.91	3.08
1 A 2 f solid	6.20	4.35	-1.85	5.74	4.75	-0.99	3.48	3.40	-0.08
1 A 2 f gaseous	42.02	28.38	-13.64	43.52	28.07	-15.46	32.61	29.35	-3.26
1 A 2 f biomass	8.87	3.21	-5.67	16.23	11.33	-4.90	17.35	9.31	-8.04
1 A 2 f other	2.82	1.36	-1.46	2.09	5.66	3.57	1.22	6.13	4.92
1 A 3 Transport	171.75	166.91	-4.84	255.94	258.14	2.20	280.96	286.58	5.61
1 A 3 gasoline	105.42	105.29	-0.13	83.35	83.30	-0.05	89.53	89.56	0.03
1 A 3 diesel	61.78	57.06	-4.72	162.38	165.63	3.25	183.83	186.78	2.95
1 A 3 natural gas	4.05	4.05	-	9.09	8.25	-0.84	6.55	9.17	2.62
1 A 3 solid	0.07	0.07	-	0.02	0.03	0.00	0.02	0.02	0.00
1 A 3 biomass	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 a Civil Aviation	0.44	0.44	0.00	1.09	0.92	-0.17	1.03	1.03	0.01
1 A 3 a aviation gasoline	0.10	0.11	0.00	0.09	0.09	0.00	0.09	0.09	0.00
1 A 3 a jet kerosene	0.33	0.33	-	1.00	0.83	-0.17	0.94	0.95	0.01
1 A 3 b Road Transportation	164.24	159.39	-4.85	242.60	245.56	2.95	270.24	272.90	2.65
1 A 3 b gasoline	105.30	105.17	-0.13	83.23	83.18	-0.05	89.41	89.44	0.03
1 A 3 b diesel oil	58.94	54.22	-4.72	159.37	162.37	3.00	180.84	183.46	2.62

				FI C	\t:	ID II			
		1000		Fuel C	Consumptio	on [PJ]		2002	
IPCC Category	Subm.	1990 Subm.	Differen	Subm.	2001 Subm.	Differen	Subm.	2002 Subm.	Differen
/ Fuel Group	2004	2005	ce	2004	2005	ce	2004	2005	ce
1 A 3 b natural gas	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 b biomass	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 b other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 c Railways	2.33	2.33	-	2.29	2.42	0.13	2.26	2.39	0.12
1 A 3 c solid	0.07	0.07	-	0.02	0.03	0.00	0.02	0.02	0.00
1 A 3 c liquid	2.26	2.26	-	2.26	2.40	0.13	2.24	2.36	0.12
1 A 3 c other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 d Navigation	0.70	0.70	-	0.87	0.99	0.12	0.87	1.08	0.21
1 A 3 d coal	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 d residual oil	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 d gas/diesel oil	0.58	0.58	-	0.74	0.86	0.12	0.75	0.96	0.21
1 A 3 d other	NO	NO	-	NO	NO	-	NO	NO	
1 A 3 d gasoline	0.12	0.12	-	0.12	0.12	0.00	0.12	0.12	0.00
1 A 3 e Other	4.05	4.05	-	9.09	8.25	-0.84	6.55	9.17	2.62
1 A 3 e liquid	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 e solid	NO	NO	-	NO	NO	-	NO	NO	-
1 A 3 e gaseous	4.05	4.05	-	9.09	8.25	-0.84	6.55	9.17	2.62
1 A 4 Other Sectors	250.96	261.79	10.83	292.44	299.26	6.83	272.79	275.39	2.60
1 A 4 liquid	114.38	117.91	3.53	124.09	118.90	-5.19	115.65	114.88	-0.78
1 A 4 solid	31.28	31.29	0.01	11.24	9.23	-2.02	9.25	8.30	-0.94
1 A 4 gaseous	40.85	46.07	5.22	81.98	93.39	11.41	75.67	78.57	2.90
1 A 4 biomass	64.22	64.22	0.00	74.20	77.12	2.91	71.79	73.02	1.23
1 A 4 other	0.23	2.29	2.06	0.92	0.63	-0.29	0.43	0.62	0.19
1 A 4 a Commecial/Ins titutional	27.57	36.77	9.20	32.63	47.08	14.45	21.49	31.45	9.96
1 A 4 a liquid	16.46	17.91	1.45	11.29	9.17	-2.11	6.14	8.31	2.17
1 A 4 a solid	1.04	1.03	0.00	0.48	0.38	-0.10	0.28	0.27	-0.01
1 A 4 a gaseous	7.66	13.36	5.69	18.49	32.50	14.01	13.33	18.67	5.33
1 A 4 a biomass	2.18	2.17	0.00	1.45	4.39	2.94	1.31	3.59	2.28
1 A 4 a other	0.23	2.29	2.06	0.92	0.63	-0.29	0.43	0.62	0.19
1 A 4 b Residential	194.23	193.75	-0.48	226.82	222.34	-4.48	218.51	214.46	-4.05
1 A 4 b liquid	73.73	73.73	0.00	86.53	86.57	0.04	83.25	83.34	0.09
1 A 4 b solid	29.63	29.63	-	10.54	8.66	-1.89	8.79	7.87	-0.92
1 A 4 b gaseous	32.83	32.35	-0.48	62.81	60.20	-2.61	61.67	59.23	-2.44
-									

				Fuel C	Consumption	on [PJ]			
		1990			2001			2002	
IPCC Category / Fuel Group	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce	Subm. 2004	Subm. 2005	Differen ce
1 A 4 b biomass	58.05	58.05	-	66.94	66.92	-0.02	64.80	64.02	-0.78
1 A 4 b other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 4 c Agriculture/For estry/Fisheries	29.16	31.27	2.11	32.99	29.84	-3.14	32.80	29.49	-3.31
1 A 4 c liquid	24.20	26.28	2.08	26.27	23.16	-3.11	26.26	23.23	-3.04
1 A 4 c solid	0.62	0.63	0.02	0.22	0.19	-0.03	0.18	0.16	-0.02
1 A 4 c gaseous	0.35	0.37	0.01	0.68	0.68	0.01	0.67	0.67	0.01
1 A 4 c biomass	4.00	4.00	-	5.82	5.81	-0.01	5.69	5.42	-0.27
1 A 4 c other	NO	NO	-	NO	NO	-	NO	NO	-
1 A 5 Other	0.48	0.48	-	0.60	0.50	-0.10	0.56	0.56	0.00
1 A 5 liquid	0.48	0.48	-	0.60	0.50	-0.10	0.56	0.56	0.00
1 A 5 solid	NO	NO	-	NO	NO	-	NO	NO	-
1 A 5 gaseous	NO	NO	-	NO	NO	-	NO	NO	-
1 A 5 biomass	NO	NO	-	NO	NO	-	NO	NO	-
1 A 5 other	NO	NO	-	NO	NO	-	NO	NO	-
International Bunkers	12.26	12.26	-	22.20	22.65	0.45	20.79	20.98	0.19

A "-" indicates that no recalculations were carried out.

Methodology

For calculations of emissions from category 1 A Fuel Combustion CORINAIR methodology was applied. The fuel consumption based on the energy balance is multiplied with source specific emission factors for CO_2 , CH_4 and N_2O . Sector specific considerations and emission factors are described in the related sub chapters of Chapter 3 Energy of the NIR 2005.

Activity data is taken from the national energy balance as described in the following sub chapters. Data of the national energy balance is presented in Annex 4.

The National Energy Balance

The new time series is consistent to the *IEA/EUROSTAT Joint Questionnaire* format. The revised year 2002 and the new energy balance for 2003 has been submitted to the IEA in January 2005. The revised time series 1990 to 2001 is not yet submitted to IEA/EUROSTAT. This is due to a planned improvement and finalization of the whole time series by Statistik Austria in 2005. It is planned to submit the finalised time series to IEA/EUROSTAT until the end of 2005.

There are five different IEA questionnaires for each of: oil; natural gas; coal; renewable fuels; electricity and heat. Table 2 shows the unified categories of the IEA questionnaires with ISIC codes and the corresponding SNAP and IPCC categories to which the fuel consumption is assigned to.

Data of the national energy balance is presented in Annex 4.

Table 2: Categories of the national energy balance [IEA-JQ, 2004] and their correspondence to IPCC categories.

IEA-Category and ISIC Codes*	Comments	SNAP	IPCC-Category
Production			Reference Approach: Production
Imports			Reference Approach: Import
Exports			Reference Approach: Export
Bunkers	No consumption (1)		
Stock Changes			Reference Approach: Stock Change
Refinery Fuel		0103	1 A 1 b Petroleum Refining
Transformation Sector, of which	n:		
Public Electricity plants	In the inventory plant		
Public CHP plants	specific data are	0101 0102	1 A 1 a Public Electricity and Heat Production
Public Heat plants	considered.	0.02	. readeller.
Auto Producer Electricity plants	- For autoproducers by secto	ra aga tah	ala balaw
Auto Producer CHP plants	- For autoproducers by secto	ns see iac	ore below.
Auto Producer Heat plants	_		
Coke Ovens	Transformation from Coking Coal to Coke Oven Coke .		
Blast furnaces	Coke Oven Coke.	030326	1 A 2 a Iron and Steel
Gas Works	Transformation of <i>Other Oil Products</i> to <i>Gas Works Gas</i> .		
Petrochemical Industry	No consumption (1)		
Patent Fuel Plants	No consumption (1)		
Not Elsewhere Specified	No consumption (1)		
Energy Sector, of which (ISIC 10), 11, 12, 23, 40):		
Coal Mines	No consumption (1)		
Oil and Gas Extraction		0105	1 A 1 c Manufacture of Solid fuels and Other Energy Industries
Inputs to oil refineries		0103	1 A 1 b Petroleum Refining
Coke Ovens	Coke Oven Gas and Blast Furnace Gas.	0301	1 A 2 a Iron and Steel
Blast furnaces	Coke Oven Coke.	030326	1 A 2 a Iron and Steel
Gas Works	Natural Gas.	0201	1 A 4 a Commercial/ Institutional
Electricity, CHP and Heat Plants		0101	1 A 1 a Public Electricity and Heat Production
Liquefaction Plants	No consumption (1)		
Not Elsewhere Specified	No consumption (1)		
Distribution Losses	Includes statistical differences and therefore it may be less than zero.		
Final Energy Consumption			

IEA-Category and ISIC Codes*	Comments	SNAP	IPCC-Category
Total Transport, of which (ISIC	60, 61, 62):		
Domestic Air Transport Road Rail	Division to SNAP categories is performed by means of studies.	07 08 0201	1 A 2 f Manuf. Ind. and Constr Other 1 A 3 Transport 1 A 4 b Residential
Inland Waterways	,		1 A 4 c Agriculture/ Forestry/ Fisheries
Pipeline Transport	Natural Gas.	010506	1 A 3 e Transport-Other
Non Specified	Other biofuels and Lubricants.	0201	1 A 4 a Commercial/ Institutional
Total Industry, of which:			
Iron and Steel (ISIC 271, 2731)		0301 030301	1 A 2 a Iron and Steel
· ·		030326	
Chemical incl.Petro-Chemical (ISIC 24)		0301	1 A 2 c Chemicals
Non ferrous Metals (ISIC 272, 2732)		0301	1 A 2 b Non-ferrous Metals
Non metallic Mineral Products (ISIC 26)		0301 030311 030317 030319	1 A 2 f Manuf. Ind. and Constr Other
Transportation Equipment (ISIC 34, 35)		0301	1 A 2 f Manuf. Ind. and Constr Other
Machinery (ISIC 28, 29, 30, 31, 32)		0301	1 A 2 f Manuf. Ind. and Constr Other
Mining and Quarrying (ISIC 13, 14)		0105	1 A 1 c Manufacture of Solid fuels and Other Energy Industries
Food, Beverages and Tobacco (ISIC 15, 16)		0301	1 A 2 e Food Processing, Beverages and Tobacco
Pulp, Paper and Printing (ISIC 21, 22)		0301	1 A 2 d Pulp, Paper and Print
Wood and Wood Products (ISIC 20)		0301	1 A 2 f Manuf. Ind. and Constr Other
Construction (ISIC 45)		0301	1 A 2 f Manuf. Ind. and Constr Other
Textiles and Leather (ISIC 17, 18, 19)		0301	1 A 2 f Manuf. Ind. and Constr Other
Non Specified (ISIC 25, 33, 36, 37)		0301	1 A 2 f Manuf. Ind. and Constr Other
Total Other sectors, of which:			
Commercial and Public Services			
(ISIC 41, 50, 51, 52, 55, 63, 64, 65, 66, 67, 70, 71, 72, 73, 74, 75, 80, 85, 90, 91, 92, 93, 99)		0201	1 A 4 a Commercial/ Institutional
Residential		0202	1 A 4 b Residential

IEA-Category and ISIC Codes*	Comments	SNAP	IPCC-Category
(ISIC 95)			
Agriculture		0203	1 A 4 c Agriculture/Forestry/
(ISIC 01, 02, 05)		0203	Fisheries
Non Specified	No consumption (1)		

^{*}Sector names may differ to original IEA questionnaire naming convention. Note that the ISIC codes cited in this table are consistent with the NACE nomenclature.

Table 3: Categories of the national energy balance [IEA-JQ, 2004] and their correspondence to IPCC categories: Autoproducers by sector.

Auto Producers (Electricity + CHP + Heat), of which: **Energy Sector, of which** No consumption (1) Coal Mines 1 A 1 c Manufacture of Solid fuels Oil and Gas Extraction 0105 and Other Energy Industries Inputs to oil refineries 0103 1 A 1 b Petroleum Refining No consumption (1) Coke Ovens No consumption (1) Gas Works No consumption (1) Liquefaction Plants Not Elsewhere Specified No consumption (1) Industrie, of which: Iron and Steel 030326 1 A 2 a Iron and Steel Chemical (incl.Petro-Chemical) 0301 1 A 2 c Chemicals Non ferrous Metals 1 A 2 b Non-ferrous Metals 0301 1 A 2 f Manuf. Ind. and Constr. -0301 Non metallic Mineral Products Other 1 A 2 f Manuf, Ind. and Constr. -0301 Transportation Equipment 1 A 2 f Manuf. Ind. and Constr. -0301 Machinery Other 1 A 1 c Manufacture of Solid fuels 0301 Mining and Quarrying and Other Energy Industries 1 A 2 e Food Processing, Beverages 0301 Food, Beverages and Tobacco and Tobacco Pulp, Paper and Printing 0301 1 A 2 d Pulp, Paper and Print 1 A 2 f Manuf. Ind. and Constr. -0301 Wood and Wood Products Other 1 A 2 f Manuf. Ind. and Constr. -0301 Construction Other 1 A 2 f Manuf, Ind. and Constr. -0301 Textiles and Leather Other 1 A 2 f Manuf. Ind. and Constr. -0301 Non Specified (Industry) Other Total Transport, of which No consumption (1) Pipeline Transport

⁽¹⁾ Indicates that no fuel consumption is reported in the energy balance for the specific category. In some cases this may be interpreted as "included elsewhere" if the energy statistic has lack of detailed sectoral data.

Non Specified	No consumption (1)		
Other Sectors, of which			
Commercial and Public Services		0201	1 A 4 a Commercial/ Institutional
Residential	No consumption (1)		
Agriculture	No consumption (1)		_
Non Specified	No consumption (1)		<u> </u>

^{*}Sector names may differ to original IEA questionnaire naming convention. Note that the ISIC codes cited in this table are consistent with the NACE nomenclature.

Fuels and Fuel Categories

The units used in the national fuel statistics are: *ton* for solid or liquid fuels and *cubic meter* for gaseous fuels. To convert these units into the caloric unit *Joule* the calorific value of each fuel category has to be quantified. These calorific values are specified in the unit *Joule per Mass or Volume Unit*, e.g. MJ/kg, MJ/m³ gas.

Each fuel has chemical and physical characteristics which influence its burning performance e.g. calorific value or carbon and sulphur content. Fuel categories are formed to pool fuels of the same characteristics in fuel groups. Limitations are given by the fuel categories of the energy balance. A list of the inventory fuel categories and their correspondence to IPCC-fuel categories is shown in Table 4.

Table 4: Fuel categories used for the inventory and correspondence to IPCC fuel categories

Inventor Fuel Ca	•	IEA Fuel Category		IPCC
Code (1)	Category	Category	Average Net Calorific Value ⁽²⁾	Fuel Category (3)
102 A	Hard Coal	Bituminous Coal and Anthracite	27.50	Solid (coal)
104 A	Hard Coal Briquettes	Patent Fuel	31.00	Solid (coal)
105 A	Brown Coal	Lignite/Brown Coal	9.82	Solid (coal)
106 A	Brown Coal Briquettes	BKB/PB	19.30	Solid (coal)
107 A	Coke	Coke Oven Coke	28.20	Solid (coal)
113 A	Peat	Peat	8.80	Solid
304 A	Coke Oven Gas	Coke Oven Gas	-	Solid
305 A	Blast Furnace Gas	Blast Furnace Gas	-	Solid
110 A	Petrol Coke	Petrol Coke	34.00	Liquid
203 B	Light Fuel Oil Sulphur Content < 0,2 %	Residual Fuel Oil	41.36	Liquid (residual oil)
203 C	Medium Fuel Oil Sulphur Content < 0,4%	Residual Fuel Oil	41.36	Liquid (residual oil)
203 D	Heavy Fuel Oil Sulphur Content >= 1%	Residual Fuel Oil	41.36	Liquid (residual oil)

⁽¹⁾ Indicates that no fuel consumption is reported in the energy balance for the specific category. In some cases this may be interpreted as "included elsewhere" if the energy statistic has lack of detailed sectoral data.

Inventor Fuel Cat		IEA Fuel Category		IDOO
Code (1)	Category	Category	Average Net Calorific Value ⁽²⁾	IPCC Fuel Category ⁽³⁾
204 A	Gasoil	Heating and other Gasoil	42.84	Liquid (gas/diesel oil)
205 0	Diesel	Transport Diesel	42.80	Liquid (diesel oil; gas/diesel oil)
206 A	Petroleum	Other Kerosene	43.30	Liquid
206 B	Kerosene	Kerosene Type Jet Fuel	43.30	Liquid (jet kerosene)
207 A	Aviation Gasoline	Gasoline Type Jet Fuel	42.49	Liquid (aviation gasoline)
208 0	Motor Gasoline	Motor Gasoline	42.49	Liquid (gasoline)
224 A	Other Petroleum Products	Other Products	43.95	Liquid
303 A	Liquified Petroleum Gas (LPG)	LPG	46.00	Liquid
308 A	Refinery Gas	Refinery Gas	45.93	Liquid
301 A	Natural Gas	Natural Gas	35.85	Gaseous (natural gas)
114 B	Municipal Wests	Municipal Solid Waste Renewable	8.93	Other Fuels
114 D	Municipal Waste	Municipal Solid Waste Non Renewable	9.14	Other Fuels
114 C	Hazardous Waste	Industrial Wastes	15.76	Other Fuels
115 A	Industrial Waste	Industrial Wastes	15.76	Other Fuels
111 A	Fuel Wood	Wood/Wood wastes/Other Solid Wastes, of which: Wood	14.35	Biomass
116 A	Wood Wastes	Wood/Wood wastes/Other Solid Wastes, of which: Other vegetal materials and waste (including straw, sawdust, wood chips)	11.36	Biomass
118 A	Sewage Sludge	Industrial Wastes	3.64	Biomass
215 A	Black Liquor	Wood/Wood wastes/Other Solid Wastes, of which: Black Liquor	7.92	Biomass
309 A	Biogas	Biogas	22.06	Biomass
309 B	Sewage Sludge Gas	Sewage Sludge Gas	22.06	Biomass
310 A	Landfill Gas	Landfill Gas	17.00	Biomass

⁽¹⁾ First three digits are based on CORINAIR / NAPFUE 94–Code

⁽²⁾ Units: [MJ / kg] or [MJ / m³ Gas] respectively, for the Year 2003. Note that for some fuels sector specific calorific values are taken. The energy balance reports some fuels (e.g. renewables) in [TJ] so that unit conversion by means of calorific values is not necessary.

⁽³⁾ Fuel subcategories are shown in parenthesis

Energy Consumption and CO₂ Emissions by Sectors and Fuel Types

In Table 5 to Table 18 detailed data on fuel consumption and CO_2 emissions for each fuel type according to Table 4 and each sector of 1 A Fuel Combustion are provided for the period from 1990 to 2003. For information on completeness, in particular on CO_2 emissions included elsewhere, please refer to the documentation boxes of the CRF and to Chapter 3.2.1 subchapter Completeness of the NIR.

Table 5: 2003 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	70.89	53.08	0.02	7.15	131.13	6.91	4.55	0.00	0.67	12.13
102A	Hard Coal	57.19	7.10	0.02	1.37	65.68	5.41	0.67	0.00	0.13	6.20
104A	Hard Coal Briquettes				0.06	0.06				0.01	0.01
105A	Brown Coal	13.70	1.73		0.24	15.67	1.51	0.17		0.03	1.70
106A	Brown Coal Briquettes		0.00		1.38	1.38		0.00		0.13	0.13
107A	Coke		33.31		4.08	37.39		3.46		0.38	3.84
113A	Peat				0.02	0.02				0.00	0.00
304A	Coke Oven Gas		10.93			10.93		0.25			0.25
	Total Liquid	44.72	45.03	301.43	124.81	516.00	3.17	3.45	22.21	9.30	38.17
110A	Petrol Coke	2.00	2.22			4.22	0.20	0.22			0.43
203B	Light Fuel Oil	0.67	9.07		14.60	24.34	0.05	0.71		1.12	1.88
203C	Medium Fuel Oil				1.61	1.61				0.13	0.13
203D	Heavy Fuel Oil	14.30	11.90			26.19	1.14	0.93			2.06
204A	Gasoil	0.15	4.52		80.89	85.56	0.01	0.34		6.07	6.42
2050	Diesel	0.19	14.91	208.35	20.06	243.50	0.01	1.10	15.35	1.48	17.94
206A	Other Kerosene		0.01		0.20	0.21		0.00		0.02	0.02
206B	Jet Kerosene			1.30		1.30			0.06		0.09
207A	Aviation Gasoline			0.09		0.09			0.01		0.01
2080	Motor Gasoline		0.09	91.70	1.68	93.46		0.01	6.79	0.12	6.92
224A	Other Petroleum Products	14.83				14.83	1.16				1.16
303A	Liquified Petroleum Gas (LPG)	0.06	2.33		5.77	8.15	0.00	0.15		0.37	0.52
308A	Refinery Gas	12.53				12.53	0.59				0.59
301A	Total Gaseous (Natural Gas)	100.84	105.84	8.81	85.77	301.26	5.55	5.82	0.48	4.72	16.57
	Total Other Fuel	9.77	8.05		1.04	18.85	0.40	0.34		0.01	0.76
114B	Municipal Waste	5.78				5.78	0.28				0.28
114C	Hazardous Waste	2.00				2.00	0.10				0.10
115A	Industrial Waste	1.98	8.05		1.04	11.07	0.02	0.34		0.01	0.37
	Total Biomass ⁽¹⁾	16.36	43.77		79.70	139.82	(1.8)	(4.8)		(8.07)	(14.67)
111A	Fuel Wood	0.26	1.28		70.25	71.79	0.03	0.13		7.03	7.18
116A	Wood Wastes	15.57	18.39		8.48	42.44	1.71	2.02		0.93	4.67
118A	Sewage Sludge	0.26				0.26	0.03				0.03
215A	Black Liquor		23.55			23.55		2.59			2.59
309A	Biogas		0.51			0.51		0.06			0.06
309B	Sewage Sludge Gas	0.05			0.70	0.75	0.01			0.08	0.08
310A	Landfill Gas	0.23	0.04		0.27	0.53	0.03	0.00		0.03	0.06
	Total ⁽¹⁾	242.57	255.76	310.27	298.47	1 107.07	16.03	14.16	22.69	14.70	67.62

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 6: 2002 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emissions (Tg)					
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total	
	Total Solid	56.13	55.19	0.02	8.30	119.65	5.51	4.98	0.00	0.78	11.27	
102A	Hard Coal	42.89	8.36	0.02	1.67	52.95	4.05	0.79	0.00	0.16	5.00	
104A	Hard Coal Briquettes				0.02	0.02				0.00	0.00	
105A	Brown Coal	13.24	1.60		0.33	15.17	1.46	0.16		0.04	1.65	
106A	Brown Coal Briquettes		0.00		1.26	1.26		0.00		0.12	0.12	
107A	Coke		35.66		5.00	40.66		3.71		0.46	4.17	
113A	Peat				0.01	0.01				0.00	0.00	
304A	Coke Oven Gas		9.58			9.58		0.33			0.33	
	Total Liquid	42.74	38.53	277.94	114.88	474.08	3.00	2.95	20.47	8.56	35.01	
110A	Petrol Coke	2.75	2.22			4.97	0.28	0.22			0.50	
203B	Light Fuel Oil	1.08	5.56		12.12	18.77	0.08	0.43		0.93	1.45	
203C	Medium Fuel Oil				1.91	1.91				0.15	0.15	
203D	Heavy Fuel Oil	9.77	10.88			20.65	0.78	0.85			1.63	
204A	Gasoil	0.13	2.79		73.40	76.32	0.01	0.21		5.51	5.72	
2050	Diesel	0.03	14.73	186.81	20.14	221.71	0.00	1.09	13.76	1.48	16.33	
206A	Other Kerosene		0.01		0.18	0.19		0.00		0.01	0.02	
206B	Jet Kerosene			1.48		1.48			0.07		0.11	
207A	Aviation Gasoline			0.09		0.09			0.01		0.01	
2080	Motor Gasoline		0.09	89.56	1.65	91.30		0.01	6.63	0.12	6.76	
224A	Other Petroleum Products	14.78				14.78	1.15				1.15	
303A	Liquified Petroleum Gas (LPG)	0.13	2.25		5.46	7.84	0.01	0.14		0.35	0.50	
308A	Refinery Gas	14.07				14.07	0.68				0.68	
301A	Total Gaseous (Natural Gas)	81.39	109.77	9.17	78.57	278.91	4.48	6.04	0.50	4.32	15.34	
	Total Other Fuel	8.90	8.86		0.62	18.38	0.37	0.42		0.01	0.80	
114B	Municipal Waste	4.91				4.91	0.24				0.24	
114C	Hazardous Waste	2.15				2.15	0.11				0.11	
115A	Industrial Waste	1.84	8.86		0.62	11.32	0.02	0.42		0.01	0.45	
	Total Biomass ⁽¹⁾	14.07	39.77		73.02	126.86	(1.55)	(4.36)		(7.39)	(13.3)	
111A	Fuel Wood	0.05	1.35		64.70	66.10	0.00	0.14		6.47	6.61	
116A	Wood Wastes	13.67	15.14		7.36	36.17	1.50	1.67		0.81	3.98	
118A	Sewage Sludge	0.24				0.24	0.03				0.03	
215A	Black Liquor		22.97			22.97		2.53			2.53	
309A	Biogas		0.28			0.28		0.03			0.03	
309B	Sewage Sludge Gas	0.06	0.00		0.66	0.72	0.01	0.00		0.07	0.08	
310A	Landfill Gas	0.06	0.03		0.30	0.38	0.01	0.00		0.03	0.04	
	Total ⁽¹⁾	203.23	252.12	287.14	275.39	1 017.88	13.35	14.39	20.97	13.66	62.42	

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 7: 2001 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	otion (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	60.73	51.88	0.03	9.23	121.87	5.96	4.48	0.00	0.87	11.30
102A	Hard Coal	46.12	9.38	0.03	2.18	57.71	4.36	0.88	0.00	0.20	5.45
104A	Hard Coal Briquettes				0.02	0.02				0.00	0.00
105A	Brown Coal	14.05	1.41		0.41	15.87	1.54	0.14		0.04	1.72
106A	Brown Coal Briquettes	0.56	0.00		1.52	2.09	0.05	0.00		0.15	0.20
107A	Coke		31.32		5.08	36.40		3.26		0.47	3.72
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		9.78			9.78		0.21			0.21
	Total Liquid	44.85	44.00	250.35	118.90	458.10	3.18	3.35	18.43	8.87	33.86
110A	Petrol Coke	2.27	0.67			2.94	0.23	0.07			0.30
203B	Light Fuel Oil	2.58	7.84		14.31	24.73	0.20	0.61		1.10	1.91
203C	Medium Fuel Oil				1.40	1.40				0.11	0.11
203D	Heavy Fuel Oil	14.22	16.37		0.03	30.63	1.13	1.28		0.00	2.41
204A	Gasoil	0.79	2.32		77.49	80.60	0.06	0.17		5.81	6.05
2050	Diesel	0.01	14.51	165.66	19.62	199.81	0.00	1.07	12.20	1.44	14.72
206A	Other Kerosene		0.01		0.04	0.04		0.00		0.00	0.00
206B	Jet Kerosene			1.30		1.30			0.06		0.09
207A	Aviation Gasoline			0.09		0.09			0.01		0.01
2080	Motor Gasoline		0.09	83.30	1.63	85.02		0.01	6.16	0.12	6.29
224A	Other Petroleum Products	9.89				9.89	0.77				0.77
303A	Liquified Petroleum Gas (LPG)		2.19		4.38	6.58		0.14		0.28	0.42
308A	Refinery Gas	15.08				15.08	0.78				0.78
301A	Total Gaseous (Natural Gas)	71.96	105.86	8.25	93.39	279.47	3.96	5.82	0.45	5.14	15.37
	Total Other Fuel	7.62	7.21		0.63	15.46	0.33	0.41		0.01	0.75
114B	Municipal Waste	4.61				4.61	0.23				0.23
114C	Hazardous Waste	1.94				1.94	0.10				0.10
115A	Industrial Waste	1.07	7.21		0.63	8.91	0.01	0.41		0.01	0.43
	Total Biomass ⁽¹⁾	12.38	38.58		77.12	128.08	(1.36)	(4.23)		(7.82)	(13.41)
111A	Fuel Wood	0.07	1.05		67.03	68.15	0.01	0.11		6.70	6.82
116A	Wood Wastes	11.89	13.92		8.70	34.52	1.31	1.53		0.96	3.80
118A	Sewage Sludge	0.27				0.27	0.03				0.03
215A	Black Liquor		23.30			23.30		2.56			2.56
309A	Biogas	0.02	0.21		0.02	0.25	0.00	0.02		0.00	0.03
309B	Sewage Sludge Gas	0.05	0.00		0.67	0.72	0.01	0.00		0.08	0.08
310A	Landfill Gas	0.07	0.10		0.69	0.86	0.01	0.01		0.08	0.10
	Total ⁽¹⁾	197.54	247.54	258.63	299.26	1 002.98	13.42	14.06	18.89	14.88	61.29

⁽¹⁾ CO_2 emissions of Biomass are not included in Total.

Table 8: 2000 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	51.07	55.84	0.03	10.16	117.08	5.00	4.73	0.00	0.95	10.69
102A	Hard Coal	39.11	10.42	0.03	2.14	51.70	3.70	0.98	0.00	0.20	4.88
104A	Hard Coal Briquettes				0.11	0.11				0.01	0.01
105A	Brown Coal	11.60	1.35		0.44	13.39	1.28	0.13		0.05	1.45
106A	Brown Coal Briquettes	0.35	0.00		1.71	2.06	0.03	0.00		0.17	0.20
107A	Coke		33.60		5.75	39.35		3.49		0.53	4.02
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		10.47			10.47		0.12			0.12
	Total Liquid	43.48	44.09	233.82	107.57	428.97	3.06	3.35	17.20	8.02	31.69
110A	Petrol Coke	1.61	0.81			2.43	0.16	0.08			0.24
203B	Light Fuel Oil	1.98	8.12		12.55	22.65	0.15	0.63		0.97	1.75
203C	Medium Fuel Oil				1.48	1.48				0.12	0.12
203D	Heavy Fuel Oil	14.84	16.52		0.15	31.51	1.18	1.29		0.01	2.48
204A	Gasoil	0.01	1.64		68.45	70.09	0.00	0.12		5.13	5.26
2050	Diesel	0.01	14.36	149.39	18.69	182.45	0.00	1.06	11.00	1.38	13.44
206A	Other Kerosene		0.01		0.24	0.26		0.00		0.02	0.02
206B	Jet Kerosene			1.63		1.63			80.0		0.12
207A	Aviation Gasoline			0.09		0.09			0.01		0.01
2080	Motor Gasoline		0.09	82.71	1.63	84.43		0.01	6.12	0.12	6.25
224A	Other Petroleum Products	9.74				9.74	0.76				0.76
303A	Liquified Petroleum Gas (LPG)	0.94	2.54		4.37	7.85	0.06	0.16		0.28	0.50
308A	Refinery Gas	14.35				14.35	0.74				0.74
301A	Total Gaseous (Natural Gas)	71.38	107.22	9.65	74.68	262.92	3.93	5.90	0.53	4.11	14.46
	Total Other Fuel	5.85	6.93		1.39	14.17	0.28	0.32		0.01	0.62
114B	Municipal Waste	4.52				4.52	0.22				0.22
114C	Hazardous Waste	1.20				1.20	0.06				0.06
115A	Industrial Waste	0.13	6.93		1.39	8.45	0.00	0.32		0.01	0.34
	Total Biomass(1)	9.45	36.76		68.48	114.69	(1.04)	(4.04)		(6.94)	(12.02)
111A	Fuel Wood	0.04	0.89		59.31	60.23	0.00	0.09		5.93	6.02
116A	Wood Wastes	8.99	11.45		8.02	28.46	0.99	1.26		0.88	3.13
118A	Sewage Sludge	0.29				0.29	0.03				0.03
215A	Black Liquor		24.12			24.12		2.65			2.65
309A	Biogas	0.02	0.30		0.02	0.34	0.00	0.03		0.00	0.04
309B	Sewage Sludge Gas	0.05			0.74	0.79	0.01			0.08	0.09
310A	Landfill Gas	0.06			0.40	0.46	0.01			0.04	0.05
	Total(1)	181.23	250.84	243.50	262.27	937.84	12.28	14.30	17.74	13.10	57.45

⁽¹⁾ CO_2 emissions of Biomass are not included in Total.

Table 9: 1999 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	37.79	51.19	0.03	12.51	101.52	3.78	4.37	0.00	1.17	9.32
102A	Hard Coal	24.14	9.00	0.03	2.49	35.66	2.28	0.85	0.00	0.23	3.36
104A	Hard Coal Briquettes				0.12	0.12				0.01	0.01
105A	Brown Coal	13.65	1.16		0.52	15.33	1.50	0.11		0.06	1.67
106A	Brown Coal Briquettes		0.00		2.05	2.05		0.00		0.20	0.20
107A	Coke		28.80		7.32	36.12		3.00		0.67	3.67
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		12.22			12.22		0.42			0.42
	Total Liquid	52.41	45.27	219.73	117.95	435.36	3.87	3.46	16.16	8.80	32.33
110A	Petrol Coke	2.14	1.19			3.32	0.22	0.12			0.34
203B	Light Fuel Oil	1.35	9.85		11.83	23.03	0.11	0.77		0.91	1.78
203C	Medium Fuel Oil	0.09	0.00		2.13	2.22	0.01	0.00		0.17	0.17
203D	Heavy Fuel Oil	24.47	15.52		0.17	40.16	1.95	1.21		0.01	3.17
204A	Gasoil	0.29	1.84		77.49	79.62	0.02	0.14		5.81	5.97
2050	Diesel	0.10	14.17	132.46	19.85	166.59	0.01	1.04	9.76	1.46	12.27
206A	Other Kerosene		0.12		0.58	0.70		0.01		0.05	0.05
206B	Jet Kerosene			1.54		1.54			0.07		0.11
207A	Aviation Gasoline			0.12		0.12			0.01		0.01
2080	Motor Gasoline		0.09	85.61	1.64	87.34		0.01	6.33	0.12	6.46
224A	Other Petroleum Products	9.40				9.40	0.73				0.73
303A	Liquified Petroleum Gas (LPG)	0.20	2.49		4.25	6.94	0.01	0.16		0.27	0.44
308A	Refinery Gas	14.39				14.39	0.82				0.82
301A	Total Gaseous (Natural Gas)	79.53	99.26	7.81	86.82	273.41	4.37	5.46	0.43	4.77	15.04
	Total Other Fuel	4.99	6.92		2.53	14.44	0.24	0.27		0.03	0.53
114B	Municipal Waste	4.52				4.52	0.22				0.22
114C	Hazardous Waste	0.34				0.34	0.02				0.02
115A	Industrial Waste	0.13	6.92		2.53	9.59	0.00	0.27		0.03	0.30
	Total Biomass ⁽¹⁾	7.14	42.29		72.30	121.73	(0.79)	(4.63)		(7.31)	(12.73)
111A	Fuel Wood	0.02	1.81		64.10	65.94	0.00	0.18		6.41	6.59
116A	Wood Wastes	6.98	16.51		7.00	30.50	0.77	1.82		0.77	3.35
118A	Sewage Sludge	0.06				0.06	0.01				0.01
215A	Black Liquor		23.65			23.65		2.60			2.60
309A	Biogas	0.01	0.32		0.02	0.35	0.00	0.04		0.00	0.04
309B	Sewage Sludge Gas	0.02	0.00		0.70	0.71	0.00	0.00		0.08	0.08
310A	Landfill Gas	0.04	0.00		0.48	0.52	0.00	0.00		0.05	0.06
	Total ⁽¹⁾	181.86	244.93	227.56	292.11	946.47	12.26	13.56	16.60	14.78	57.23

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 10: 1998 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)			CO ₂ emi	ssions (Tg)			
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	35.81	54.97	0.03	12.58	103.40	3.50	4.34	0.00	1.18	9.02
102A	Hard Coal	28.48	11.92	0.03	3.08	43.51	2.69	1.12	0.00	0.29	4.10
104A	Hard Coal Briquettes				0.12	0.12				0.01	0.01
105A	Brown Coal	7.34	0.66		0.57	8.57	0.81	0.06		0.06	0.93
106A	Brown Coal Briquettes		0.00		1.99	1.99		0.00		0.19	0.19
107A	Coke		30.21		6.82	37.03		3.14		0.63	3.77
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		12.17			12.17		0.01			0.01
	Total Liquid	61.07	54.86	228.48	118.18	462.59	4.40	4.19	16.83	8.83	34.29
110A	Petrol Coke	2.20	0.67			2.87	0.22	0.07			0.29
203B	Light Fuel Oil	2.11	15.31		9.86	27.29	0.16	1.19		0.76	2.12
203C	Medium Fuel Oil	0.14	0.00		2.13	2.28	0.01	0.00		0.17	0.18
203D	Heavy Fuel Oil	27.98	21.21		0.26	49.45	2.22	1.65		0.02	3.90
204A	Gasoil	0.20	0.52		80.48	81.21	0.02	0.04		6.04	6.09
2050	Diesel	0.08	14.00	134.57	19.51	168.16	0.01	1.03	9.93	1.44	12.42
206A	Other Kerosene		0.01		0.73	0.73		0.00		0.06	0.06
206B	Jet Kerosene			1.51		1.51			0.07		0.11
207A	Aviation Gasoline			0.11		0.11			0.01		0.01
2080	Motor Gasoline		0.09	92.30	1.64	94.03		0.01	6.82	0.12	6.95
224A	Other Petroleum Products	11.18				11.18	0.87				0.87
303A	Liquified Petroleum Gas (LPG)	0.13	3.05		3.57	6.74	0.01	0.19		0.23	0.43
308A	Refinery Gas	17.04				17.04	0.87				0.87
301A	Total Gaseous (Natural Gas)	85.50	107.40	6.34	71.42	270.66	4.70	5.91	0.35	3.93	14.89
	Total Other Fuel	6.14	5.99		1.51	13.64	0.30	0.15		0.02	0.47
114B	Municipal Waste	4.78				4.78	0.23				0.23
114C	Hazardous Waste	1.36				1.36	0.07				0.07
115A	Industrial Waste		5.99		1.51	7.50		0.15		0.02	0.17
	Total Biomass ⁽¹⁾	7.27	32.13		70.45	109.84	(8.0)	(3.53)		(7.11)	(11.44)
111A	Fuel Wood	0.21	0.15		64.52	64.88	0.02	0.02		6.45	6.49
116A	Wood Wastes	6.73	8.54		5.26	20.53	0.74	0.94		0.58	2.26
118A	Sewage Sludge	0.25				0.25	0.03				0.03
215A	Black Liquor		22.92			22.92		2.52			2.52
309A	Biogas		0.03			0.03		0.00			0.00
309B	Sewage Sludge Gas	0.05			0.66	0.72	0.01			0.07	0.08
310A	Landfill Gas	0.03	0.49		0.01	0.53	0.00	0.05		0.00	0.06
	Total ⁽¹⁾	195.79	255.35	234.86	274.15	960.14	12.90	14.59	17.18	13.95	58.67

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 11: 1997 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

	A 5										
			` ,	1 A 3 + 1	1 A 4	1 A				1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	50.96	53.23	0.03	14.36	118.59	5.00	5.06	0.00	1.35	11.42
102A	Hard Coal	39.25	12.15	0.03	3.38	54.82	3.71	1.14	0.00	0.31	5.17
104A	Hard Coal Briquettes				0.22	0.22				0.02	0.02
105A	Brown Coal	11.70	0.69		0.64	13.03	1.29	0.07		0.07	1.42
106A	Brown Coal Briquettes		0.00		2.55	2.56		0.00		0.25	0.25
107A	Coke		28.79		7.56	36.35		2.99		0.70	3.69
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		11.60			11.60		0.86			0.86
	Total Liquid	57.29	57.77	200.21	118.61	433.89	4.08	4.42	14.74	8.86	32.15
110A	Petrol Coke	2.15	0.49			2.64	0.22	0.05			0.27
203B	Light Fuel Oil	2.54	18.55		9.80	30.90	0.20	1.45		0.75	2.40
203C	Medium Fuel Oil	0.09	0.01		2.06	2.16	0.01	0.00		0.16	0.17
203D	Heavy Fuel Oil	23.22	21.57		0.16	44.95	1.84	1.68		0.01	3.54
204A	Gasoil	0.11	0.48		81.01	81.60	0.01	0.04		6.08	6.12
2050	Diesel	0.31	13.80	110.62	20.24	144.97	0.02	1.02	8.17	1.49	10.71
206A	Other Kerosene		0.00		0.42	0.43		0.00		0.03	0.03
206B	Jet Kerosene			1.35		1.35			0.06		0.10
207A	Aviation Gasoline			0.10		0.10			0.01		0.01
2080	Motor Gasoline		0.09	88.13	1.66	89.88		0.01	6.51	0.12	6.64
224A	Other Petroleum Products	11.60				11.60	0.90				0.90
303A	Liquified Petroleum Gas (LPG)	0.09	2.78		3.25	6.12	0.01	0.18		0.21	0.39
308A	Refinery Gas	17.18				17.18	0.88				0.88
201 A	Total Gaseous	72 40	117.07	4.20	71.51	264.96	3.97	6.44	0.23	3.93	14.57
JUIA	(Natural Gas) Total Other Fuel	72.18 6.40	5.63	4.20	2.60	14.62	0.31	0.44	0.23	0.03	0.54
114B	Municipal Waste	4.89	5.65		2.00	4.89	0.24	0.20		0.03	0.24
114C	Hazardous Waste	1.50				1.50	0.08				0.08
115A	Industrial Waste	1.00	5.63		2.60	8.23	0.00	0.20		0.03	0.23
110/	Total Biomass ⁽¹⁾	6.40	37.03		71.96	115.38	(0.7)	(4.07)		(7.25)	(12.02)
111A	Fuel Wood	0.07	0.20		66.93	67.21	0.01	0.02		6.69	6.72
116A	Wood Wastes	6.01	14.61		4.39	25.00	0.66	1.61		0.48	2.75
118A	Sewage Sludge	0.24			1.00	0.24	0.03			3.10	0.03
215A	Black Liquor	0.21	21.67			21.67	0.00	2.38			2.38
309A	Biogas		0.05			0.05		0.01			0.01
309B	Sewage Sludge Gas	0.06	0.00		0.64	0.69	0.01	0.01		0.07	0.08
310A		0.03	0.49		0.04	0.52	0.00	0.06		0.00	0.06
- 10/1	Total ⁽¹⁾	193.23	270.73	204.44	279.05	947.44	13.37	16.12	14.98	14.17	58.68

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 12: 1996 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	47.52	47.53	0.06	18.70	113.82	4.70	4.37	0.01	1.75	10.83
102A	Hard Coal	33.51	9.70	0.06	4.33	47.60	3.17	0.91	0.01	0.40	4.49
104A	Hard Coal Briquettes										
105A	Brown Coal	14.01	1.12		0.92	16.05	1.52	0.11		0.10	1.73
106A	Brown Coal Briquettes		0.25		2.97	3.22		0.02		0.29	0.31
107A	Coke		25.05		10.47	35.52		2.61		0.96	3.57
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		11.42			11.42		0.72			0.72
	Total Liquid	52.92	45.47	214.65	132.32	445.36	3.74	3.45	15.80	9.91	32.94
110A	Petrol Coke	2.13	0.32			2.44	0.21	0.03			0.25
203B	Light Fuel Oil	1.88	11.84		22.22	35.93	0.15	0.92		1.71	2.78
203C	Medium Fuel Oil	0.34	0.00		1.66	2.00	0.03	0.00		0.13	0.16
203D	Heavy Fuel Oil	19.40	16.03		0.25	35.69	1.54	1.25		0.02	2.81
204A	Gasoil	0.06	0.49		83.18	83.74	0.00	0.04		6.24	6.28
2050	Diesel	0.14	13.59	120.24	19.00	152.97	0.01	1.00	8.88	1.40	11.30
206A	Other Kerosene		0.01		0.51	0.51		0.00		0.04	0.04
206B	Jet Kerosene			1.29		1.29			0.06		0.09
207A	Aviation Gasoline			0.09		0.09			0.01		0.01
2080	Motor Gasoline		0.09	93.03	1.66	94.78		0.01	6.86	0.12	7.00
224A	Other Petroleum Products	11.02				11.02	0.86				0.86
303A	Liquified Petroleum Gas (LPG)	0.38	3.10		3.83	7.32	0.02	0.20		0.25	0.47
308A	Refinery Gas	17.57				17.57	0.91				0.91
301A	Total Gaseous (Natural Gas)	91.60	105.37	4.22	73.53	274.71	5.04	5.80	0.23	4.04	15.11
	Total Other Fuel	5.96	6.35		2.90	15.21	0.29	0.16		0.03	0.48
114B	Municipal Waste	4.77				4.77	0.23				0.23
114C	Hazardous Waste	1.19				1.19	0.06				0.06
115A	Industrial Waste		6.35		2.90	9.25		0.16		0.03	0.19
	Total Biomass ⁽¹⁾	6.36	32.78		76.05	115.19	(0.7)	(3.6)		(7.64)	(11.94)
111A	Fuel Wood	0.04	0.74	·	72.50	73.28	0.00	0.07	·	7.25	7.33
116A	Wood Wastes	6.03	10.59		2.87	19.50	0.66	1.16		0.32	2.14
118A	Sewage Sludge	0.22				0.22	0.02				0.02
215A	Black Liquor		21.17			21.17		2.33			2.33
309A	Biogas		0.04			0.04		0.00			0.00
309B	Sewage Sludge Gas	0.03			0.64	0.67	0.00			0.07	0.07
310A	Landfill Gas	0.03	0.24		0.04	0.31	0.00	0.03		0.00	0.03
	Total ⁽¹⁾	204.37	237.49	218.92	303.50	964.29	13.76	13.78	16.04	15.74	59.36

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 13: 1995 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		0	(5.1)				00 :	· / -	`		
			otion (PJ)				_	ssions (Tg	,		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	45.49	48.09	0.06	19.12	112.75	4.53	4.51	0.01	1.80	10.84
102A	Hard Coal	29.91	7.41	0.06	4.12	41.50	2.82	0.70	0.01	0.38	3.91
104A	Hard Coal Briquettes										
105A	Brown Coal	15.58	2.29		1.14	19.00	1.71	0.22		0.12	2.05
106A	Brown Coal Briquettes		0.27		3.06	3.32		0.03		0.30	0.32
107A	Coke		27.21		10.80	38.01		2.83		0.99	3.82
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		10.91			10.91		0.74			0.74
	Total Liquid	51.92	48.16	193.33	115.73	409.13	3.73	3.67	14.24	8.65	30.31
110A	Petrol Coke	1.87	0.36			2.23	0.19	0.04			0.22
203B	Light Fuel Oil	1.39	10.98		18.51	30.87	0.11	0.86		1.43	2.39
203C	Medium Fuel Oil	0.11	0.00		2.31	2.43	0.01	0.00		0.18	0.19
203D	Heavy Fuel Oil	23.30	19.63		0.46	43.38	1.85	1.53		0.04	3.42
204A	Gasoil	0.09	0.20		70.50	70.80	0.01	0.02		5.29	5.31
2050	Diesel	0.28	14.02	91.54	17.37	123.22	0.02	1.04	6.76	1.28	9.10
206A	Other Kerosene				0.25	0.25				0.02	0.02
206B	Jet Kerosene			1.11		1.11			0.05		0.08
207A	Aviation Gasoline			0.10		0.10			0.01		0.01
2080	Motor Gasoline		0.09	100.57	1.65	102.32		0.01	7.42	0.12	7.55
224A	Other Petroleum Products	8.88				8.88	0.69				0.69
303A	Liquified Petroleum Gas (LPG)	1.06	2.87		4.67	8.61	0.07	0.18		0.30	0.55
308A	Refinery Gas	14.94				14.94	0.78				0.78
301A	Total Gaseous (Natural Gas)	75.85	101.18	4.09	72.65	253.77	4.17	5.57	0.23	4.00	13.96
	Total Other Fuel	5.04	5.59		1.42	12.04	0.25	0.16		0.01	0.42
114B	Municipal Waste	3.91				3.91	0.19				0.19
114C	Hazardous Waste	1.12				1.12	0.06				0.06
115A	Industrial Waste		5.59		1.42	7.00		0.16		0.01	0.18
	Total Biomass ⁽¹⁾	4.59	33.86		69.63	108.08	(0.51)	(3.71)		(7)	(11.22)
111A	Fuel Wood		1.07		66.28	67.35		0.11		6.63	6.74
116A	Wood Wastes	4.33	11.24		2.69	18.27	0.48	1.24		0.30	2.01
118A	Sewage Sludge	0.22				0.22	0.02				0.02
215A	Black Liquor		21.39			21.39		2.35			2.35
309A	Biogas		0.04			0.04		0.00			0.00
309B	Sewage Sludge Gas	0.01			0.61	0.62	0.00			0.07	0.07
310A	Landfill Gas	0.03	0.12		0.05	0.20	0.00	0.01		0.01	0.02
	Total ⁽¹⁾	182.88	236.87	197.48	278.54	895.77	12.68	13.90	14.47	14.46	55.54

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 14: 1994 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

	Consumption (PJ) CO ₂ emissions (Tg)										
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	32.97	44.87	0.06	19.70	97.60	3.28	4.35	0.01	1.85	9.49
102A	Hard Coal	22.73	6.38	0.06	4.05	33.22	2.17	0.60	0.01	0.38	3.15
104A	Hard Coal Briquettes										
105A	Brown Coal	10.05	2.20		1.28	13.53	1.09	0.21		0.14	1.44
106A	Brown Coal Briquettes	0.19	0.46		3.21	3.86	0.02	0.04		0.31	0.38
107A	Coke		25.04		11.16	36.19		2.60		1.03	3.63
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		10.79			10.79		0.89			0.89
	Total Liquid	59.11	51.05	188.33	108.23	406.73	4.23	3.89	13.87	8.08	30.11
110A	Petrol Coke	1.79	0.36			2.16	0.18	0.04			0.22
203B	Light Fuel Oil	1.88	10.77		14.98	27.64	0.15	0.84		1.15	2.14
203C	Medium Fuel Oil	0.09	0.00		2.86	2.95	0.01	0.00		0.22	0.23
203D	Heavy Fuel Oil	27.62	22.35		0.37	50.34	2.20	1.74		0.03	3.97
204A	Gasoil	0.08	0.20		64.72	65.00	0.01	0.01		4.85	4.88
2050	Diesel	0.21	14.29	82.88	18.57	115.95	0.02	1.06	6.13	1.37	8.58
206A	Other Kerosene				0.10	0.10				0.01	0.01
206B	Jet Kerosene			1.17		1.17			0.05		0.08
207A	Aviation Gasoline			0.12		0.12			0.01		0.01
2080	Motor Gasoline		0.09	104.16	1.66	105.92		0.01	7.68	0.12	7.81
224A	Other Petroleum Products	10.60				10.60	0.83				0.83
303A	Liquified Petroleum Gas (LPG)	0.13	2.98		4.95	8.06	0.01	0.19		0.32	0.52
308A	Refinery Gas	16.71				16.71	0.84				0.84
301A	Total Gaseous (Natural Gas)	70.72	98.30	3.78	61.17	233.97	3.89	5.41	0.21	3.36	12.87
	Total Other Fuel	5.00	5.29		1.41	11.71	0.25	0.17		0.01	0.43
114B	Municipal Waste	3.82				3.82	0.19				0.19
114C	Hazardous Waste	1.18				1.18	0.06				0.06
115A	Industrial Waste		5.29		1.41	6.70		0.17		0.01	0.18
	Total Biomass ⁽¹⁾	3.94	33.13		64.53	101.60	(0.43)	(3.64)		(6.48)	(10.55)
111A	Fuel Wood		0.90		61.48	62.39		0.09		6.15	6.24
116A	Wood Wastes	3.71	12.62		2.32	18.65	0.41	1.39		0.25	2.05
118A	Sewage Sludge	0.22				0.22	0.02				0.02
215A	Black Liquor		19.61			19.61		2.16			2.16
309A	Biogas										
309B	Sewage Sludge Gas				0.64	0.64				0.07	0.07
310A	Landfill Gas				0.09	0.09				0.01	0.01
-	Total ⁽¹⁾	171.75	232.65	192.17	255.03	851.61	11.64	13.82	14.08	13.31	52.90

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 15: 1993 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO _o emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1	1	1 A	1 A 1	1 A 2	, 1 A 3 + 1	1 Δ 1	1 A
				A 5					A 5		
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	30.81	44.11	0.06	23.23	98.21	3.09	4.28	0.01	2.18	9.56
102A	Hard Coal	19.93	7.90	0.06	4.68	32.58	1.92	0.74	0.01	0.44	3.10
104A	Hard Coal Briquettes										
105A	Brown Coal	10.64	2.48		1.54	14.66	1.15	0.24		0.17	1.55
106A	Brown Coal Briquettes	0.23	0.28		3.67	4.18	0.02	0.03		0.36	0.41
107A	Coke		22.81		13.33	36.14		2.37		1.23	3.60
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		10.64			10.64		0.90			0.90
	Total Liquid	59.10	51.56	188.78	115.16	414.61	4.24	3.95	13.90	8.61	30.74
110A	Petrol Coke	2.22	0.78			3.01	0.22	0.08			0.30
203B	Light Fuel Oil	2.22	12.55		18.48	33.25	0.17	0.98		1.42	2.57
203C	Medium Fuel Oil	0.39	0.04		3.50	3.92	0.03	0.00		0.27	0.31
203D	Heavy Fuel Oil	28.19	21.36		0.42	49.97	2.23	1.67		0.03	3.93
204A	Gasoil	0.11	0.26		67.95	68.32	0.01	0.02		5.10	5.12
2050	Diesel	0.24	13.93	79.53	17.48	111.19	0.02	1.03	5.88	1.29	8.23
206A	Other Kerosene				0.62	0.62				0.05	0.05
206B	Jet Kerosene			1.07		1.07			0.04		0.08
207A	Aviation Gasoline			0.12		0.12			0.01		0.01
2080	Motor Gasoline		0.09	108.06	1.63	109.79		0.01	7.97	0.12	8.10
224A	Other Petroleum Products	9.86				9.86	0.77				0.77
303A	Liquified Petroleum Gas (LPG)	0.22	2.54		5.08	7.84	0.01	0.16		0.32	0.50
308A	Refinery Gas	15.65				15.65	0.77				0.77
301A	Total Gaseous (Natural Gas)	69.35	81.16	3.87	68.35	222.73	3.81	4.46	0.21	3.76	12.25
	Total Other Fuel	4.90	4.83		1.19	10.92	0.24	0.12		0.01	0.37
114B	Municipal Waste	3.76				3.76	0.18				0.18
114C	Hazardous Waste	1.14				1.14	0.06				0.06
115A	Industrial Waste		4.83		1.19	6.02		0.12		0.01	0.13
-	Total Biomass ⁽¹⁾	3.75	32.12		69.53	105.40	(0.41)	(3.52)		(6.99)	(10.92)
111A	Fuel Wood		0.80		66.37	67.18		0.08		6.64	6.72
116A	Wood Wastes	3.52	12.77		2.45	18.74	0.39	1.40		0.27	2.06
118A	Sewage Sludge	0.23				0.23	0.03				0.03
	Black Liquor		18.54			18.54		2.04			2.04
	Biogas										
309B	Sewage Sludge Gas		0.00		0.63	0.63		0.00		0.07	0.07
310A					0.08	0.08				0.01	0.01
		1					1				

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 16: 1992 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consum	ption (PJ)				CO ₂ emi	ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1	1	1 A	1 A 1	1 A 2	, 1 A 3 + 1	1	1 A
				A 5					A 5		
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	39.96	44.96	0.07	27.11	112.10	4.01	4.12	0.01	2.55	10.68
102A	Hard Coal	27.97	8.06	0.07	5.48	41.58	2.73	0.76	0.01	0.51	4.01
104A	Hard Coal Briquettes										
105A	Brown Coal	11.74	2.27		1.89	15.91	1.25	0.22		0.20	1.67
106A	Brown Coal Briquettes	0.26	0.32		4.30	4.87	0.03	0.03		0.42	0.47
107A	Coke		23.14		15.43	38.57		2.41		1.42	3.83
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		11.16			11.16		0.70			0.70
	Total Liquid	48.31	45.52	183.87	115.99	393.68	3.39	3.48	13.72	8.70	29.32
110A	Petrol Coke	2.30	0.93			3.23	0.23	0.09			0.33
203B	Light Fuel Oil	1.88	8.12		25.53	35.53	0.15	0.63		1.97	2.75
203C	Medium Fuel Oil	0.12	0.07		3.68	3.87	0.01	0.01		0.29	0.30
203D	Heavy Fuel Oil	19.86	19.51		1.13	40.50	1.57	1.52		0.09	3.18
204A	Gasoil	0.04	0.18		60.38	60.61	0.00	0.01		4.53	4.55
2050	Diesel	0.00	14.34	72.55	17.32	104.20	0.00	1.06	5.37	1.28	7.71
206A	Other Kerosene		0.05		1.26	1.31		0.00		0.10	0.10
206B	Jet Kerosene			0.92		0.92			0.03		0.07
207A	Aviation Gasoline			0.12		0.12			0.01		0.01
2080	Motor Gasoline		0.09	110.29	1.60	111.98		0.01	8.31	0.12	8.44
224A	Other Petroleum Products	7.28				7.28	0.57				0.57
303A	Liquified Petroleum Gas (LPG)	0.22	2.23		5.09	7.54	0.01	0.14		0.33	0.48
308A	Refinery Gas	16.60				16.60	0.85				0.85
301A	Total Gaseous (Natural Gas)	67.44	79.62	3.97	62.58	213.62	3.71	4.38	0.22	3.44	11.75
	Total Other Fuel	4.75	6.46		2.06	13.27	0.23	0.30		0.02	0.55
114B	Municipal Waste	3.48				3.48	0.17				0.17
114C	Hazardous Waste	1.26				1.26	0.06				0.06
115A	Industrial Waste		6.46		2.06	8.53		0.30		0.02	0.32
	Total Biomass ⁽¹⁾	3.60	29.18		67.47	100.25	(0.4)	(3.2)		(6.77)	(10.37)
111A	Fuel Wood		0.71		65.28	65.98		0.07		6.53	6.60
116A	Wood Wastes	3.40	10.40		2.19	16.00	0.37	1.14		0.24	1.76
118A	Sewage Sludge	0.20				0.20	0.02				0.02
215A	Black Liquor		18.07			18.07		1.99			1.99
309A	Biogas										
309B	Sewage Sludge Gas										
310A	Landfill Gas										
	Total ⁽¹⁾	164.07	205.74	187.91	275.21	832.92	11.35	12.27	13.94	14.71	52.31

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 17: 1991 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

Consumption (PJ) CO ₂ emissions (Tg)											
								, -	•		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	67.34	49.40	0.06	32.42	149.23	6.82	4.64	0.01	3.05	14.52
102A	Hard Coal	41.79	6.86	0.06	6.89	55.60	4.13	0.64	0.01	0.64	5.42
104A	Hard Coal Briquettes										
105A	Brown Coal	24.92	2.89		2.38	30.19	2.62	0.28		0.26	3.16
106A	Brown Coal Briquettes	0.63	0.47		5.05	6.15	0.06	0.05		0.49	0.60
107A	Coke		26.90		18.10	45.00		2.80		1.66	4.46
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		12.28			12.28		0.87			0.87
	Total Liquid	48.39	54.92	184.53	121.62	409.46	3.40	4.20	13.77	9.14	30.55
110A	Petrol Coke	2.20	1.02			3.22	0.22	0.10			0.32
203B	Light Fuel Oil	2.08	10.60		27.90	40.58	0.16	0.83		2.15	3.14
203C	Medium Fuel Oil	0.06	0.02		4.81	4.88	0.00	0.00		0.37	0.38
203D	Heavy Fuel Oil	19.88	25.31		0.79	45.98	1.57	1.97		0.06	3.60
204A	Gasoil	0.01	0.19		64.86	65.07	0.00	0.01		4.86	4.88
2050	Diesel	0.00	14.19	68.15	16.74	99.08	0.00	1.05	5.04	1.24	7.33
206A	Other Kerosene				1.36	1.36				0.11	0.11
206B	Jet Kerosene			0.89		0.89			0.03		0.06
207A	Aviation Gasoline			0.11		0.11			0.01		0.01
2080	Motor Gasoline		0.09	115.37	1.58	117.04		0.01	8.69	0.12	8.82
224A	Other Petroleum Products	7.58				7.58	0.59				0.59
303A	Liquified Petroleum Gas (LPG)	0.58	3.50		3.58	7.67	0.04	0.22		0.23	0.49
308A	Refinery Gas	16.00				16.00	0.82				0.82
	Total Gaseous										
301A	(Natural Gas)	73.74	78.67	4.07	56.00	212.48	4.06	4.33	0.22	3.08	11.69
	Total Other Fuel	2.90	5.30		1.87	10.08	0.14	0.21		0.02	0.37
	Municipal Waste	2.90				2.90	0.14				0.14
	Hazardous Waste										
115A	Industrial Waste		5.30		1.87	7.18		0.21		0.02	0.23
	Total Biomass ⁽¹⁾	3.02	28.46		71.36	102.83	(0.33)	(3.12)		(7.16)	(10.61)
	Fuel Wood		0.73		69.22	69.96		0.07		6.92	7.00
116A		3.02	9.98		2.14	15.14	0.33	1.10		0.23	1.67
118A	Sewage Sludge										
215A	Black Liquor		17.74			17.74		1.95			1.95
309A	Biogas										
309B	Sewage Sludge Gas										
310A	Landfill Gas										
	Total ⁽¹⁾	195.39	216.75	188.66	283.28	884.07	14.42	13.38	14.00	15.30	57.13

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

Table 18: 1990 energy consumption and CO₂ emissions from category 1 A Fuel Combustion by fuel type and sector.

		Consumption (PJ)						ssions (Tg)		
		1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A	1 A 1	1 A 2	1 A 3 + 1 A 5	1 A 4	1 A
		Energy Ind.	Industry	Transpor t	Other Sectors	Total	Energy Ind.	Industry	Transpor t	Other Sectors	Total
	Total Solid	61.40	48.10	0.07	31.29	140.86	6.25	4.71	0.01	2.95	13.91
102A	Hard Coal	38.44	5.59	0.07	6.87	50.97	3.85	0.53	0.01	0.64	5.03
104A	Hard Coal Briquettes										
105A	Brown Coal	22.73	2.19		2.36	27.28	2.37	0.21		0.26	2.84
106A	Brown Coal Briquettes	0.23	0.85		4.84	5.91	0.02	0.08		0.47	0.57
107A	Coke		26.36		17.21	43.57		2.74		1.58	4.33
113A	Peat				0.01	0.01				0.00	0.00
304A	Coke Oven Gas		13.12			13.12		1.14			1.14
	Total Liquid	46.29	49.30	163.28	117.91	376.78	3.18	3.77	12.18	8.89	28.05
110A	Petrol Coke	1.95	0.98			2.92	0.20	0.10			0.29
203B	Light Fuel Oil	1.61	9.83		35.16	46.60	0.13	0.77		2.71	3.60
203C	Medium Fuel Oil	0.29	0.01		4.47	4.77	0.02	0.00		0.35	0.37
203D	Heavy Fuel Oil	16.97	21.71		1.63	40.32	1.34	1.69		0.13	3.16
204A	Gasoil	0.00	0.06		52.94	53.00	0.00	0.00		3.97	3.97
2050	Diesel	0.01	13.64	57.08	18.58	89.31	0.00	1.01	4.22	1.38	6.61
206A	Other Kerosene				0.77	0.77				0.06	0.06
206B	Jet Kerosene			0.79		0.79			0.02		0.06
207A	Aviation Gasoline			0.11		0.11			0.01		0.01
2080	Motor Gasoline		0.08	105.29	1.63	107.01		0.01	7.92	0.12	8.05
224A	Other Petroleum Products	6.77				6.77	0.53				0.53
303A	Liquified Petroleum Gas (LPG)	0.41	2.99		2.73	6.14	0.03	0.19		0.18	0.39
308A	Refinery Gas	18.28				18.28	0.95				0.95
301A	Total Gaseous (Natural Gas)	74.10	77.38	4.05	46.07	201.60	4.08	4.26	0.22	2.53	11.09
	Total Other Fuel	2.41	4.28		2.29	8.99	0.12	0.24		0.02	0.38
114B	Municipal Waste	2.41				2.41	0.12				0.12
114C	Hazardous Waste										
115A	Industrial Waste		4.28		2.29	6.58		0.24		0.02	0.26
	Total Biomass ⁽¹⁾	2.04	28.11		64.22	94.38	(0.22)	(3.09)		(6.44)	(9.75)
111A	Fuel Wood		0.66		62.45	63.11		0.07		6.25	6.31
116A	Wood Wastes	2.04	9.65		1.77	13.46	0.22	1.06		0.19	1.48
118A	Sewage Sludge										
215A	Black Liquor		17.80			17.80		1.96			1.96
309A	Biogas										
309B	Sewage Sludge Gas										
310A	Landfill Gas										
	Total ⁽¹⁾	186.25	207.17	167.40	261.79	822.61	13.62	12.97	12.40	14.39	53.43

⁽¹⁾ CO₂ emissions of Biomass are not included in Total.

ANNEX 3: CO₂ REFERENCE APPROACH

In this annex the results, methodology and detailed data for the CO₂ reference approach are presented.

Methodology

The default methodology according to IPCC Worksheet 1-1 was used.

Emission factors

Carbon emission factors

For estimation of emissions that arise from combustion of fossil fuels the default carbon emission factors described in chapter 1.4.1.1 of the IPCC Reference Manual have been used (IPCC Workbook 1.6 table 1-2). For selected values see Table 5.

Fraction of carbon oxidised

The default values of table 1-6 of the IPCC Reference Manual have been used. For selected values see Table 5.

Activity data

Production, Imports, Exports, Stock Change

Activity data are taken from the national energy balance [IEA JQ 2004] (see Annex 2 and Annex 4). The reference approach requires more detailed fuel categories than provided in the national energy balance. Some fuel categories are aggregations of the detailed fuel categories the reference approach asks for. For the following fuel types the energy statistics does not give detailed data:

- Ethane and Naphta is included in Refinery Feedstocks.
- Anthracite is included in Other Bituminous Coal.
- Liquid Biomass is included in Solid Biomass.

International Bunkers

International bunkers are only relevant for aviation. However, there is "international" navigation on the Danube, but this is included in national navigation.

Fuel consumption of international bunkers is consistent with memo item international bunkers as described in the relevant chapter for Category 1 A 3.

Carbon Stored (Feedstocks)

Emissions from carbon stored in products are calculated for each fuel by multiplying its non-energy use with the corresponding default IPCC carbon emission factor.

For all fuels except for coke oven coke the IPCC default values for the fraction of carbon stored are used. To estimate carbon stored from coke oven coke carbon remaining in steel is calculated as the following:

Carbon stored in steel [Mg]= raw steel production [Mg]* 0.0015 + electric steel [Mg] * 0.01 which leads to an average fraction of carbon stored of 0.007 of total inland coke consumption.

In the Sectoral Approach the release of stored carbon as emissions is considered as quoted in the NIR, chapter 3.4 Feedstocks.

Recalculations

In comparison to the previous submission the difference of CO_2 emissions of reference and the sectoral approach as reported in CRF-Table 1.A(c) is higher now. This is because the reference approach now additionally covers all actual emissions from non energy use of fossil carbon. In the previous submission total carbon of non energy use was subtracted which led to comparably low differences of CO_2 emissions between the two approaches. In this submission the reference approach gives a upper limit of CO_2 emissions from fossil fuels.

Activity data

In the previous submission *Petrol Coke* was included in *Other Oil*. In this submission *Petrol Coke* is reported separately.

Imports, Exports and Production is updated according to the new version of the energy balance [IEA JQ 2004]. Changes of activity data are based on energy balance recalculations as described in Annex 2.

Carbon Stored (Feedstocks)

In the previous submission a fraction of carbon stored of 100% for each fuel was selected. In response to the ERT recommendations the IPCC default values for fraction of carbon stored are selected. For coke oven coke now only the remaining carbon in steel finished products is subtracted from total coke oven coke consumption.

Results of the Reference Approach

Table 1-Table 5 present calculation results, apparent fuel consumption, carbon stored, international bunker fuels, conversion factors, carbon emission factors and the fraction of carbon oxidised for all fuel types of the Reference Approach.

Table 1 presents the calculation results for each fuel type of the Reference Approach.

Table 1: Actual CO₂ emissions (Gg CO₂)

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Crude Oil	24 681	25 675	27 102	26 450	27 615	26 751	27 168	29 094	28 522	26 800	25 573	27 308	27 766	27 488
Orimulsion	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural Gas Liquids	116	116	113	113	133	121	150	122	637	201	302	154	154	154
Gasoline	-240	1 221	664	709	-184	386	-235	-932	-84	-278	515	226	672	1 215

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Jet Kerosene	-843	-967	-1 081	-1 087	-1 076	-1 206	-1 379	-1 464	-1 536	-1 445	-1 550	-1 477	-1 374	-1 269
Other Kerosene	-44	-39	-62	45	-33	-7	21	31	47	48	16	-1	10	11
Shale Oil	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas / Diesel Oil	1 815	2 048	1 983	1 936	1 903	3 719	6 143	4 404	6 165	6 599	6 916	8 237	9 471	12 198
Residuel Fuel Oil	995	749	378	1 328	1 502	1 212	1 183	1 222	1 893	922	1 097	967	-68	865
LPG	252	364	331	218	407	373	409	259	341	389	405	422	434	373
Ethane	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Naphtha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bitumen	-863	-902	-1 220	-912	-998	-815	-838	-960	-950	-1 046	-1 100	-1 291	-1 336	-1 276
Lubricants	148	120	96	61	54	-85	-165	-172	-158	-156	-166	-183	-165	-226
Petroleum Coke	88	92	84	71	37	39	30	46	61	108	74	61	203	202
Refinery Feedstocks	3 031	3 467	2 843	3 262	2 418	1 643	2 366	2 589	1 719	2 592	1 600	1 983	1 514	622
OtherOil	-570	-959	-1 161	-1 081	-1 418	-1 212	-1 462	-1 370	-1 512	-1 555	-1 375	-1 703	-1 746	-1 712
Liquid Fossil Totals	28 565	30 984	30 072	31 114	30 359	30 919	33 392	32 869	35 144	33 179	32 305	34 704	35 534	38 645
Anthracite	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coking Coal	5 926	5 247	5 037	4 731	4 839	4 766	5 301	5 313	5 500	5 560	4 658	4 720	4 681	4 730
Other Bit. Coal	4 727	5 157	3 857	3 022	3 081	3 849	4 414	5 084	4 035	3 385	4 795	5 338	5 020	6 217
Sub- Bit. Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lignite	2 705	2 995	1 577	1 454	1 342	1 885	1 752	1 423	936	1 696	1 471	1 767	1 683	1 780
Oil Shale	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peat	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB & Patent Fuel	548	570	452	388	358	308	299	250	192	197	197	195	118	132
Coke Oven / Gas Coke	2 007	2 802	2 028	2 054	2 188	2 687	1 898	2 376	1 970	1 839	3 118	2 746	3 545	2 825
Solid Fuel Totals	15 914	16 770	12 952	11 649	11 808	13 496	13 665	14 446	12 634	12 678	14 240	14 765	15 048	15 684
Gaseous Fossil	12 238	12 939	12 705	13 399	13 782	15 048	16 017	15 437	15 848	16 125	15 388	16 309	16 494	17 834
TOTAL	56 716	60 693	55 729	56 163	55 950	59 463	63 073	62 752	63 626	61 982	61 934	65 778	67 076	72 163
Biomass Total	9 105	9 921	9 653	10 155	9 789	10 416	11 104	11 124	10 589	11 757	11 056	12 352	12 233	13 486
Solid Biomass	9 105	9 921	9 653	10 078	9 710	10 324	10 994	10 987	10 451	11 585	10 884	12 153	12 083	13 293
Liquid Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Biomass	0	0	0	77	79	92	110	137	138	172	172	199	150	194

Table 2 presents the apparent fuel consumption for each fuel type of the Reference Approach.

Table 2: Apparent Consumption (TJ)

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Crude Oil	339 954	353 655	373 311	364 329	380 375	368 466	374 218	400 742	392 864	369 149	352 242	376 144	382 450	378 621
Orimulsion	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Natural Gas Liquids	1 854	1 854	1 809	1 809	2 125	1 944	2 400	1 961	10 206	3 217	4 842	2 473	2 473	2 473
Gasoline	-3 341	17 855	9 690	10 332	-2 683	5 621	-3 419	-13 579	-1 144	-4 059	7 522	3 308	9 796	17 707
Jet Kerosene	-11 906	-13 667	-15 270	-15 351	-15 207	-17 043	-19 483	-20 686	-21 705	-20 411	-21 904	-20 861	-19 416	-17 932

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Other Kerosene	-623	-551	-870	633	-461	-105	290	440	666	674	218	-14	137	154
Shale Oil	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas / Diesel Oil	24 755	27 930	27 038	26 399	25 959	50 721	83 770	60 058	84 070	90 000	94 318	112 339	129 157	166 359
Residuel Fuel Oil	12 990	9 781	4 941	17 342	19 611	15 825	15 450	15 949	24 720	12 033	14 316	12 629	-887	11 291
LPG	4 029	5 825	5 306	3 486	6 517	5 974	6 545	4 147	5 464	6 224	6 486	6 763	6 956	6 025
Ethane	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Naphtha	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bitumen	10 811	8 480	2 452	5 064	5 426	7 475	9 324	9 766	11 092	9 407	9 798	8 685	7 412	8 668
Lubricants	5 313	4 541	3 738	2 693	2 532	563	-161	-201	-40	-82	-111	-355	-538	-1 270
Petroleum Coke	883	920	837	709	366	393	304	462	607	1 083	743	609	2 031	2 027
Refinery Feedstocks	41 754	47 758	39 162	44 933	33 308	22 633	32 591	35 661	23 671	35 705	22 032	27 307	20 851	8 566
OtherOil	6 406	2 655	5 142	3 190	-733	-299	-774	5 581	-545	-706	374	-2 363	-3 000	-2 397
Liquid Fossil Totals	432 880	467 037	457 286	465 569	457 133	462 169	501 056	500 301	529 927	502 235	490 877	526 665	537 421	580 291
Anthracite	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coking Coal	65 423	58 690	55 855	52 568	53 834	53 427	58 604	59 096	60 811	61 358	52 579	52 969	53 149	53 140
Other Bit. Coal	51 016	55 653	41 633	32 626	33 254	41 541	47 629	54 857	43 542	36 531	51 740	57 597	54 165	67 077
Sub- Bit. Coal	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lignite	27 278	30 194	15 906	14 663	13 532	19 004	17 671	14 347	9 441	17 101	14 834	17 816	16 968	17 952
Oil Shale	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Peat	4	4	4	4	4	4	4	4	4	4	4	4	4	4
BKB & Patent Fuel	5 912	6 146	4 872	4 185	3 858	3 323	3 221	2 694	2 066	2 126	2 127	2 099	1 277	1 422
Coke Oven / Gas Coke	19 100	26 605	19 290	19 534	20 818	25 549	18 090	22 623	18 769	17 540	29 618	26 103	33 668	26 847
Solid Fuel Totals	168 733	177 293	137 560	123 581	125 300	142 849	145 218	153 621	134 632	134 660	150 904	156 589	159 232	166 443
Gaseous Fossil	219 239	231 794	227 610	240 044	246 908	269 583	286 941	276 551	283 920	288 876	275 681	292 169	295 485	319 491
TOTAL	820 853	876 124	822 456	829 194	829 341	874 601	933 215	930 474	948 478	925 770	917 462	975 423	992 138	1 066 225
Biomass Total	94 376	102 837	100 050	105 164	101 375	107 860	114 968	115 145	109 595	121 667	114 401	127 803	126 626	139 565
Solid Biomass	94 376	102 837	100 050	104 456	100 649	107 011	113 954	113 882	108 326	120 079	112 816	125 967	125 243	137 780
Liquid Biomass	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Biomass	0	0	0	708	726	849	1 014	1 263	1 269	1 588	1 585	1 836	1 384	1 785

Table 3 presents the carbon stored for each fuel type of the Reference Approach.

Table 3: Carbon Stored (Gg C)

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Crude Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Orimulsion	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Natural Gas Liquids	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gasoline	2.9	1.1	0.1	0.0	0.0	0.0	0.0	0.1	1.6	0.0	0.3	0.3	0.0	0.0
Jet Kerosene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Other Kerosene	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Shale Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gas / Diesel Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Residuel Fuel														
Oil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
LPG	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.8
Ethane	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Naphtha	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Bitumen	475.7	435.0	389.9	362.5	394.3	389.0	435.9	479.2	505.8	495.1	518.7	546.7	531.0	542.3
Lubricants	65.6	57.9	48.2	37.0	35.8	34.6	42.2	43.4	42.6	41.4	43.4	43.3	34.7	36.9
Petroleum Coke	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Refinery Feedstocks	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
OtherOil	285.3	317.4	422.7	361.6	376.1	327.8	387.2	489.0	405.7	414.3	386.3	421.9	421.0	423.7
Liquid Fossil Totals	829.5	811.4	861.0	761.1	806.2	751.4	865.3	1 011.8	955.6	950.8	948.7	1 012.1	986.7	1 003.7
Anthracite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coking Coal	38.8	54.1	39.2	39.7	42.3	52.0	36.8	46.0	38.2	35.7	60.2	53.1	68.5	54.6
Other Bit. Coal	0.6	0.6	0.7	0.6	0.4	0.5	0.4	0.5	0.4	0.4	0.4	0.5	0.5	0.5
Sub- Bit. Coal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Lignite	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Oil Shale	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Peat	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
BKB & Patent Fuel	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Coke Oven / Gas Coke	5.0	5.2	4.7	4.8	5.2	5.9	5.4	6.2	5.5	5.5	6.0	6.0	6.7	5.9
Solid Fuel Totals	44.5	59.9	44.7	45.1	47.9	58.4	42.6	52.7	44.1	41.6	66.7	59.5	75.7	61.1
Gaseous Fossil	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
TOTAL	873.9	871.3	905.6	806.2	854.1	809.8	907.9	1 064.5		992.3		1 071.7		
Biomass Total		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Solid Biomass	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Liquid Biomass	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Gas Biomass	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
340 2.011400														

Table 4 presents international bunker fuels for the relevant fuel types of the Reference Approach.

Table 4: International Bunkers [Gg]

Fuel Type	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Jet Kerosene	275	309	334	354	368	409	453	471	488	475	516	508	471	448

Table 5 presents conversion factors, carbon emission factors and the fraction of carbon oxidised for all fuel types of the Reference Approach.

Table 5: Conversion factor, carbon emission factor and fraction of carbon oxidised.

	Conversion Factor [TJ/t]	Carbon emission factor	Fraction ob carbon oxidised
Fuel Type	[TJ/1000 m3]	[t C/TJ]	[t C/t C]
Crude Oil	42.75	20.00	0.99
Orimulsion	-	-	-
Natural Gas Liquids	45.22	17.20	0.99
Gasoline	44.80	18.90	0.99
Jet Kerosene	44.59	19.50	0.99
Other Kerosene	44.75	19.60	0.99
Shale Oil	-	-	-
Gas / Diesel Oil	43.33	20.20	0.99
Residuel Fuel Oil	40.19	21.10	0.99
LPG	47.31	17.20	0.99
Ethane	-	-	-
Naphtha	-	-	-
Bitumen	40.19	22.00	0.99
Lubricants	40.19	20.00	0.99
Petroleum Coke	31.00	27.50	0.99
Refinery Feedstocks	42.50	20.00	0.99
OtherOil	40.19	20.00	0.99
Anthracite	-	-	-
Coking Coal	28.00	25.80	0.98
Other Bit. Coal	28.00	25.80	0.98
Sub- Bit. Coal	-	-	-
Lignite	10.90	27.60	0.98
Oil Shale	-	-	-
Peat	8.80	28.90	0.98
BKB & Patent Fuel	19.30	25.80	0.98
Coke Oven / Gas Coke	28.20	29.50	0.98
Natural Gas	1.00	15.30	1.00
Solid Biomass	1.00	29.90	0.88
Liquid Biomass	-	-	-
Gas Biomass	1.00	29.90	0.99

ANNEX 4: NATIONAL ENERGY BALANCE

The following tables present the data of the national energy balance by IEA categories. Calorific values for unit conversion are presented at the end of this Annex. Data was submitted to the Umweltbundesamt by STATISTIK AUSTRIA in November 2004.

Please note that for reasons of confidentiality energy consumption of autoproducers by sub sectors as quoted in ANNEX 2 are not published here.

Coal

Table 1: National Energy Balance 1990-2003. Coking Coal [1000 tons].

Total Imports (Balance) 2 376 2 071 2 120 1 766 1 919 1 778 2 013 2 167 2 089 2 146 1 738 1 861 1 864 1 885 Total Exports (Balance) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0,				Ū	-		-							
Total Imports (Balance)	101A Coking Coal	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Exports (Balance)	Indigenous Production	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Marine Bunkers	Total Imports (Balance)	2 376	2 071	2 120	1 766	1 919	1 778	2 013	2 167	2 089	2 146	1 738	1 861	1 864	1 890
Stock Change (National Territory) -39 25 -125 111 4 130 80 -57 83 45 139 30 34 Gross Inland Deliveries (Obs.) 2 337 2 996 1 995 1 877 1 923 1 908 2 993 2 111 2 172 2 191 1 878 1 892 1 898 1 895 Statistical Difference	Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Statistical Difference 0	International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Statistical Difference	Stock Change (National Territory)	-39	25	-125	111	4	130	80	-57	83	45	139	30	34	8
Public Electricity	Gross Inland Deliveries (Obs.)	2 337	2 096	1 995	1 877	1 923	1 908	2 093	2 111	2 172	2 191	1 878	1 892	1 898	1 898
Public Electricity 0	Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power 0 <th< td=""><td>Total Transformation Sector</td><td>2 337</td><td>2 096</td><td>1 995</td><td>1 877</td><td>1 923</td><td>1 908</td><td>2 093</td><td>2 111</td><td>2 172</td><td>2 191</td><td>1 878</td><td>1 892</td><td>1 898</td><td>1 898</td></th<>	Total Transformation Sector	2 337	2 096	1 995	1 877	1 923	1 908	2 093	2 111	2 172	2 191	1 878	1 892	1 898	1 898
Public Heat Plants 0	Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity 0	Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP 0	Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants 0 <td>Auto Producers of Electricity</td> <td>0</td>	Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation) 0 </td <td>Auto Producers for CHP</td> <td>0</td>	Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation) 2 337 2 096 1 995 1 877 1 923 1 908 2 093 2 111 2 172 2 191 1 878 1 892 1 898 1 898 1 899 1 898 1 899 1	Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation) 0 <t< td=""><td>Gas Works (Transformation)</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></t<>	Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants 0	Coke Ovens (Transformation)	2 337	2 096	1 995	1 877	1 923	1 908	2 093	2 111	2 172	2 191	1 878	1 892	1 898	1 898
BKB (Transformation) 0	Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation) 0 <th< td=""><td>Patent Fuel Plants</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td></th<>	Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector 0	BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines 0	Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants 0	Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy) 0	Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy) 0	Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy) 0	Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation) 0	Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries 0	Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants 0 0 0 0 0 0 0 0 0 0 0 0 0	BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy) 0 0 0 0 0 0 0 0 0 0 0 0 0	Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

101A Coking Coal	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 2: National Energy Balance 1990-2003. Bituminous Coal & Anthracite [1000 tons].

102A Bitominous Coal & Anthracite	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	1	1	1	1	0	0	0	0	0	0	0	0
Total Imports (Balance)	1 233	1 717	1 692	1 422	1 096	1 216	1 724	1 616	1 653	1 211	1 672	1 862	2 167	2 069
Total Exports (Balance)	0	0	9	0	0	1	2	4	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	589	270	-197	-257	91	268	-21	348	-97	94	176	195	-233	327
Gross Inland Deliveries (Obs.)	1 822	1 988	1 487	1 165	1 188	1 484	1 701	1 959	1 555	1 305	1 848	2 057	1 934	2 396
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	1 421	1 561	1 075	746	822	1 082	1 238	1 437	1 061	915	1 422	1 684	1 618	2 136
Public Electricity	964	957	647	394	485	550	1 069	1 275	890	740	1 203	1 390	1 373	1 908
Public Combined Heat and Power	409	535	352	318	327	518	128	127	127	140	161	244	194	177
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	6	0	0
Auto Producers of Electricity	0	0	0	0	0	0	19	5	4	4	10	13	11	13
Auto Producers for CHP	48	68	76	34	10	14	22	31	40	32	48	31	39	38

102A Bitominous Coal & Anthracite	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	7	33	2	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	7	33	2	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	400	425	410	417	365	400	462	521	493	381	392	370	315	258
Total Transport	3	0	1	0	0	0	1	1	1	1	1	1	1	1
Rail	3	0	1	0	0	0	1	1	1	1	1	1	1	1
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	152	177	212	248	218	250	305	399	382	290	314	291	254	207
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	6	8	27	42	42	45	50	73	70	88	57	70	71	68
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	145	142	164	167	142	163	196	208	199	131	171	151	98	82
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	1	27	22	38	35	43	59	118	113	72	87	70	85	57
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	245	248	198	169	146	149	156	121	109	90	77	78	61	50
Commerce - Public Services	16	19	11	12	9	10	12	10	11	9	7	7	5	4
Residential	226	226	184	155	135	137	142	108	98	80	68	70	55	45
Agriculture	3	3	3	2	2	2	2	2	1	1	1	1	1	1
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	2	2	2	2	1	1	1	1	1	1	1	1	2	2

Table 3: National Energy Balance 1990-2003. Patent Fuel [1000 tons].

104A Patent Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	0	0	0	0	0	0	0	7	4	4	4	1	1	2
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	0	0	0	0	0	0	0	7	4	4	4	1	1	2
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	7	4	4	4	1	1	2
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0

104A Patent Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Total Other Sectors	0	0	0	0	0	0	0	7	4	4	4	1	1	2
Commerce - Public Services	0	0	0	0	0	0	0	1	1	1	1	0	0	C
Residential	0	0	0	0	0	0	0	6	3	3	3	0	1	2
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	C

Table 4: National Energy Balance 1990-2003. Lignite and Brown Coal [1000 tons].

105A Lignite and brown coal	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	2 448	2 081	1 771	1 691	1 369	1 297	1 108	1 130	1 140	1 137	1 249	1 206	1 412	1 152
Total Imports (Balance)	36	53	22	1	19	29	43	23	13	13	34	6	5	5
Total Exports (Balance)	3	3	3	1	0	0	0	0	0	1	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	23	639	-330	-347	-146	417	470	163	-287	419	78	423	140	490
Gross Inland Deliveries (Obs.)	2 503	2 770	1 459	1 345	1 241	1 743	1 621	1 316	866	1 569	1 361	1 635	1 557	1 647
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	2 133	2 338	1 167	1 068	984	1 524	1 495	1 205	763	1 417	1 212	1 481	1 390	1 477
Public Electricity	1 182	1 445	583	301	405	1 081	1 358	1 164	738	1 372	1 168	1 418	1 316	1 393
Public Combined Heat and Power	881	830	484	668	509	339	48	13	3	9	8	30	43	52
Public Heat Plants	16	8	9	7	7	9	9	4	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	4	0	0	0	0	0	0	0
Auto Producers for CHP	54	54	91	92	63	95	76	23	22	35	35	33	31	32
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	6	3	1	0	1	0	0	1	0	15	2	0	1	0
Coal Mines	3	1	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0

105A Lignite and brown coal	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	3	2	1	0	1	0	0	1	0	15	2	0	1	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	364	429	291	277	257	219	126	111	103	137	147	153	167	170
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	147	211	118	136	139	115	33	46	45	84	102	111	133	145
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	11	14	4	0	1	4	6	3	3	15	38	44	59	69
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	2	1	1	1	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	132	193	112	133	139	111	27	43	42	69	64	67	74	76
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	2	3	1	1	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	217	218	173	141	117	104	93	65	58	53	45	42	34	24
Commerce - Public Services	9	14	6	9	10	5	3	3	3	3	3	3	3	4
Residential	208	205	168	132	108	99	90	62	55	50	42	39	30	20
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0
·								_				_		_

Table 5: National Energy Balance 1990-2003. Brown Coal Briquettes [1000 tons].

106A BKB-PB	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	295	286	239	237	181	173	167	133	103	106	95	108	65	72
Total Exports (Balance)	0	0	0	0	0	1	1	0	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	12	32	13	-20	19	1	0	0	0	0	11	0	0	0
Gross Inland Deliveries (Obs.)	306	318	252	217	200	172	167	133	103	106	107	108	65	72

106A BKB-PB	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	12	32	13	12	10	0	0	0	0	0	18	29	0	0
Public Electricity	7	13	6	5	5	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	18	29	0	0
Public Heat Plants	5	19	8	7	5	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	295	286	239	205	190	172	167	133	103	106	88	79	65	72
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	44	25	17	15	24	14	13	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	1	2	1	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	43	23	16	15	24	14	13	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0

106A BKB-PB	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	251	261	223	190	166	158	154	132	103	106	88	79	65	72
Commerce - Public Services	6	11	8	7	11	6	6	20	11	11	6	4	2	3
Residential	235	240	206	176	149	146	142	108	88	91	79	72	60	66
Agriculture	10	11	9	8	7	6	6	5	4	4	3	3	3	3
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 6: National Energy Balance 1990-2003. Coke Oven Coke [1000 tons].

107A Coke Oven Coke	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	1 725	1 540	1 487	1 402	1 432	1 448	1 559	1 566	1 598	1 608	1 385	1 394	1 395	1 395
Total Imports (Balance)	815	893	685	580	607	718	652	764	642	654	981	1 091	1 073	904
Total Exports (Balance)	1	2	2	0	0	1	0	0	0	2	1	1	2	2
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-136	52	1	113	132	189	-10	39	24	-30	71	-164	124	51
Gross Inland Deliveries (Obs.)	2 402	2 483	2 171	2 094	2 171	2 354	2 200	2 369	2 264	2 230	2 435	2 320	2 589	2 347
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	596	609	526	546	632	691	637	737	811	767	888	878	1 026	958
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	596	609	526	546	632	691	636	737	811	767	888	878	1 026	958
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	97	63	79	71	43	77	88	73	68	48	53	52	59	53
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	97	63	79	71	43	77	88	73	68	48	53	52	59	53
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	853	924	763	660	605	576	544	490	441	469	457	364	360	318

107A Coke Oven Coke	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	243	282	216	192	213	198	172	222	200	210	253	183	182	174
Iron and Steel	233	229	137	153	160	179	163	179	163	145	198	150	151	163
Chemical (incl.Petro-Chemical)	2	12	17	10	17	7	3	14	11	16	18	15	11	4
Non ferrous Metals	1	6	10	5	8	4	2	7	6	7	7	4	6	2
Non metallic Mineral Products	4	19	33	13	10	5	2	15	13	36	12	3	5	1
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	1	3	8	4	7	2	1	3	2	3	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	1	5	10	5	10	2	1	5	4	3	18	11	11	4
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	7	2	1	2	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	610	642	547	468	391	379	371	268	242	260	204	180	177	145
Commerce - Public Services	13	14	12	10	9	8	8	6	5	4	3	3	2	1
Residential	585	615	524	448	375	363	356	257	231	250	196	174	172	141
Agriculture	12	13	11	10	8	8	8	5	5	5	4	4	3	3
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Γotal Non-Energy Use	857	887	803	817	891	1 010	932	1 069	944	946	1 037	1 026	1 144	1 018

Table 7: National Energy Balance 1990-2003. Peat [1000 tons].

113A Peat	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

113A Peat	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	1	1	1	1	1	1	1	1	1	1	1	1	1	2
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	1	1	1	1	1	1	1	1	1	1	1	1	1	2
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	1	1	1	1	1	1	1	1	1	1	1	1	1	2
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 8: National Energy Balance 1990-2003. Coke Oven Gas [TJ].

304A Coke Oven Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	13	12	11	10	10	10	11	11	12	12	10			10
Ç	117	276	164	636	790	906	419	605	166	220	466	9 776	9 579	931
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	13	12	11	10	10	10	11	11	12	12	10			10
	117	276	164	636	790	906	419	605	166	220	466	9 776	9 579	931
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	3 385	2 763	2 885	2 960	3 490	6 228	3 545	3 087	3 087	4 005	3 794	3 984	3 092	1 871
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	2 183	2 002	2 033	2 649	3 256	3 449	2 639	1 255
Auto Producers for CHP	3 385	2 763	2 885	2 960	3 490	6 228	1 362	1 085	1 054	1 357	489	535	453	526
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	50	0	0	91
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	3 621	3 188	2 863	2 474	2 274	1 987	3 058	2 781	3 279	2 951	3 115	3 099	3 047	3 099
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	3 621	3 188	2 863	2 474	2 274	1 987	3 058	2 781	3 279	2 951	3 115	3 099	3 047	3 099
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	6 111	6 325	5 416	5 202	5 026	2 691	4 816	5 737	5 801	5 264	3 557	2 694	3 441	5 962
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	6 111	6 325	5 416	5 202	5 026	2 691	4 816	5 737	5 801	5 264	3 557	2 694	3 441	5 962
Iron and Steel	6 111	6 325	5 416	5 202	5 026	2 691	4 816	5 737	5 801	5 264	3 557	2 694	3 441	5 962
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0

304A Coke Oven Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 9: National Energy Balance 1990-2003. Blast Furnace Gas [TJ].

305A Blast Furnace Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	16	16	14	14	17	18	17	20	22	21	24	24	28	26
	175	530	273	992	342	912	283	011	012	407	806	513	644	743
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	16	16	14	14	17	18	17	20	22	21	24	24	28	26
	175	530	273	992	342	912	283	011	012	407	806	513	644	743
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	4 822	4 352	5 405	5 773	7 708	7 132	6 956	8 582	7 768	6 703	6 260	6 273	8 027	7 958
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	4 493	5 447	5 320	4 530	5 257	5 404	7 240	6 784
Auto Producers for CHP	4 822	4 352	5 405	5 773	7 708	7 132	2 463	3 135	2 448	2 173	1 003	869	786	1 174
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	1 983	2 026	1 749	2 753	2 642	3 398	1 516	2 583	4 911	824	778	944	882	1 030

305A Blast Furnace Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	1 983	2 026	1 749	2 753	2 642	3 398	1 516	2 583	4 911	824	778	944	882	1 030
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption		10								13	17	17	19	17
	9 370	152	7 119	6 465	6 991	8 383	8 811	8 846	9 333	880	768	297	736	756
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry		10								13	17	17	19	17
	9 370	152	7 119	6 465	6 991	8 383	8 811	8 846	9 333	880	768	297	736	756
Iron and Steel		10								13	17	17	19	17
	9 370	152	7 119	6 465	6 991	8 383	8 811	8 846	9 333	880	768	297	736	756
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	U							_	_		_	_		_
7 ignoditaro	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)		0	0	0	0	0	0	0	0	0	0	0	0	0

Oil

Table 10: National Energy Balance 1990-2003. Crude Oil [1000 tons].

Crude Oil	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	1 149	1 280	1 180	1 154	1 099	1 035	992	972	959	1 002	971	957	833	1 151
Refinery Losses	120	129	181	124	60	153	75	82	156	76	35	66	21	0
Refinery Intake (Calculated)	7 952	8 273	8 732	8 522	8 898	8 619	8 754	9 374	9 190	8 635	8 240	8 799	8 945	8 857
Refinery Intake (Observed)	7 952	8 273	8 732	8 522	8 898	8 619	8 754	9 374	9 190	8 635	8 240	8 799	8 945	8 857
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Total Imports (Balance)	6 797	7 000	7 550	7 453	7 790	7 590	7 737	8 450	8 269	7 698	7 315	7 940	8 118	7 819
Total Exports (Balance)	0	0	0	0	0	0	51	25	44	51	61	63	0	0
Stock Change (National Territory)	6	-8	3	-84	9	-6	75	-23	6	-14	16	-36	-5	-114
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 11: National Energy Balance 1990-2003. Natural Gas Liquids [1000 tons].

Natural Gas Liquids	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	41	41	40	40	47	43	53	55	88	61	101	55	55	55
Refinery Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Refinery Intake (Calculated)	41	41	40	40	47	43	53	43	226	71	107	55	55	55
Refinery Intake (Observed)	41	41	40	40	47	43	53	43	226	71	107	55	55	55
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	0	0	0	0	0	0	0	0	135	0	6	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	-12	2	10	0	0	0	0
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 12: National Energy Balance 1990-2003. Refinery Feedstocks [1000 tons].

Refinery Feedstocks	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Refinery Intake (Calculated)	1 069	1 225	1 001	1 124	861	582	858	853	564	873	540	652	492	204
Refinery Intake (Observed)	1 069	1 225	1 001	1 124	861	582	858	853	564	873	540	652	492	204
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Total Imports (Balance)	1 009	1 154	902	708	915	600	916	761	746	740	627	570	593	375
Total Exports (Balance)	0	0	0	0	77	39	62	14	7	15	76	42	6	25
Stock Change (National Territory)	-26	-30	19	349	-54	-28	-88	92	-182	115	-32	115	-96	-148

Table 13: National Energy Balance 1990-2003. Residual Fuel Oil [1000 tons].

203X; Residual Fuel Oil	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	1 913	1 981	1 821	1 678		1 502		1 540		1 308	979	1 044	1 012	978
Refinery Fuel	81	77	80	126	143	139	56	49	63	22	37	7	7	25
Total Imports (Balance)	602	480	376	541	456	532	386	449	671	468	262	280	241	328
Total Exports (Balance)	185	149	65	110	77	38	121	53	18	37	152	228	146	55
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-93	-88	-188	1	109	-100	119	1	-38	-131	246	262	-117	8
Gross Inland Deliveries (Obs.)	2 156	2 147	1 865	1 984	1 816	1 757	1 770	1 888	1 899	1 586	1 298	1 351		1 234
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	608	740	610	708	651	573	537	636	732	642	389	416	269	355
Public Electricity	28	37	10	102	95	88	194	313	348	271	110	79	34	104
Public Combined Heat and Power	253	297	338	408	398	316	178	151	234	281	161	191	168	203
Public Heat Plants	99	124	104	110	80	70	109	129	106	63	95	125	51	28
Auto Producers of Electricity	0	0	0	0	0	0	22	11	10	5	6	4	2	10
Auto Producers for CHP	227	281	156	87	77	97	33	31	33	20	15	16	13	8
Auto Producer Heat Plants	1	1	2	1	1	1	1	1	1	2	1	1	1	3
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	116	117	118	120	127	150	110	143	191	191	231	256	154	160
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	116	117	118	120	127	150	110	143	191	191	231	256	154	160
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	1 432	1 290	1 136	1 157	1 038	1 035	1 123	1 109	976	752	678	680	560	718
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	478	500	435	635	615	531	538	819	685	413	345	304	224	327
Iron and Steel	18	16	13	18	19	22	25	12	10	12	26	16	8	12
Chemical (incl.Petro-Chemical)	21	22	16	21	27	26	27	44	37	27	17	19	13	20

203X; Residual Fuel Oil	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non ferrous Metals	3	4	4	5	6	7	10	20	16	10	10	9	7	10
Non metallic Mineral Products	107	102	101	174	147	130	123	213	179	97	62	46	35	51
Transportation Equipment	12	14	12	17	19	17	5	6	5	6	6	7	3	5
Machinery	26	29	25	35	36	31	41	72	60	38	39	35	26	37
Mining and Quarrying	6	5	5	7	7	7	9	12	10	15	14	15	10	15
Food, Beverages and Tobacco	72	80	73	98	91	86	65	93	77	47	47	45	32	47
Pulp, Paper and Printing	116	124	108	155	153	105	91	152	128	66	47	41	30	43
Wood and Wood Products	14	14	12	16	17	20	26	45	38	22	11	5	12	18
Construction	30	32	20	26	27	21	34	48	40	20	20	14	10	14
Textiles and Leather	25	29	22	30	31	24	34	52	44	25	19	24	17	25
Non Specified (Industry)	28	30	24	32	36	35	47	48	40	28	29	30	21	30
Total Other Sectors	953	789	702	522	423	503	586	290	291	339	333	375	336	391
Commerce - Public Services	292	212	186	178	178	231	278	78	65	66	62	72	71	104
Residential	471	410	367	244	174	194	219	151	161	194	193	218	190	207
Agriculture	191	167	149	99	71	79	89	61	65	79	78	85	74	81
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	116	117	118	120	127	150	110	143	191	191	231	256	154	160

Table 14: National Energy Balance 1990-2003. Heating and Oher Gas Oil [1000 tons].

204A Heating and Other Gas Oil	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	1 239	1 575	1 412	1 639	1 614	1 454	1 598	1 604	1 280	1 245	1 062	1 301	1 062	1 103
Refinery Fuel	0	0	1	0	0	0	0	1	2	6	0	0	0	0
Total Imports (Balance)	0	0	0	88	18	165	376	355	577	615	533	626	734	860
Total Exports (Balance)	0	28	0	59	48	0	0	0	0	0	1	3	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	5	-20	11	-65	-58	39	-17	-53	41	1	44	-41	-11	37
Gross Inland Deliveries (Obs.)	1 244	1 527	1 422	1 604	1 526	1 658	1 956	1 906	1 895	1 854	1 638	1 883	1 785	1 999
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	2	2	2	1	2	3	1	0	19	3	4
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	15	1	0
Public Combined Heat and Power	0	0	0	2	2	2	0	0	0	0	0	4	2	1
Public Heat Plants	0	0	0	0	0	0	1	2	2	0	0	0	0	3
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0

204A Heating and Other Gas Oil	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	1 244	1 527	1 422	1 601	1 524	1 656	1 955	1 904	1 893	1 853	1 637	1 864	1 782	1 996
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	1	5	4	6	5	5	11	11	12	43	38	54	65	105
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	2	2	4	5	7
Non ferrous Metals	0	0	0	0	0	0	0	0	0	4	2	3	3	4
Non metallic Mineral Products	0	1	1	1	1	1	2	2	2	3	2	2	2	4
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	1	1	2	1	1	3	3	3	7	6	8	10	16
Mining and Quarrying	0	0	0	0	0	0	1	1	1	1	1	2	2	4
Food, Beverages and Tobacco	0	0	0	1	0	1	1	1	1	10	10	15	18	29
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	1	1	1	1	2
Wood and Wood Products	0	0	0	0	0	0	0	0	0	2	1	1	2	2
Construction	0	1	1	1	1	1	3	3	3	8	10	13	16	26
Textiles and Leather	0	0	0	0	0	0	0	0	0	2	2	2	3	5
Non Specified (Industry)	0	0	0	0	0	0	1	1	1	3	2	3	3	6
Total Other Sectors	1 243	1 523	1 417	1 595	1 519	1 651	1 944	1 893	1 880	1 810	1 599	1 810	1 717	1 890
Commerce - Public Services	26	87	84	119	89	92	222	219	237	186	88	97	49	79
Residential	1 216	1 434	1 333	1 475	1 429	1 558	1 720	1 673	1 643	1 623	1 510	1 711	1 667	1 810
Agriculture	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 15: National Energy Balance 1990-2003. Diesel [1000 tons].

2050 Diesel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	1 531	1 634	1 833	1 965	2 034	1 920	2 008	2 311	2 615	2 430	2 662	2 658	2 922	2 746
Refinery Fuel	0	0	0	2	2	1	1	1	1	0	0	0	0	4

2050 Diesel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Imports (Balance)	576	686	589	609	800	937	1 777	1 159	1 898	1 877	2 075	2 433	2 728	3 491
Total Exports (Balance)	3	68	73	104	88	83	97	271	467	459	415	415	520	539
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-7	74	97	140	-24	112	-106	195	-108	44	-59	-8	49	-9
Gross Inland Deliveries (Obs.)	2 097	2 326	2 446	2 608	2 720	2 885	3 581	3 394	3 937	3 892	4 263	4 668	5 180	5 685
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	5	5	8	4	7	1	3	1	0	0	0
Public Electricity	0	0	0	4	3	6	2	6	1	2	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	1	0	0	1	1	0	0	0
Auto Producers for CHP	0	0	0	1	1	2	1	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	2 096	2 326	2 446	2 603	2 715	2 877	3 578	3 388	3 936	3 889	4 261	4 668	5 179	5 685
Total Transport	1 477	1 653	1 745	1 867	1 954	2 077	2 629	2 479	2 916	2 879	3 181	3 505	3 909	4 312
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	1 416	1 596	1 689	1 812	1 899	2 026	2 582	2 432	2 869	2 831	3 128	3 451	3 858	4 260
Rail	54	50	49	48	49	45	41	41	41	42	47	47	44	44
Inland Waterways	7	7	7	7	6	6	6	6	6	6	6	7	8	8
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	275	321	343	373	393	426	559	524	626	617	681	756	853	946
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	3	4	4	4	5	5	6	6	7	7	8	9	10	11
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	4	5	5	6	6	6	8	8	9	9	10	11	13	14
Transportation Equipment	19	22	24	26	27	29	39	36	43	43	47	52	59	65

2050 Diesel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Machinery	1	1	1	1	1	1	2	2	2	2	2	2	3	3
Mining and Quarrying	19	23	24	26	28	30	40	37	44	44	48	54	60	67
Food, Beverages and Tobacco	1	1	1	1	2	2	2	2	2	2	3	3	3	4
Pulp, Paper and Printing	1	1	1	1	1	1	1	1	1	1	1	2	2	2
Wood and Wood Products	4	4	5	5	5	6	8	7	8	8	9	10	11	13
Construction	219	256	274	298	314	340	446	418	499	492	543	603	680	755
Textiles and Leather	3	4	4	4	4	5	6	6	7	7	7	8	9	10
Non Specified (Industry)	0	1	1	1	1	1	1	1	1	1	1	1	1	2
Total Other Sectors	344	352	357	363	368	374	389	384	395	393	399	407	418	428
Commerce - Public Services	33	38	41	44	47	50	66	62	74	73	81	89	101	112
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	312	314	317	319	321	324	323	322	321	320	319	318	317	316
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 16: National Energy Balance 1990-2003. Other Kerosene [1000 tons].

206A Other Kerosene	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	31	43	49	0	13	8	5	0	2	1	1	1	1	1
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	14	4	18	0	0	4	10	10	16	15	5	0	3	4
Total Exports (Balance)	21	13	31	9	13	6	5	2	2	0	0	0	0	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-7	-4	-6	23	2	0	1	2	1	0	0	0	0	0
Gross Inland Deliveries (Obs.)	18	31	30	14	2	6	12	10	17	16	6	1	4	5
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

206A Other Kerosene	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	18	31	30	14	2	6	12	10	17	16	6	1	4	5
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	1	0	0	0	0	0	0	3	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	1	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	2	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	18	31	29	14	2	6	12	10	17	13	6	1	4	5
Commerce - Public Services	18	31	29	14	2	6	12	10	17	13	6	1	4	5
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 17: National Energy Balance 1990-2003. Kerosene Type Jet Fuel [1000 tons].

206B Kerosene Type Jet Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	291	334	371	377	376	420	479	508	540	508	544	513	484	446
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	13	8	9	10	27	23	24	12	9	21	35	37	38	47
Total Exports (Balance)	5	5	10	1	0	0	0	0	6	5	5	1	1	5
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0

206B Kerosene Type Jet Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Stock Change (National Territory)	0	-1	-7	1	0	4	-8	-4	-2	2	-4	4	-3	4
Gross Inland Deliveries (Obs.)	299	336	363	386	403	447	495	515	541	525	569	553	519	491
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	299	336	363	386	403	447	495	515	541	525	569	553	519	491
Total Transport	299	336	363	386	403	447	495	515	541	525	569	553	519	491
International Civil Aviation	269	307	335	363	378	425	466	493	511	489	537	523	484	414
Domestic Air Transport	30	29	28	24	25	22	29	22	30	36	32	30	34	77
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0

206B Kerosene Type Jet Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 18: National Energy Balance 1990-2001. Gasoline Type Jet Fuel [1000 tons].

0,					• •		-		-					
207A Gasoline Type Jet Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	2	3	3	3	3	4	2	3	3	3	3	4	3	4
Total Exports (Balance)	0	0	0	0	0	0	1	1	0	1	1	1	2	3
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	1	0	0	0	0	-2	1	0	0	0	0	-1	0	1
Gross Inland Deliveries (Obs.)	3	3	3	3	3	2	2	2	3	3	2	2	2	2
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0

207A Gasoline Type Jet Fuel	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	3	3	3	3	3	2	2	2	3	3	2	2	2	2
Total Transport	3	3	3	3	3	2	2	2	3	3	2	2	2	2
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	3	3	3	3	3	2	2	2	3	3	2	2	2	2
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 19: National Energy Balance 1990-2003. Motor Gasoline [1000 tons].

2080 Motor Gasoline	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	2 631	2 400	2 462	2 340	2 541	2 271	2 297	2 410	2 232	2 141	1 815	1 922	1 927	1 799
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	257	387	506	541	583	698	612	547	759	762	670	603	706	879
Total Exports (Balance)	281	127	214	311	640	596	700	831	824	824	472	582	496	474
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-54	136	-78	-2	-6	20	10	-22	36	-31	-33	51	8	-12
Gross Inland Deliveries (Obs.)	2 553	2 796	2 675	2 568	2 478	2 395	2 219	2 105	2 204	2 047	1 980	1 994	2 144	2 192
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0

2080 Motor Gasoline	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	2 553	2 796	2 675	2 568	2 478	2 395	2 219	2 105	2 204	2 047	1 980	1 994	2 144	2 192
Total Transport	2 457	2 695	2 585	2 482	2 395	2 312	2 144	2 033	2 128	1 976	1 911	1 925	2 067	2 167
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	2 457	2 695	2 585	2 482	2 395	2 312	2 144	2 033	2 128	1 976	1 911	1 925	2 067	2 167
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	93	97	86	83	80	79	72	68	72	68	66	67	73	24
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	7	3	0	0	0	0	0	0	4	0	1	1	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	70	77	70	67	64	64	58	55	55	55	54	54	59	18
Machinery	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	12	13	12	12	11	11	10	10	10	10	9	10	10	4

2080 Motor Gasoline	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Textiles and Leather	1	1	1	1	1	1	1	1	1	1	1	1	1	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	4	4	4	4	4	3	3	3	3	3	3	3	3	1
Commerce - Public Services	4	4	4	4	4	3	3	3	3	3	3	3	3	1
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	7	3	0	0	0	0	0	0	4	0	1	1	0	0

Table 20: National Energy Balance 1990-2003. Lubricants [1000 tons].

219A Lubricants	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	31	31	27	25	26	73	109	113	107	105	111	117	100	123
Refinery Fuel	0	0	0	0	0	1	0	0	0	0	0	0	0	0
Total Imports (Balance)	177	171	115	98	105	51	50	51	53	52	57	51	47	44
Total Exports (Balance)	32	30	48	35	34	41	49	57	53	51	58	65	62	80
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-13	-28	26	4	-8	4	-5	1	-1	-3	-1	5	2	4
Gross Inland Deliveries (Obs.)	163	144	120	92	89	86	105	108	106	103	108	108	86	92
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	18	16	13	10	10	9	11	12	12	11	12	12	9	10
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	1	1	1	1	0	0	1	1	1	1	1	1	0	1
Coke Ovens (Energy)	5	5	4	3	3	3	3	4	3	3	4	4	3	3
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	1	1	1	0	0	0	1	1	1	1	1	1	0	0
Power Plants	2	1	1	1	1	1	1	1	1	1	1	1	1	1
Non Specified (Energy)	9	8	7	5	5	5	6	6	6	6	6	6	5	5
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	145	128	107	82	79	77	94	96	94	92	96	96	77	82

219A Lubricants	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Transport	67	59	49	38	36	35	43	44	43	42	44	44	35	38
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	66	58	48	37	35	34	42	43	42	41	43	43	35	37
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Total Industry	75	66	55	42	41	40	48	50	49	48	50	50	40	42
Iron and Steel	14	12	10	8	8	7	9	9	9	9	9	9	7	7
Chemical (incl.Petro-Chemical)	6	6	5	4	3	3	4	4	4	4	4	4	3	4
Non ferrous Metals	2	2	2	1	1	1	1	2	1	1	2	2	1	1
Non metallic Mineral Products	10	9	7	6	5	5	6	7	6	6	7	7	5	6
Transportation Equipment	2	2	1	1	1	1	1	1	1	1	1	1	1	1
Machinery	3	3	2	2	2	2	2	2	2	2	2	4	3	3
Mining and Quarrying	3	3	2	2	2	2	2	2	2	2	2	2	2	2
Food, Beverages and Tobacco	10	9	8	6	6	5	7	7	7	7	7	7	5	6
Pulp, Paper and Printing	8	7	6	5	4	4	5	5	5	5	5	5	4	5
Wood and Wood Products	3	2	2	1	1	1	2	2	2	2	2	2	1	1
Construction	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Textiles and Leather	4	4	3	2	2	2	3	3	3	3	3	3	2	2
Non Specified (Industry)	8	7	6	5	5	4	5	6	5	5	6	4	3	3
Total Other Sectors	3	3	2	2	2	2	2	2	2	2	2	2	2	2
Commerce - Public Services	3	3	2	2	2	2	2	2	2	2	2	2	1	1
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
otal Non-Energy Use	163	144	120	92	89	86	105	108	106	103	108	108	86	92

Table 21: National Energy Balance 1990-2003. White Spirit [1000 tons].

220A White Spirit	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	0	7	8	7	7	5	5	0	0	0	0	0	0	0
Refinery Fuel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Imports (Balance)	11	9	8	8	6	8	8	11	12	12	7	6	9	11
Total Exports (Balance)	0	2	3	1	0	0	1	1	1	0	0	0	1	0
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	1	0	1	-1	0	1	0	1	1	0	0	0
Gross Inland Deliveries (Obs.)	11	14	14	14	14	12	12	11	11	13	7	7	9	11
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0

220A White Spirit	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	11	14	14	14	14	12	12	11	11	13	7	7	9	11
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	11	14	14	14	14	12	12	11	11	13	7	7	9	11
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	11	14	10	10	10	10	9	8	5	4	3	3	5	4
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	4	4	4	2	3	3	6	8	3	4	4	7
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	1	1	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0

220A White Spirit	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	11	14	10	10	10	10	9	8	5	4	3	3	5	4

Table 22: National Energy Balance 1990-2003. Bitumen [1000 tons].

222A Bitumen	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	269	281	380	284	311	254	263	299	300	326	343	402	416	398
Refinery Fuel	0	0	0	0	0	0	2	0	4	0	0	0	0	0
Total Imports (Balance)	292	232	70	154	154	187	250	242	279	231	292	296	248	296
Total Exports (Balance)	1	21	15	22	25	5	11	6	1	1	45	78	62	82
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-22	0	6	-6	7	4	-7	7	-2	4	-3	-1	-1	1
Gross Inland Deliveries (Obs.)	538	492	441	410	446	440	493	542	572	560	587	618	601	613
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	538	492	441	410	446	440	493	542	572	560	587	618	601	613
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0

222A Bitumen	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	538	492	441	410	446	440	493	542	572	560	587	618	601	613
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	538	492	441	410	446	440	493	542	572	560	587	618	601	613
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	538	492	441	410	446	440	493	542	572	560	587	618	601	613

Table 23: National Energy Balance 1990-2003. Other Oil Products [1000 tons].

224A Other Oil Products	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	499	649	743	754	893	761	923	953	960	927	859	988	1 030	1 048
Refinery Fuel	162	181	174	236	254	212	264	277	267	213	223	226	254	278
Total Imports (Balance)	182	90	66	188	0	29	14	143	106	101	149	85	84	92
Total Exports (Balance)	3	0	3	96	1	39	54	6	137	131	139	162	168	149
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	-30	-31	59	-19	-25	-4	14	-9	7	0	-7	11	1	-13
Gross Inland Deliveries (Obs.)	485	527	691	591	614	534	633	803	668	683	638	697	693	699
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	23	14	0	1	1	0	0	0	0	0	0	0	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0

224A Other Oil Products	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	23	14	0	1	1	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	462	512	691	590	614	534	633	803	668	683	638	697	693	699
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	462	512	691	590	614	534	633	803	668	683	638	697	693	699
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	462	512	691	590	614	534	633	803	668	683	638	697	693	699
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0

224A Other Oil Products	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	462	512	691	590	614	534	633	803	668	683	638	697	693	699

Table 24: National Energy Balance 1990-2003. LPG [1000 tons].

303A LPG	1990	1991		1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	47	43	51	96	37	60	20	45	30	19	34	0	23	50
Refinery Fuel	8	8	1	2	0	19	6	0	1	4	20	0	2	1
Total Imports (Balance)	97	149	151	114	210	149	184	148	132	152	159	140	155	137
Total Exports (Balance)	14	44	40	34	58	42	42	55	19	20	17	4	7	9
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	2	18	1	-6	-15	20	-3	-5	3	0	-5	6	-2	-1
Gross Inland Deliveries (Obs.)	125	158	162	168	174	166	152	132	144	147	150	143	168	176
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	1	4	4	3	3	3	3	2	1	1	0	0	1	0
Public Electricity	0	0	0	0	0	0	0	1	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	1	0
Public Heat Plants	1	4	4	3	3	3	3	1	1	1	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	124	153	158	165	172	163	150	130	143	147	150	143	168	176
Total Transport	9	9	10	10	10	11	15	11	13	14	14	14	14	14
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	9	9	10	10	10	11	15	11	13	14	14	14	14	14
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0

303A LPG	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	65	76	48	55	65	62	67	60	66	54	55	48	49	51
Iron and Steel	4	5	4	4	4	3	12	12	13	6	1	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Non ferrous Metals	8	7	6	5	7	6	6	4	5	4	4	4	6	6
Non metallic Mineral Products	12	14	12	15	21	23	21	13	14	15	15	14	10	11
Transportation Equipment	1	2	1	1	1	3	2	10	11	0	1	1	1	1
Machinery	11	13	11	12	14	13	12	10	11	11	14	13	14	14
Mining and Quarrying	1	1	0	1	1	1	1	1	1	1	1	1	1	2
Food, Beverages and Tobacco	3	4	4	4	3	3	2	2	2	5	4	5	4	4
Pulp, Paper and Printing	1	1	1	2	1	1	2	1	1	1	2	1	2	2
Wood and Wood Products	0	0	0	1	0	0	0	0	0	1	1	1	1	1
Construction	23	30	9	10	11	9	8	7	7	9	13	6	6	7
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Non Specified (Industry)	0	1	1	1	1	1	1	0	1	1	0	1	1	1
Total Other Sectors	50	68	101	100	97	90	68	59	64	79	81	81	105	111
Commerce - Public Services	32	47	80	76	73	61	34	19	21	31	32	27	52	54
Residential	16	19	19	22	22	26	31	36	39	43	44	50	48	52
Agriculture	2	2	2	2	2	3	3	4	4	4	5	4	4	4
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	1

Table 25: National Energy Balance 1990-2003. Refinery Gas [1000 tons].

308A Refinery Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Refinery Gross Output	373	327	339	319	341	305	359	351	348	341	312	328	306	273
Refinery Fuel	373	327	339	319	341	305	359	351	348	338	310	326	306	273
Total Imports (Balance)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Total Exports (Balance)	-	-	-	-	-	-	-	-	-	-	-	-	-	-
International Marine Bunkers	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	0	0	0	0	0	0	0	0	0	2	2	2	0	0
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	1	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

308A Refinery Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petrochemical Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	0	0	2	2	1	0	0
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
International Civil Aviation	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic Air Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	2	2	1	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	2	2	1	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Natural Gas

Table 26: National Energy Balance 1990-2003. Natural Gas [TJ NCV].

	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	46 376	47 729	51 722	53 559	48 776	53 336	53 701	51 404	56 440	62 524	64 826	62 194	67 541	75 094
Total Imports (Balance)	187	184	183	193	179	229	236	216	224	219	222	225	234	1 204
	917	138	846	697	430	114	579	911	009	484	784	593	797	894
Total Exports (Balance)														953
	0	0	12	0	189	576	0	0	698	0	633	14 713	19 139	335
Stock Change (National	-15					-12					-11			
Territory)	054	-73	-7 946	-7 212	18 891	290	-3 340	8 236	4 168	6 867	295	19 095	12 287	-7 163
Gross Inland Deliveries	219	231	227	240	246	269	286	276	283	288	275	292	295	319
(Obs.)	239	794	610	044	908	583	941	551	920	876	681	169	485	491
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation							108		100					107
Sector	74 710	76 968	74 215	80 159	94 010	95 817	680	87 682	569	99 236	83 076	82 051	88 953	087
Public Electricity	28 100	25 602	20 818	20 129	23 477	21 731	36 919	19 485	35 366	30 144	23 854	24 379	24 784	35 673
Public Combined Heat and Power	23 810	24 752	24 529	25 628	27 342	30 757	33 803	31 061	29 381	32 247	28 673	31 456	38 694	46 208
Public Heat Plants	7 552	7 200	7 148	8 135	7 517	9 579	9 022	8 641	8 780	7 282	8 926	5 375	7 417	6 574
Auto Producers of Electricity	9 596	12 218	13 670	16 532	22 453	21 241	18 211	20 694	19 173	18 436	12 715	14 655	6 814	5 330
Auto Producers for CHP	5 651	7 195	8 050	9 735	13 222	12 509	10 725	7 801	7 870	10 457	8 454	6 014	11 237	12 033
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	669	454	172	6	1 269
Gas Works (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Conversion to Liquids	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	13 411	13 437	12 495	13 238	12 156	13 351	10 257	11 608	10 294	8 951	9 384	10 135	9 339	10 396
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Oil and Gas Extraction	5 339	5 396	5 027	5 255	5 228	5 746	3 022	3 709	2 989	1 612	3 028	2 915	2 810	3 129
Inputs to Oil Refineries	8 045	8 041	7 469	7 983	6 928	7 606	7 236	7 898	7 305	7 339	6 356	7 220	6 528	7 267
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	28	1	0	0	0	0	0	0	0	0	0	0	0	0

Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	2 726	3 352	3 259	2 303	2 904	5 293	1 449	920	2 702	4 818	2 256	2 751	6 244	6 951
Final Consumption	113	122	126	129	127	144	155	165	159	165	170	187	180	183
	479	072	906	338	802	603	775	673	801	227	461	288	614	778
Total Transport	4 050	4 065	3 968	3 865	3 780	4 092	4 216	4 199	6 344	7 808	9 650	8 255	9 175	8 808
Road	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pipeline Transport	4 050	4 065	3 968	3 865	3 780	4 092	4 216	4 199	6 344	7 808	9 650	8 255	9 175	8 808
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	69 005	66 695	66 153	64 995	67 840	73 737	78 192	90 314	82 184	72 340	86 569	90 376	92 905	89 195
Iron and Steel	10 521	9 568	9 546	9 524	10 606	11 282	12 178	15 939	14 504	13 604	13 482	13 672	12 433	11 936
Chemical (incl.Petro- Chemical)	7 708	7 123	7 405	7 571	7 694	8 278	8 374	11 062	10 066	14 103	15 055	14 938	14 510	13 930
Non ferrous Metals	1 352	1 205	1 579	1 919	2 049	2 161	2 026	2 587	2 354	2 149	2 296	2 584	2 650	2 544
Non metallic Mineral Products	10 082	10 277	9 370	9 734	10 246	11 136	11 989	14 487	13 183	9 139	9 560	9 585	11 175	10 729
Transportation Equipment	1 534	1 772	1 930	2 093	2 409	2 564	2 421	1 271	1 157	752	938	1 480	1 182	1 135
Machinery	4 347	4 394	4 773	5 059	5 608	6 154	6 316	6 037	5 494	4 581	5 109	5 552	5 053	4 851
Mining and Quarrying	2 630	2 481	1 825	1 849	2 013	2 528	2 652	2 760	2 512	1 677	2 282	2 527	2 624	2 520
Food, Beverages and Tobacco	8 877	8 860	8 247	7 815	8 808	9 451	9 229	10 535	9 587	8 996	14 388	14 197	17 508	16 809
Pulp, Paper and Printing	12 858	12 226	12 283	10 082	8 916	9 817	10 976	18 431	16 772	10 219	15 965	17 404	16 828	16 156
Wood and Wood Products	1 717	1 701	1 790	1 675	1 941	2 051	2 262	1 812	1 648	1 770	1 671	1 898	1 659	1 593
Construction	731	709	877	1 221	1 402	1 538	1 483	601	547	1 640	1 420	1 790	3 105	2 981
Textiles and Leather	3 507	3 260	3 509	3 314	3 020	3 407	3 718	2 629	2 392	2 621	3 164	3 400	2 743	2 634
Non Specified (Industry)	3 142	3 119	3 018	3 140	3 128	3 370	4 569	2 162	1 967	1 089	1 239	1 350	1 435	1 377
Total Other Sectors	40 424	51 312	56 784	60 478	56 182	66 774	73 367	71 160	71 273	85 079	74 243	88 657	78 534	85 775
Commerce - Public Services	7 711	12 070	18 183	18 121	15 949	23 440	24 732	20 971	19 083	29 591	19 171	27 772	18 631	17 887
Residential	32 346	38 802	38 167	41 881	39 782	42 847	48 088	49 626	51 604	54 864	54 452	60 200	59 230	67 125
Agriculture	368	441	434	476	452	487	547	564	586	624	619	685	673	763
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Non-Energy Use	14 913	15 965	10 735	15 006	10 036	10 518	10 781	10 669	10 554	10 644	10 504	9 945	10 336	11 278

Renewable Fuels

Table 27: National Energy Balance 1990-2003. Fuel Wood [TJ].

111A Fuel Wood	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	61	66	63	64	60	65	70	65	63	64	58	66	64	70
	401	501	235	028	260	763	726	357	416	483	610	530	380	187
Total Imports (Balance)	2 288	2 832	2 421	3 064	2 382	1 623	2 423	2 017	1 604	1 486	1 803	1 803	2 104	2 530
Total Exports (Balance)	28	80	57	29	73	222	107	114	140	34	180	180	379	931
Stock Change (National Territory)	-545	706	382	113	-179	189	243	-54	0	0	0	0	0	C
Gross Inland Deliveries (Obs.)	63	69	65	67	62	67	73	67	64	65	60	68	66	71
	116	960	982	176	390	354	285	206	881	936	233	153	105	787
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Total Transformation Sector	0	0	0	0	0	0	0	0	210	0	0	0	0	C
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	210	0	0	0	0	C
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	63	69	65	67	62	67	73	67	64	65	60	68	66	71
	116	960	982	176	390	354	285	206	672	936	233	153	104	787
Total Transport	2	2	1	1	1	1	1	0	0	0	0	0	0	0
Rail	2	2	1	1	1	1	1	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	661	734	706	802	904	1 074	783	272	151	1 830	927	1 123	1 402	1 536
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	10	0	0	0	0	0	0	0	0	0	C
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	C
Non metallic Mineral Products	47	44	43	41	42	62	7	1	1	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	47	52	60	51	52	62	12	17	9	37	40	42	40	43

0	9	0	0	0	0	2	0	0	1	1	1	1	1
121	114	77	144	94	93	23	15	8	17	16	20	19	20
9	26	0	0	0	0	54	1	1	0	0	0	0	0
233	253	221	226	291	300	319	76	42	1 576	678	831	1 117	1 226
0	0	102	113	156	289	142	79	44	105	101	116	122	132
19	26	17	21	21	21	5	0	0	2	2	3	2	3
186	210	187	195	249	248	219	83	46	93	88	111	101	110
62	69	65	66	61	66	72	66	64	64	59	67	64	70
454	225	275	374	485	278	501	934	520	105	306	029	702	251
1 330	1 294	1 177	1 145	1 091	1 167	1 063	873	486	479	438	499	486	538
57	63	60	61	56	61	67	62	60	59	55	62	60	65
500	902	298	361	812	250	202	144	237	853	377	585	408	579
3 625	4 028	3 801	3 868	3 581	3 861	4 236	3 917	3 797	3 773	3 491	3 945	3 808	4 134
0	0	0	0	0	0	0	0	0	0	0	0	0	0
	121 9 233 0 19 186 62 454 1 330 57 500 3 625	121 114 9 26 233 253 0 0 19 26 186 210 62 69 454 225 1 330 1 294 57 63 500 902 3 625 4 028	121 114 77 9 26 0 233 253 221 0 0 102 19 26 17 186 210 187 62 69 65 454 225 275 1 330 1 294 1 177 57 63 60 500 902 298 3 625 4 028 3 801	121 114 77 144 9 26 0 0 233 253 221 226 0 0 102 113 19 26 17 21 186 210 187 195 62 69 65 66 454 225 275 374 1 330 1 294 1 177 1 145 57 63 60 61 500 902 298 361 3 625 4 028 3 801 3 868	121 114 77 144 94 9 26 0 0 0 233 253 221 226 291 0 0 102 113 156 19 26 17 21 21 186 210 187 195 249 62 69 65 66 61 454 225 275 374 485 1 330 1 294 1 177 1 145 1 091 57 63 60 61 56 500 902 298 361 812 3 625 4 028 3 801 3 868 3 581	121 114 77 144 94 93 9 26 0 0 0 0 233 253 221 226 291 300 0 0 102 113 156 289 19 26 17 21 21 21 186 210 187 195 249 248 62 69 65 66 61 66 454 225 275 374 485 278 1 330 1 294 1 177 1 145 1 091 1 167 57 63 60 61 56 61 500 902 298 361 812 250 3 625 4 028 3 801 3 868 3 581 3 861	121 114 77 144 94 93 23 9 26 0 0 0 0 54 233 253 221 226 291 300 319 0 0 102 113 156 289 142 19 26 17 21 21 21 5 186 210 187 195 249 248 219 62 69 65 66 61 66 72 454 225 275 374 485 278 501 1 330 1 294 1 177 1 145 1 091 1 167 1 063 57 63 60 61 56 61 67 500 902 298 361 812 250 202 3 625 4 028 3 801 3 868 3 581 3 861 4 236	121 114 77 144 94 93 23 15 9 26 0 0 0 0 54 1 233 253 221 226 291 300 319 76 0 0 102 113 156 289 142 79 19 26 17 21 21 21 5 0 186 210 187 195 249 248 219 83 62 69 65 66 61 66 72 66 454 225 275 374 485 278 501 934 1 330 1 294 1 177 1 145 1 091 1 167 1 063 873 57 63 60 61 56 61 67 62 500 902 298 361 812 250 202 144 3 62	121 114 77 144 94 93 23 15 8 9 26 0 0 0 0 54 1 1 233 253 221 226 291 300 319 76 42 0 0 102 113 156 289 142 79 44 19 26 17 21 21 21 5 0 0 186 210 187 195 249 248 219 83 46 62 69 65 66 61 66 72 66 64 454 225 275 374 485 278 501 934 520 1 330 1 294 1 177 1 145 1 091 1 167 1 063 873 486 57 63 60 61 56 61 67 62 60	121 114 77 144 94 93 23 15 8 17 9 26 0 0 0 0 54 1 1 0 233 253 221 226 291 300 319 76 42 1576 0 0 102 113 156 289 142 79 44 105 19 26 17 21 21 21 5 0 0 2 186 210 187 195 249 248 219 83 46 93 62 69 65 66 61 66 72 66 64 64 454 225 275 374 485 278 501 934 520 105 1 330 1 294 1 177 1 145 1 091 1 167 1 063 873 486 479 57	121 114 77 144 94 93 23 15 8 17 16 9 26 0 0 0 0 54 1 1 0 0 233 253 221 226 291 300 319 76 42 1576 678 0 0 102 113 156 289 142 79 44 105 101 19 26 17 21 21 21 5 0 0 2 2 186 210 187 195 249 248 219 83 46 93 88 62 69 65 66 61 66 72 66 64 64 59 454 225 275 374 485 278 501 934 520 105 306 1 330 1 294 1 177 1 145 <t< td=""><td>121 114 77 144 94 93 23 15 8 17 16 20 9 26 0 0 0 0 54 1 1 0 0 0 233 253 221 226 291 300 319 76 42 1576 678 831 0 0 102 113 156 289 142 79 44 105 101 116 19 26 17 21 21 21 5 0 0 2 2 3 186 210 187 195 249 248 219 83 46 93 88 111 62 69 65 66 61 66 72 66 64 64 59 67 454 225 275 374 485 278 501 934 520 105</td><td>121 114 77 144 94 93 23 15 8 17 16 20 19 9 26 0 0 0 54 1 1 0 0 0 0 233 253 221 226 291 300 319 76 42 1576 678 831 1117 0 0 102 113 156 289 142 79 44 105 101 116 122 19 26 17 21 21 21 5 0 0 2 2 3 2 186 210 187 195 249 248 219 83 46 93 88 111 101 62 69 65 66 61 66 72 66 64 64 59 67 64 454 225 275 374</td></t<>	121 114 77 144 94 93 23 15 8 17 16 20 9 26 0 0 0 0 54 1 1 0 0 0 233 253 221 226 291 300 319 76 42 1576 678 831 0 0 102 113 156 289 142 79 44 105 101 116 19 26 17 21 21 21 5 0 0 2 2 3 186 210 187 195 249 248 219 83 46 93 88 111 62 69 65 66 61 66 72 66 64 64 59 67 454 225 275 374 485 278 501 934 520 105	121 114 77 144 94 93 23 15 8 17 16 20 19 9 26 0 0 0 54 1 1 0 0 0 0 233 253 221 226 291 300 319 76 42 1576 678 831 1117 0 0 102 113 156 289 142 79 44 105 101 116 122 19 26 17 21 21 21 5 0 0 2 2 3 2 186 210 187 195 249 248 219 83 46 93 88 111 101 62 69 65 66 61 66 72 66 64 64 59 67 64 454 225 275 374

Table 28: National Energy Balance 1990-2003. Wood Waste [TJ].

116A Wood waste; Other	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	13 66	14	15	18	18	18	20	27	23	33	32	38	38	44
	8	819	705	136	456	739	571	344	219	992	152	399	553	824
Total Imports (Balance)	1 864	2 437	2 536	2 116	2 418	2 144	1 744	2 838	2 344	2 641	2 819	4 095	4 472	4 472
Total Exports (Balance)	2 072	2 116	2 240	1 517	2 221	2 617	2 819	5 181	5 034	6 137	6 509	7 978	6 855	6 855
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	13	15	16	18	18	18	19	25	20	30	28	34	36	42
	461	139	001	736	653	265	496	001	529	496	462	515	170	441
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector							10	13		12	13	14	17	19
	2 452	3 888	4 348	7 460	9 204	8 874	038	040	9 180	168	964	398	851	482
Public Electricity	0	0	0	0	0	0	0	0	13	17	9	517	1 377	1 155
Public Combined Heat and Power	0	0	0	0	0	0	47	101	98	81	130	624	736	1 013
Public Heat Plants												10	11	13
	2 045	3 020	3 404	3 515	3 714	4 332	5 988	5 904	6 616	6 886	8 854	751	555	402
Auto Producers of Electricity	0	0	0	0	0	189	2 493	3 041	272	2 713	1 872	824	2 502	2 371
Auto Producers for CHP	407	868	944	3 945	5 490	4 353	1 510	3 921	2 102	2 379	3 016	1 522	1 554	1 403
Auto Producer Heat Plants	0	0	0	0	0	0	0	72	79	92	83	159	125	139
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	11	11	11	11				11	11	18	14	20	18	22
	009	251	653	275	9 449	9 391	9 458	962	349	328	498	118	319	959
Total Transport	79	87	113	165	171	233	250	272	291	340	367	404	402	399
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	79	87	113	165	171	233	250	272	291	340	367	404	402	399
Total Industry										11		11	10	14
	9 243	9 116	9 460	8 826	7 133	6 699	6 584	7 576	6 458	753	7 495	510	967	476
Iron and Steel	0	0	0	0	0	0	20	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	2 898	2 902	3 258	2 173	1 808	1 722	2 062	2 413	1 575	1 884	714	1 387	1 202	1 925
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	2	0	0	0	0	0	7	7
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	22	18	17	42	41	123	109	114
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	10	10	10	9	9	9	6	1	1	156	146	184	134	138
Pulp, Paper and Printing	3 660	3 468	3 920	4 527	3 582	3 901	2 502	2 761	3 746	3 552	628	1 197	2 530	4 740
Wood and Wood Products	2 569	2 620	2 185	2 035	1 652	968	1 810	2 076	910	5 335	5 265	7 663	6 085	6 625
Construction	39	39	29	28	28	27	47	71	55	279	286	349	267	276
Textiles and Leather	0	0	0	0	0	0	0	0	0	4	4	5	4	4
Non Specified (Industry)	68	78	58	55	55	72	114	236	154	500	412	603	629	648
Total Other Sectors	1 687	2 048	2 080	2 284	2 144	2 459	2 624	4 114	4 600	6 235	6 636	8 204	6 951	8 084
Commerce - Public Services	765	854	793	731	736	698	581	1 425	1 351	1 656	1 580	2 008	1 728	2 000
Residential	551	739	804	1 009	996	1 137	1 330	1 795	2 198	3 182	3 509	4 333	3 609	4 254
Agriculture	371	455	483	545	412	624	713	894	1 051	1 397	1 547	1 863	1 614	1 831
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 29: National Energy Balance 1990-2003. Black Liquor [TJ].

215A Black Liquor	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	17	17	18	18	19	21	21	21	22	23	24	23	22	23
	799	737	067	544	606	392	174	675	916	647	121	299	968	552
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	17	17	18	18	19	21	21	21	22	23	24	23	22	23
	799	737	067	544	606	392	174	675	916	647	121	299	968	552
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector									11	10				11
	5 260	5 670	6 076	7 091	8 897	9 267	9 505	8 580	354	234	7 635	7 612	9 961	036
Public Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	2 618	2 822	3 024	4 033	5 060	5 271	5 406	5 140	8 867	6 156	2 001	3 116	2 782	6 647
Auto Producers for CHP	2 642	2 848	3 052	3 058	3 837	3 997	4 099	3 440	2 487	4 079	5 635	4 496	7 179	4 390
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	12	12	11	11	10	12	11	13	11	13	16	15	13	12
	540	067	991	453	709	125	669	094	562	413	486	687	007	515
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	12	12	11	11	10	12	11	13	11	13	16	15	13	12
	540	067	991	453	709	125	669	094	562	413	486	687	007	515
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	12	12	11	11	10	12	11	13	11	13	16	15	12	12
	540	067	991	453	709	125	669	094	562	367	425	626	955	455
Wood and Wood Products	0	0	0	0	0	0	0	0	0	46	61	61	50	59
Construction	0	0	0	0	0	0	0	0	0	0	0	0	1	1
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 30: National Energy Balance 1990-2003. Biogas [TJ].

309A Biogas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	0	0	0	35	39	48	27	350	337	253	281	512
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	0	0	0	0	0	35	39	48	27	350	337	253	281	512
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	35	39	48	27	130	184	149	204	199
Public Electricity	0	0	0	0	0	0	0	0	0	13	20	20	0	0
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	29	69	64	106	106
Auto Producers for CHP	0	0	0	0	0	35	39	48	27	88	95	64	98	93
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	0	0	220	152	104	77	314
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	220	152	104	77	314
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	206	130	85	29	187
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	14	0	7	21	21
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	22	12	27	105
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 31: National Energy Balance 1990-2003. Sewage Sludge Gas [TJ].

309B Sewage sludge gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	0	631	638	619	668	691	715	714	791	725	721	745
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	0	0	0	631	638	619	668	691	715	714	791	725	721	745
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	631	638	619	668	691	715	714	791	725	721	745
Public Electricity	0	0	0	0	0	10	31	52	50	17	49	52	57	49
Public Combined Heat and Power	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Public Heat Plants	0	0	0	0	0	0	0	4	2	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	39	40	0	0
Auto Producers for CHP	0	0	0	631	638	609	637	635	663	696	703	632	664	696
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 32: National Energy Balance 1990-2003. Landfill Gas [TJ].

310A Landfill Gas	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	0	0	0	77	88	195	307	524	527	524	457	859	381	527
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	0	0	0	77	88	195	307	524	527	524	457	859	381	527
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	0	0	0	0	0	146	271	519	520	524	457	859	381	527
Public Electricity	0	0	0	0	0	0	0	0	0	43	58	63	58	207
Public Combined Heat and Power	0	0	0	0	0	29	31	27	30	0	0	4	0	18
Public Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers of Electricity	0	0	0	0	0	117	240	492	490	481	399	752	298	266
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	39	26	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	37
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	77	88	49	36	5	7	0	0	0	0	0
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	77	88	49	36	5	7	0	0	0	0	0
Commerce - Public Services	0	0	0	77	88	49	36	5	7	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 33: National Energy Balance 1990-2003. Municipal Solid Waste [TJ].

114B Municipal Solid Waste	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production	2 414	2 899	3 485	3 759	3 823	3 911	4 769	4 895	4 782	4 519	4 520	4 609	4 915	5 785
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)	2 414	2 899	3 485	3 759	3 823	3 911	4 769	4 895	4 782	4 519	4 520	4 609	4 915	5 785
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	2 414	2 899	3 485	3 759	3 823	3 911	4 769	4 895	4 782	4 519	4 520	4 609	4 915	5 785
Public Electricity	0	0	0	0	0	0	0	0	0	513	595	595	667	1 551
Public Combined Heat and Power	1 724	2 179	2 314	2 157	2 243	2 318	2 499	2 594	2 579	2 340	2 233	2 235	2 283	2 426
Public Heat Plants	690	720	1 170	1 603	1 580	1 593	2 269	2 301	2 203	1 666	1 692	1 779	1 965	1 807
Auto Producers of Electricity	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producers for CHP	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Auto Producer Heat Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Energy Sector	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coal Mines	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Patent Fuel Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Coke Ovens (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Blast Furnaces (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Gas Works (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
BKB (Transformation)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Petroleum refineries	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Power Plants	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Energy)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Distribution Losses	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Final Consumption	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transport	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Rail	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Inland Waterways	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Transport)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Industry	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Iron and Steel	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Chemical (incl.Petro-Chemical)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non ferrous Metals	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non metallic Mineral Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Transportation Equipment	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Machinery	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Mining and Quarrying	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Food, Beverages and Tobacco	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pulp, Paper and Printing	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Wood and Wood Products	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Textiles and Leather	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Industry)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Other Sectors	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Commerce - Public Services	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Residential	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Agriculture	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Non Specified (Others)	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Table 34: National Energy Balance 1990-2003. Industrial Waste [TJ].

115A Industrial Waste	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Indigenous Production													11	11
	6 576	7 180	8 525	6 015	6 704	7 005	9 246	8 227	7 502	9 598	8 454	8 908	320	065
Total Imports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Exports (Balance)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Stock Change (National Territory)	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Gross Inland Deliveries (Obs.)													11	11
	6 576	7 180	8 525	6 015	6 704	7 005	9 246	8 227	7 502	9 598	8 454	8 908	320	065
Statistical Difference	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Total Transformation Sector	2 542	1 941	2 945	1 841	1 927	1 929	4 735	3 614	2 152	3 614	1 966	1 905	2 902	2 922
Public Electricity	0	0	0	0	0	0	0	0	0	133	134	134	796	1 164

0	0	0	0	0	0	0	0	0	0	0	937	1 047	812
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1 613	1 274	543	1 152	814	193	466	294
2 542	1 941	2 945	1 841	1 927	1 929	3 122	2 340	1 609	2 329	1 018	591	593	605
0	0	0	0	0	0	0	0	0	0	0	50	0	46
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
4 034	5 239	5 580	4 174	4 777	5 076	4 511	4 614	5 351	5 984	6 488	7 002	8 418	8 144
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
2 924	4 269	4 888	3 845	4 266	4 556	3 958	4 031	4 738	5 379	5 933	6 372	7 800	7 100
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 567	2 024	2 303	1 502	1 648	1 908	989	1 168	1 102	1 627	1 387	965	1 629	1 945
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1 311	1 665	1 876	1 819	1 935	1 976	2 165	2 101	2 664	2 877	3 557	4 545	4 965	3 715
0	9	9	0	9	10	6	7	7	1	1	0	0	0
0	0	0	0	0	0	1	1	2	0	0	0	1	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	5	6	6	0	0	0	0	0
0	0	0	0	0	0	60	66	70	136	131	113	94	112
37	478	580	441	573	553	645	587	787	692	813	688	1 048	1 251
0	9	18	9	9	10	8	9	10	16	16	22	23	27
0	0	0	0	9	10	5	6	6	5	5	9	7	8
9	83	101	74	83	90	73	81	85	24	24	30	34	41
1 110	970	692	329	512	520	553	582	613	605	555	630	618	1 044
1 110	970	692	329	512	520	553	582	613	605	555	630	618	1 044
0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0	0	0
													0
	0 0 0 2 542 0 0 0 0 0 0 0 0 0 0 0 0 0 4 034 0 0 0 2 924 0 1 567 0 0 1 311 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 2 542 1 941 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 034 5 239 0 0 0 0 0 0 2 924 4 269 0 0 1 567 2 024 0 0 1 311 1 665 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 311 1 665 0 0 0 0 0 0 0 0 0 0 0	0 0 0 2 542 1 941 2 945 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 567 2 024 2 303 0 0 0 1 567 2 024 2 303 0 0 0 0 0 0 0 0 0 0	0 0 0 0 2 542 1 941 2 945 1 841 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 2 542 1 941 2 945 1 841 1 927 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 2 542 1 941 2 945 1 841 1 927 1 929 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td>0 0 0 0 0 0 0 0 0 0 0 1613 2 542 1 941 2 945 1 841 1 927 1 929 3 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td>O O</td> <td>0 0 0 0 0 1 1613 1274 543 2 542 1941 2 945 1841 1927 1929 3 122 2 340 1609 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td> <td> </td> <td>0 0 0 0 0 0 1 1 2 5 1 1 2 8 1 1 2 1 1 2 1 1 2 1 1 2 1</td> <td> </td> <td> </td>	0 0 0 0 0 0 0 0 0 0 0 1613 2 542 1 941 2 945 1 841 1 927 1 929 3 122 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	O O	0 0 0 0 0 1 1613 1274 543 2 542 1941 2 945 1841 1927 1929 3 122 2 340 1609 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 0 0 0 0 1 1 2 5 1 1 2 8 1 1 2 1 1 2 1 1 2 1 1 2 1		

Net Calorific Values

At the following the selected net calorific values of each fuel are presented.

Table 35 presents the net calorific values from [IEA JQ 2004] which are used for unit conversion.

Table 35: Net calorific values for 1990-2003 in [MJ/kg], [MJ/m³] taken from [IEA JQ 2004].

					00 -00		,91,	[. ,		. [· .j.			
Fuel Code	Fuel Name		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
101A	Coking Coal	Т	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07	29.07
		FC	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	26.65	27.94	27.99	27.50	27.50
102A	Hard Coal	Т	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	28.00	27.23	28.00	28.09	27.37	27.43
104A	Hard Coal Briquettes	Α	-	-	-	-	-	-	-	31.00	31.00	31.00	31.00	31.00	31.00	31.00
105A	Brown	FC	10.90	10.90	10.90	10.90	10.90	10.90	9.90	9.90	9.90	9.77	9.82	9.82	9.82	9.82
TUSA	Coal	Т	10.90	10.90	10.90	10.90	10.90	10.90	9.90	9.90	9.90	9.77	9.84	9.70	9.74	9.48
106A	Brown Coal Briquettes	Т	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30	19.30
107A	Coke Oven	Т	28.20	28.20	28.20	28.50	28.50	28.50	28.20	28.20	28.20	28.20	28.20	28.20	28.20	28.20
113A	Peat	FC	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80	8.80
304A	Coke Oven Gas	Р	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52	17.52
305A	Blast Furnace Gas	Р	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50	3.50
110A	Petrol Coke	Α	34.30	34.30	34.30	34.30	30.55	28.35	32.15	32.80	33.99	33.92	33.93	33.93	33.93	33.93
201A	Crude Oil	Α	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.51	42.50	42.52	42.52	42.50	42.50	42.62
203X	Residual Fuel Oil	Α	41.00	41.10	41.10	41.30	41.30	40.46	40.33	40.28	40.27	40.69	41.67	41.78	41.77	41.42
204A	Gasoil	Α	42.60	42.60	42.60	42.60	42.60	42.70	42.80	42.80	42.80	42.80	42.80	42.80	42.75	42.80
2050	Diesel	Α	42.60	42.60	42.60	42.60	42.60	42.70	42.70	42.70	42.70	42.80	42.80	42.80	42.80	42.80
206A	Petroleum	Α	43.60	43.60	43.60	43.60	43.60	43.30	43.39	43.41	43.41	43.31	43.30	43.30	43.30	43.30
206B	Kerosene	Α	43.60	43.60	43.60	43.60	43.60	43.30	43.39	43.41	43.41	43.31	43.30	43.30	43.30	43.30
207A	Aviation Gasoline	Α	41.60	41.60	41.60	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.52	42.49	42.49
2080	Motor Gasoline	Α	41.60	41.60	41.60	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.52	42.49	42.49
217A	Refinery Feedstock s	Α	42.24	42.31	42.10	42.38	42.46	42.49	43.07	42.24	42.27	42.52	42.57	42.59	41.93	42.47
219A	Lubricants	Α	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	43.83	43.49	43.84	43.91	43.95
220A	White	Α	41.60	41.60	41.60	42.50	42.50	42.50	42.50	42.50	42.50	44.10	44.10	44.10	44.10	44.10

	Spirit															
222A	Bitumen	Α	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	44.04	43.62	43.84	44.15	43.95
	Other	FC	30.55	28.35	32.15	32.80	33.99	33.92	33.93	33.93	33.93	33.93	30.55	28.35	32.15	32.80
224A	Petroleum	NE														
	Products	U	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	41.80	44.04	43.62	43.84	44.15	43.95
	Natural															
302A	Gas Liquids	Α	42.50	42.50	42.50	42.50	42.50	42.50	42.50	42.51	42.50	42.52	42.52	42.50	42.50	42.52
	(NGL)															
	Liquified															
303A	Petroleum	Α														
	Gas (LPG)		46.30	46.20	46.20	46.20	46.20	46.30	46.32	46.31	46.32	46.00	46.00	46.00	46.00	46.00
308A	Refinery	Α														
300A	Gas	А	49.00	49.00	49.00	49.00	49.00	49.00	49.00	49.00	49.00	42.23	45.93	45.93	45.93	45.93
301A	Natural	Α														
301A	Gas	^	36.00	36.00	36.00	36.00	36.00	36.00	36.00	36.00	36.00	35.85	35.85	35.85	35.85	35.85

Legend: A:....Average; T. ...Transformation; FC. ... Final Consumption; P.....Production; NEU....non-energy use;

Table 36 presents the net calorific values from STATISTIK AUSTRIA which are used for unit conversion.

Table 36: Net calorific values from STATISTIK AUSTRIA.

Fuel Name	NCV	Unit
Municipal Waste / renewable	8.93	MJ/kg
Municipal Waste / non renewable	9.14	MJ/kg
Industrial Waste	15.76	MJ/kg
Fuel Wood	15.50	MJ/kg
Wood Wastes	11.36	MJ/kg
Bark	7.54	MJ/kg
Sewage Sludge	3.64	MJ/kg
Black Liquor	7.92	MJ/kg
Carcass meal	17.30	MJ/kg
Adipose	36.59	MJ/kg
Liquid Biofuels	42.00	MJ/kg
Biogas	22.06	MJ/m ³
Gas from Waste Disposal Site	17.00	MJ/m ³

Table 37 presents IPCC default values of net calorific values of gaseous biofuels which are used for unit conversion.

Table 37: Net calorific values from IPCC Guidelines.

Fuel Name	NCV	Unit
Sewage Sludge Gas	27.00	MJ/m ³

ANNEX 5: CRF FOR 2003

This Annex includes the CRF-Tables for the year 2003 as included in Austria's data submission 2005 to the UNFCCC.

TABLE 1 SECTORAL REPORT FOR ENERGY (Sheet 1 of 2)

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	$\mathrm{CH_4}$	N_2O	NO_X	CO	NMVOC	SO_2
				(Gg)			
Total Energy	67.857,30	31,11	2,65	222,58	767,35	82,08	32,87
A. Fuel Combustion Activities (Sectoral Approach)	67.624,26	15,82	2,65	222,58	767,35	78,63	32,72
1. Energy Industries	16.030,35	0,31	0,22	15,64	4,35	0,74	8,43
a. Public Electricity and Heat Production	13.291,77	0,30	0,21	11,62	3,59	0,73	4,71
b. Petroleum Refining	2.526,31	0,00	0,01	3,44	0,72	ΙE	3,69
c. Manufacture of Solid Fuels and Other Energy Industries	212,28	0,01	0,00	0,58	0,04	0,00	0,03
2. Manufacturing Industries and Construction	14.163,39	0,47	0,53	33,49	168,82	3,69	11,90
a. Iron and Steel	5.143,34	0,04	0,06	4,67	147,24	0,10	5,14
b. Non-Ferrous Metals	210,55	0,00	0,00	0,19	0,03	0,00	0,08
c. Chemicals	1.251,18	0,09	0,03	2,50	2,55	0,42	2,45
d. Pulp, Paper and Print	1.857,07	0,11	0,06	4,55	4,61	0,77	1,10
e. Food Processing, Beverages and Tobacco	1.262,17	0,03	0,01	1,12	0,16	0,02	0,34
f. Other (please specify)	4.439,08	0,20	0,38	20,44	14,23	2,38	2,78
Industry not included in 1 A 2 a to 1 A 2 e	4.439,08	0,20	0,38	20,44	14,23	2,38	2,78
3. Transport	22.692,33		0,91	135,69	186,73		2,24
a. Civil Aviation	66,75	0,00	0,00	0,21	1,77	0,10	0,02
b. Road Transportation	21.882,82	1,04	0,87	131,75	181,56		2,10
c. Railways	174,05	0,01	0,02	1,65	0,46	0,22	0,10
d. Navigation	84,25	0,01	0,02	0,75	2,85	0,67	0,02
e. Other Transportation (please specify)	484,47	0,01	0,00	1,32	0,09	0,00	0,00
Pipeline Compressors	484,47	0,01	0,00	1,32	0,09	0,00	NA

GREENHOUSE GAS SOURCE AND SINK CATE	GORIES	CO ₂	CH ₄	N ₂ O	NO_X	CO	NMVOC	SO_2
					(Gg)			
4. Other Sectors		14.702,00	13,96	0,98	37,70	407,23	50,54	10,1
a. Commercial/Institutional		1.822,85	0,50	0,04	2,12	10,51	1,41	1,0
b. Residential		11.087,45	12,40	0,47	15,99	350,48	39,72	8,3
c. Agriculture/Forestry/Fisheries		1.791,70	1,06	0,47	19,60	46,24	9,42	0,7
5. Other (please specify) (1)		36,19	0,00	0,00	0,08	0,21	0,01	0,0
a. Stationary		<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>N</u> O
b. Mobile		36,19	0,00	0,00	0,08	0,21	0,01	0,0
Military		36,19	0,00	0,00	0,08	0,21	0,01	0,0
B. Fugitive Emissions from Fuels		233,04	15,29	0,00	0,00	0,00	3,45	0,1
1. Solid Fuels		0,00	0,39	0,00	0,00	0,00	0,00	0,0
a. Coal Mining		0,00	0,39	NA	NA	NA	NA	*,*
b. Solid Fuel Transformation		IE	ΙΕ	ΙΕ	ΙE	ΙE	IE	I
c. Other (please specify)	•••	NO	NO	0,00	0,00	0,00	0,00	0,0
2. Oil and Natural Gas		233,04	14,91	0,00	0,00	0,00	3,45	0,1
a. Oil		133,00	4,20	0,00	NA	NA	3,27	N.
b. Natural Gas		100,04	10,71				0,18	0,1
c. Venting and Flaring		0,00	0,00	0,00	0,00	0,00	0,00	0,0
Venting		IE	ΙΕ				ΙE	Ι
Flaring		IE	ΙΕ	IE	ΙE	IE	IE	Ι
d. Other (please specify)		NO	NO	NO	0,00	0,00	0,00	0,0
Memo Items: (2)								
International Bunkers		1.451,90	0,02	0,05	4,64	1,43	0,61	0,4
Aviation		1.451,90	0,02	0,05	4,64	1,43	0,61	0,4
Marine		NO	NO	NO	NO NO	NO NO	NO.	NO NO
Multilateral Operations		IE	IE	IE	IE	IE	IE	I
CO ₂ Emissions from Biomass		14.665,91	-			-		

⁽¹⁾ Include military fuel use under this category.

⁽²⁾ Please do not include in energy totals.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	AGGREGATE ACTIVITY DATA		IMPLIE	ED EMISSION FACT	ORS (2)		EMISSIONS	
	Consumption		CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O
	(TJ)	(1)	(t/TJ)	(kg/TJ)	(kg/TJ)	(Gg)	(Gg)	(Gg)
1.A. Fuel Combustion	1.107.073,05	NCV				67.624,26	15,82	2,65
Liquid Fuels	516.003,63	NCV	73,97	2,71	3,55	38.166,22	1,40	1,83
Solid Fuels	131.133,89	NCV	92,51	5,81	1,28	12.130,75	0,76	0,17
Gaseous Fuels	301.260,95	NCV	55,00	1,17	0,40	16.569,35	0,35	0,12
Biomass	139.820,05	NCV	104,89	93,53	3,55	14.665,91	13,08	0,50
Other Fuels	18.854,52	NCV	40,20	12,00	1,40	757,95	0,23	0,03
1.A.1. Energy Industries	242.572,29	NCV				16.030,35	0,31	0,22
Liquid Fuels	44.724,35	NCV	70,83	0,36	0,62	3.168,05	0,02	0,03
Solid Fuels	70.886,57	NCV	97,53	0,18	1,29	6.913,32	0,01	0,09
Gaseous Fuels	100.840,64	NCV	55,00	1,22	0,24	5.546,24	0,12	0,02
Biomass	16.355,52	NCV	109,88	2,44	3,89	1.797,10	0,04	0,06
Other Fuels	9.765,21	NCV	41,24	12,00	1,40	402,75	0,12	0,01
a. Public Electricity and Heat Production	199.467,61	NCV				13.291,77	0,30	0,21
Liquid Fuels	14.005,62	NCV	79,30	1,13	1,20	1.110,69	0,02	0,02
Solid Fuels	70.886,57	NCV	97,53	0,18	1,29	6.913,32	0,01	0,09
Gaseous Fuels	88.454,69	NCV	55,00	1,33	0,26	4.865,01	0,12	0,02
Biomass	16.355,52	NCV	109,88	2,44	3,89	1.797,10	0,04	0,06
Other Fuels	9.765,21	NCV	41,24	12,00	1,40	402,75	0,12	0,01
b. Petroleum Refining	39.279,31	NCV				2.526,31	0,00	0,01
Liquid Fuels	30.636,89	NCV	66,94	<u>0,00</u>	0,36	2.050,97	IE	0,01
Solid Fuels	0,00	NCV	0,00	<u>0,00</u>	0,00	0,00	0,00	0,00
Gaseous Fuels	8.642,43	NCV	55,00	<u>0,00</u>	0,10	475,33	IE	0,00
Biomass	0,00	NCV	0,00	<u>0,00</u>	0,00	0,00	0,00	0,00
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00
c. Manufacture of Solid Fuels and Other Energy Industries	3.825,37	NCV				212,28	0,01	0,00
Liquid Fuels	81,84	NCV	78,00	2,00	1,00	6,38	0,00	0,00
Solid Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00
Gaseous Fuels	3.743,52	NCV	55,00	1,50	0,10	205,89	0,01	0,00
Biomass	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00

⁽¹⁾ Activity data should be calculated using net calorific values (NCV) as specified by the IPCC Guidelines. If gross calorific values (GCV) were used, please indicate this by replacing "NCV" with "GCV" in this column.

Note: For the coverage of fuel categories, please refer to the IPCC Guidelines (Volume 1. Reporting Instructions - Common Reporting Framework, section 1.2, p. 1.19). If some derived gases (e.g. gas work gas, coke oven gas, blast gas, oxygen steel furnace gas, etc.) are considered, Parties should provide information on the allocation of these derived gases under the above fuel categories (liquid, soild, gaseous, biomass, other fuels) in the documentation box at the end of sheet 4 of this table.

⁽²⁾ Accurate estimation of CH4 and N2O emissions depends on combustion conditions, technology, and emission control policy, as well as fuel characteristics. Therefore, caution should be used when comparing the implied emission factors.

⁽³⁾ Carbon dioxide emissions from biomass are reported under Memo Items. The content of the cells is not included in the totals.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	AGGREGATE ACTIVITY DATA		IMPLII	ED EMISSION FACTO	ORS (2)	EMISSIONS			
	Consumption		CO_2	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	
	(TJ)	(1)	(t/TJ)	(kg/TJ)	(kg/TJ)	(Gg)	(Gg)	(Gg)	
1.A.2 Manufacturing Industries and Construction	255.762,38	NCV				14.163,39	0,47	0,53	
Liquid Fuels	45.033,41	NCV	76,66	1,72	7,52	3.452,32	0,08	0,34	
Solid Fuels	53.076,85	NCV	85,64	1,26	1,11	4.545,26	0,07	0,06	
Gaseous Fuels	105.837,12	NCV	55,00	1,38	0,10	5.821,04	0,15	0,01	
Biomass	43.769,32	NCV	109,73	1,99	2,56 (3)	4.802,92	0,09	0,11	
Other Fuels	8.045,68	NCV	42,85	12,00	1,40	344,76	0,10	0,01	
a. Iron and Steel	67.567,29	NCV				5.143,34	0,04	0,06	
Liquid Fuels	7.197,22	NCV	77,97	0,66	1,00	561,18	0,00	0,01	
Solid Fuels	43.946,60	NCV	83,71	0,42	1,05	3.678,88	0,02	0,05	
Gaseous Fuels	16.423,29	NCV	55,00	0,73	0,10	903,28	0,01	0,00	
Biomass	0,18	NCV	110,00	2,00	4,00 (3)	0,02	0,00	0,00	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00	
b. Non-Ferrous Metals	3.490,61	NCV				210,55	0,00	0,00	
Liquid Fuels	897,83	NCV	73,00	0,88	0,82	65,55	0,00	0,00	
Solid Fuels	48,96	NCV	104,00	2,00	1,40	5,09	0,00	0,00	
Gaseous Fuels	2.543,82	NCV	55,00	1,50	0,10	139,91	0,00	0,00	
Biomass	0,00	NCV	0,00	0,00	0,00 (3)	0,00	0,00	0,00	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00	
c. Chemicals	31.752,59	NCV				1.251,18	0,09	0,03	
Liquid Fuels	1.463,77	NCV	76,70	0,72	0,76	112,27	0,00	0,00	
Solid Fuels	2.694,16	NCV	94,38	4,88	1,40	254,28	0,01	0,00	
Gaseous Fuels	15.578,16	NCV	55,00	1,50	0,10	856,80	0,02	0,00	
Biomass	9.233,33	NCV	110,07	1,98	2,01 (3)	1.016,34	0,02	0,02	
Other Fuels	2.783,18	NCV	10,00	12,00	1,40	27,83	0,03	0,00	
d. Pulp, Paper and Print	55.339,71	NCV				1.857,07	0,11	0,06	
Liquid Fuels	2.415,93	NCV	77,32	1,75	0,95	186,80	0,00	0,00	
Solid Fuels	3.298,39	NCV	94,96	5,64	1,40	313,21	0,02	0,00	
Gaseous Fuels	24.644,78	NCV	55,00	1,50	0,10	1.355,46	0,04	0,00	
Biomass	24.820,68	NCV	110,01	2,00	2,22 (3)	2.730,58	0,05	0,06	
Other Fuels	159,93	NCV	10,00	12,00	1,40	1,60	0,00	0,00	
e. Food Processing, Beverages and Tobacco	21.741,94	NCV				1.262,17	0,03	0,01	
Liquid Fuels	3.388,20	NCV	76,04	0,73	0,79	257,65	0,00	0,00	
Solid Fuels	100,82	NCV	103,99	2,01	1,40	10,48	0,00	0,00	
Gaseous Fuels	18.073,37	NCV	55,00	1,50	0,10	994,04	0,03	0,00	
Biomass	179,55	NCV	109,10	1,94	3,64 (3)	19,59	0,00	0,00	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,00	
f. Other (please specify)	75.870,25	NCV				4.439,08	0,20	0,38	
Liquid Fuels	29.670,47	NCV	76,47	2,16	10,94	2.268,88	0,06	0,32	
Solid Fuels	2.987,92	NCV	94,82	5,42	1,40	283,31	0,02	0,00	
Gaseous Fuels	28.573,70	NCV	55,00	1,50	0,10	1.571,55	0,04	0,00	
Biomass	9.535,58	NCV	108,69	2,00	3,96 (3)	1.036,39	0,02	0,04	
Other Fuels	5.102,57	NCV	61,80	12,00	1,40	315,33	0,06	0,01	

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	AGGREGATE ACTIVITY DATA		IMPLII	ED EMISSION FACT	ORS (2)			EMISSIONS	
	Consumption		CO ₂	CH ₄	N ₂ O		CO ₂	CH ₄	N ₂ O
	(TJ)	(1)	(t/TJ)	(kg/TJ)	(kg/TJ)		(Gg)	(Gg)	(Gg)
1.A.3 Transport	309.768,14	NCV					22.692,33	1,07	0,91
Gasoline	92.616,21	NCV	74,06	9,58	5,76		6.859,03	0,89	0,53
Diesel	208.320,17	NCV	73,67	0,82	1,78		15.346,62	0,17	0,37
Natural Gas	8.808,47	NCV	55,00	1,50	0,10		484,47	0,01	0,00
Solid Fuels	23,29	NCV	95,00	6,83	6,83		2,21	0,00	0,00
Biomass	0,00	NCV	0,00	0,00	0,00	(3)	0,00	0,00	0,00
Other Fuels	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
a. Civil Aviation	917,49	NCV					66,75	0,00	0,00
Aviation Gasoline	88,33	NCV	72,72	0,00	0,00		6,42	0,00	0,00
Jet Kerosene	829,17	NCV	72,75	5,19	3,18		60,32	0,00	0,00
b. Road Transportation	296.544,12	NCV					21.882,82	1,04	0,87
Gasoline	91.578,50	NCV	74,07	9,53	5,80		6.783,36	0,87	0,53
Diesel Oil	204.965,61	NCV	73,67	0,80	1,63		15.099,46	0,16	0,33
Natural Gas	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
Biomass	0,00		0,00	0,00	0,00	(3)	0,00	0,00	0,00
Other Fuels (please specify)	0,00	NCV		* * * * * * * * *			0,00	0,00	0,00
		NCV	0,00	0,00	0,00				
c. Railways	2.355,37	NCV					174,05	0,01	0,02
Solid Fuels	23,29	NCV	95,00	6,83	6,83		2,21	0,00	0,00
Liquid Fuels	2.332,07	NCV	73,69	2,22	7,78		171,84	0,01	0,02
Other Fuels (please specify)	0,00	NCV					0,00	0,00	0,00
		NCV	0,00	0,00	0,00				
d. Navigation	1.142,70	NCV					84,25	0,01	0,02
Coal	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
Residual Oil	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
Gas/Diesel Oil	1.022,48	NCV	73,67	1,55	17,39		75,32	0,00	0,02
Other Fuels (please specify)	120,21						8,92	0,01	0,00
Gasoline	120,21	NCV	74,21	89,01	2,00		8,92	0,01	0,00
		NCV	0,00	0,00	0,00				
e. Other Transportation	8.808,47	NCV					484,47	0,01	0,00
Liquid Fuels	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
Solid Fuels	0,00	NCV	0,00	0,00	0,00		0,00	0,00	0,00
Gaseous Fuels	8.808,47	NCV	55,00	1,50	0,10		484,47	0,01	0,00

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	AGGREGATE ACTIVITY DAT	`A	IMPLIE	ED EMISSION FACT	ORS (2)	EMISSIONS			
	Consumption		CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	
	(TJ)	(1)	(t/TJ)	(kg/TJ)	(kg/TJ)	(Gg)	(Gg)	(Gg)	
A.4 Other Sectors	298.473,20	NCV				14.702,00	13,96	0,9	
Liquid Fuels	124.812,46	NCV	74,54	1,98	4,49	9.304,01	0,25	0,5	
Solid Fuels	7.147,17	NCV	93,74	95,48	2,37	669,95	0,68	0,0	
Gaseous Fuels	85.774,72	NCV	55,00	0,80	1,00	4.717,61	0,07	0,0	
Biomass	79.695,22	NCV	101,21	162,49	4,02	8.065,89	12,95	0,3	
Other Fuels	1.043,63	NCV	10,00	12,00	1,40	10,44	0,01	0,0	
Commercial/Institutional	34.126,10	NCV				1.822,85	0,50	0,0	
Liquid Fuels	11.041,69	NCV	72,83	0,85	0,89	804,15	0,01	0,0	
Solid Fuels	255,05	NCV	95,96	90,00	2,76	24,47	0,02	0,0	
Gaseous Fuels	17.887,05	NCV	55,00	0,80	1,00	983,79	0,01	0,0	
Biomass	3.898,68	NCV	109,11	113,36	2,51	425,40	0,44	0,0	
Other Fuels	1.043,63	NCV	10,00	12,00	1,40	10,44	0,01	0,0	
Residential	234.038,77	NCV				11.087,45	12,40	0,4	
Liquid Fuels	90.334,40	NCV	74,87	0,95	1,15	6.763,71	0,09	0,1	
Solid Fuels	6.747,54	NCV	93,65	95,80	2,34	631,88	0,65	0,0	
Gaseous Fuels	67.124,78	NCV	55,00	0,80	1,00	3.691,86	0,05	0,0	
Biomass	69.832,05	NCV	100,61	166,30	4,08	7.025,74	11,61	0,2	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	
Agriculture/Forestry/Fisheries	30.308,34	NCV				1.791,70	1,06	0,4	
Liquid Fuels	23.436,38	NCV	74,08	6,45	19,05	1.736,14	0,15	0,4	
Solid Fuels	144,59	NCV	94,05	90,00	2,77	13,60	0,01	0,0	
Gaseous Fuels	762,89	NCV	55,00	0,80	1,00	41,96	0,00	0,0	
Biomass	5.964,48	NCV	103,07	150,00	4,23	614,75	0,89	0,0	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	
A.5 Other (Not elsewhere specified) ⁽⁴⁾	497,03	NCV				36,19	0,00	0,0	
Liquid Fuels	497,03	NCV	72,80	2,42	6,23	36,19	0,00	0,0	
Solid Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	
Gaseous Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	
Biomass	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	
Other Fuels	0,00	NCV	0,00	0,00	0,00	0,00	0,00	0,0	

⁽⁴⁾ Include military fuel use under this category.

Documentation Box:

1 A 1 c Petroleum Refining: CH4 and NMVOC emissions are included in "1 B 2 fugitive emissions from fuels".

FUEL T	YPES		Unit	Production	Imports	Exports	International	Stock change	Apparent	Conversion		Apparent	Carbon emission	Carbon	Carbon	Net carbon	Fraction of	Actual CO2
					•	•	bunkers	Ü	consumption	factor (1)	(1)	consumption	factor	content	stored	emissions	carbon	emissions
									P	(TJ/Unit)		(TJ)	(t C/TJ)	(Gg C)	(Gg C)	(Gg C)	oxidized	(Gg CO ₂)
Liquid	Primary	Crude Oil	Gg	1.151,00	7.819,21	0,00		113,57	8.856,64	42,75	NCV	378.621,45	20,00	7.572,43	0,00	7.572,43	0,99	27.487,
Fossil	Fuels	Orimulsion	Gg	NO	NO	NO		NO	0,00		NCV	0,00		0,00		0,00	-	0,0
		Natural Gas Liquids	Gg	54,68	0,00	0,00		0,00	<u>54,68</u>	45,22	NCV	2.472,72	17,20	42,53	0,00	42,53	0,99	154,3
	Secondary	Gasoline	Gg		882,79	476,40	0,00	11,15	395,24	44,80	NCV	17.706,84	18,90	334,66	0,00	334,66	0,99	1.214,8
	Fuels	Jet Kerosene	Gg		47,05	5,26	447,55	-3,60	<u>-402,16</u>	44,59	NCV	-17.932,47	19,50	-349,68	0,00	-349,68	0,99	-1.269,
		Other Kerosene	Gg		3,77	0,00	0,00	0,33	<u>3,44</u>	44,75	NCV	153,98	19,60	3,02	0,00	3,02	0,99	10,9
		Shale Oil	Gg		NO	NO		NO	<u>0,00</u>		NCV	0,00		0,00		0,00		0,0
		Gas / Diesel Oil	Gg		4.350,87	539,57	0,00	-28,04	3.839,34	43,33	NCV	166.358,65	20,20	3.360,44	0,00	3.360,44	0,99	12.198,4
		Residual Fuel Oil	Gg		328,13	55,07	0,00	-7,87	280,94	40,19	NCV	11.290,90	21,10	238,24		238,24	0,99	864,8
		LPG	Gg		137,37	9,18		0,83	127,36	47,31	NCV	6.025,40	17,20	103,64	0,81	102,82	0,99	373,2
		Ethane	Gg		IE	IE		IE	<u>0,00</u>		NCV	0,00		0,00	0,00	<u>0,00</u>		0,0
		Naphtha	Gg		IE	IE		IE	<u>0,00</u>		NCV	0,00		0,00	0,00	<u>0,00</u>		0,0
		Bitumen	Gg		296,27	82,01		-1,43	<u>215,69</u>	40,19	NCV	8.668,42	22,00	190,71	542,30	<u>-351,60</u>	0,99	-1.276,3
		Lubricants	Gg		43,85	79,91	0,00	-4,46	<u>-31,60</u>	40,19	NCV	-1.269,92	20,00	-25,40	36,91	<u>-62,31</u>	0,99	-226,1
		Petroleum Coke	Gg		67,50	0,00		2,12	<u>65,37</u>	31,00	NCV	2.026,53	27,50	55,73	0,00	55,73	0,99	202,3
		Refinery Feedstocks	Gg		374,90	25,11		148,25	201,54	42,50	NCV	8.565,58	20,00	171,31	0,00	171,31	0,99	621,8
		Other Oil	Gg		102,48	148,90		13,23	<u>-59,65</u>	40,19	NCV	-2.397,25	20,00	-47,95	423,72	-471,67	0,99	-1.712,1
Liquid Fo	ossil Totals		00	* * * * *	* * * * * *							580.290,82		11.649,68	1.003,75	10.645,93		38.644,7
Solid	Primary	Anthracite (2)	Gg	IE	IE	IE		IE	<u>0,00</u>		NCV	0,00		0,00		0,00		0,0
Fossil	Fuels	Coking Coal	Gg	0,00	1.889,97	0,00		-7,90	1.897,87	28,00	NCV	53.140,33	25,80	1.371,02	54,60	1.316,42	0,98	4.730,3
		Other Bit. Coal	Gg	0,00	2.068,75	0,00	0,00	-326,84	2.395,59	28,00	NCV	67.076,60	25,80	1.730,58	0,54	1.730,03	0,98	6.216,5
		Sub-bit. Coal	Gg	NO	NO	NO	NO	NO	<u>0,00</u>		NCV	0,00		0,00		0,00		0,0
		Lignite	Gg	1.152,38	4,82	0,13		-489,95	1.647,01	10,90	NCV	17.952,44	27,60	495,49	0,00	495,49	0,98	1.780,4
		Oil Shale	Gg	NO	NO	NO		NO	<u>0,00</u>		NCV	0,00		0,00		0,00		0,0
		Peat	Gg	0,50	0,00	0,00		0,00	<u>0,50</u>	8,80	NCV	4,40	28,90	0,13	0,00	0,13	0,98	0,4
	Secondary	BKB & Patent Fuel	Gg		73,68	0,00		0,00	<u>73,68</u>	19,30	NCV	1.421,95	25,80	36,69	0,00	36,69	0,98	131,8
	Fuels	Coke Oven/Gas Coke	Gg		903,75	2,49		-50,78	<u>952,04</u>	28,20	NCV	26.847,44	29,50	792,00	5,93	786,07	0,98	2.824,6
Solid Fue	el Totals		100			•[•[•]•		00000				166.443,17		4.425,90	61,08	4.364,82		15.684,2
Gaseous I	Fossil	Natural Gas (Dry)	TJ	75.093,78	1.204.894,18	953.334,61		7.162,56	319.490,79	1,00	NCV	319.490,79	15,30	4.888,21	0,00	4.888,21	1,00	17.833,8
Total												1.066.224,78		20.963,78	1.064,83	19.898,95		72.162,7
Biomass t	total		XX									139.564,59		4.172,98	0,00	4.172,98		13.486,3
		Solid Biomass	TJ	138.563,17	7.002,42	7.785,76		0,00	137.779,82	1,00	NCV	137.779,82	29,90	4.119,62	0,00	4.119,62	0,88	13.292,6
		Liquid Biomass	TJ	IE	IE	IE		IE	<u>0,00</u>		NCV	0,00		0,00		0,00		0,0
		Gas Biomass	TJ	1.784,76	0,00	0,00		0,00	1.784,76	1,00	NCV	1.784,76	29,90	53,36	0,00	53,36	0,99	193,7

⁽¹⁾ To convert quantities expressed in natural units to energy units, use net calorific values (NCV). If gross calorific values (GCV) are used in this table, please indicate this by replacing "NCV" with "GCV" in this column.

⁽²⁾ If Anthracite is not separately available, include with Other Bituminous Coal.

FUEL TYPES	Reference	approach	National a	pproach ⁽¹⁾	Differe	nce (2)
	Energy	CO_2	Energy	CO_2	Energy	CO_2
	consumption	emissions	consumption	emissions	consumption	emissions
	(PJ)	(Gg)	(PJ)	(Gg)	(%)	(%)
Liquid Fuels (excluding international bunkers)	580,29	38.644,72	516,00	38.166,22	12,46	1,25
Solid Fuels (excluding international bunkers)	166,44	15.684,24	131,13	12.130,75	26,93	29,29
Gaseous Fuels	319,49	17.833,82	301,26	16.569,35	6,05	7,63
Other (3)	NE	NE	18,85	757,95	<u>-100,00</u>	<u>-100,00</u>
Total (3)	1.066,22	72.162,78	967,25	67.624,26	10,23	6,71

^{(1) &}quot;National approach" is used to indicate the approach (if different from the Reference approach) followed by the Party to estimate its CO₂ emissions from fuel combustion reported in the national GHG inventory.

Note: In addition to estimating CO₂ emissions from fuel combustion by sector, Parties should also estimate these emissions using the IPCC Reference approach, as found in the IPCC Guidelines, Worksheet 1-1(Volume 2. Workbook). The Reference approach is to assist in verifying the sectoral data. Parties should also complete the above tables to compare the alternative estimates, and if the emission estimates lie more than 2 percent apart, should explain the source of this difference in the documentation box provided.

Documentation Box:

Solid fuels: Energy consumption: The sectoral approach doesn't include non-energy use

CO2 emissions: Reference Approach includes process emissions from blast furnaces which are included in category 2 C 1 and process emissions from carbide production which are included in category 2 B 4.

Gaseous fuels: Energy consumption: The sectoral approach doesn't include losses and non-energy-use.

CO2 emissions: National approach uses sector specific carbon contents and heating values (different from IPCC reference factors). Process emissions from ammonia-production are included in category 2 B 1.

Liquid fuels: Energy consumption: The sectoral approach doesn't include non-energy use and energy losses in refinery.

CO2 emissions: Heat values and carbon contents are sector and fuel specific. The reference approach considers a share of feedstocks used for plastics production and solvent production as non-carbon-stored. In the sectoral approach a share of emissions from waste incineration of plastics and solvents use (including imported products) is included in category 1A1a and category 3. In the sectoral approach a share of municipal solid waste without energy recovery is considered in category 6C for the years 1990 and 1991.

Other fuels: The sectoral approach considers waste as an additional fuel type (e.g. municipal solid waste and industrial fuel waste).

⁽²⁾ Difference of the Reference approach over the National approach (i.e. difference = 100% x ((RA-NA)/NA), where NA = National approach and RA = Reference approach).

⁽³⁾ Emissions from biomass are not included.

TABLE 1.A(d) SECTORAL BACKGROUND DATA FOR ENERGY

Feedstocks and Non-Energy Use of Fuels (Sheet 1 of 1)

Austria	
2003	
cubmicsion 2005	

		A AND RELATED MATION	IMPLIED EMISSION FACTOR	ESTIMATE
FUEL TYPE (1)	Fuel quantity	Fraction of carbon stored	Carbon emission factor	of carbon stored in non- energy use of fuels
	(TJ)		(t C/TJ)	(Gg C)
Naphtha ⁽²⁾	0,00	0,00	0,00	0,00
Lubricants	3.690,93	0,50	20,00	36,91
Bitumen	24.650,17	1,00	22,00	542,30
Coal Oils and Tars (from Coking Coal)	1.610,85	0,75	45,20	54,60
Natural Gas ⁽²⁾	11.278,41	0,00	0,00	0,00
Gas/Diesel Oil (2)	0,00	0,50	0,00	0,00
LPG (2)	47,31	1,00	17,20	0,81
Butane (2)	0,00	0,75	0,00	0,00
Ethane (2)	0,00	0,00	0,00	0,00
Other (please specify)				
Coke Oven Coke	28.720,57	0,01	29,50	5,93
Other Bituminous Coal	42,20	0,50	25,80	0,54
Gasoline	0,00	0,50	0,00	0,00
Other Oil Products	28.248,06	0,75	20,00	423,72
			0,00	

Additional information (a)

CO ₂ not emitted	Subtracted from energy sector (specify source category)
(Gg CO ₂)	
0,00	NA
135,33	NA
1.988,45	NA
200,22	NA
0,00	NA
0,00	NA
2,98	NA
0,00	NA
0,00	NA
	• • • • • • • • •
21,75	NA
2,00	NA
0,00	NA
1.553,64	NA
0,00	_

⁽a) The fuel lines continue from the table to the left.

Note: The table is consistent with the IPCC Guidelines. Parties that take into account the emissions associated with the use and disposal of these feedstocks could continue to use their methodology, and provide explanation notes in the documentation box below.

Documentation box: A fraction of energy carriers is stored in such products as plastics or asphalt. The non-stored fraction of the carbon in the energy carrier or product is oxidized, resulting in carbon dioxide emissions, either during the use of the energy carriers in the industrial production (e.g. fertilizer production), or during the use of the products (e.g. solvents, lubricants), or in both (e.g. monomers). To report associated emissions use the above table, filling an extra "Additional information" table, as shown below

Associated CO ₂ emissions	Allocated under	(a) e.g. Industrial Processes, Waste
(Gg)	(Specify source category) (a)	Incineration, etc.

⁽¹⁾ Where fuels are used in different industries, please enter in different rows.

⁽²⁾ Enter these fuels when they are used as feedstocks.

TABLE 1.B.1 SECTORAL BACKGROUND DATA FOR ENERGY

Fugitive Emissions from Solid Fuels

(Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK	ACTIVITY DATA	IMPLIED EN	MISSION FACTOR	EMISS	SIONS
CATEGORIES	Amount of fuel produced (1)	CH ₄	CO_2	CH ₄	CO_2
	250	a 10	a 10	(G.)	(0.)
	(Mt)	(kg/t)	(kg/t)	(Gg)	(Gg)
1. B. 1. a. Coal Mining and Handling	1,81			0,39	0,00
i. Underground Mines ⁽²⁾	NO	0,00	0,00	<u>NO</u>	<u>NO</u>
Mining Activities		0,00	0,00	NO	NO
Post-Mining Activities		0,00	0,00	NO	NO
ii. Surface Mines ⁽²⁾	1,81	<u>0,21</u>	<u>0,00</u>	0,39	0,00
Mining Activities		<u>0,21</u>	0,00	0,39	NA
Post-Mining Activities		<u>0,00</u>	<u>0,00</u>	IE	NA
1. B. 1. b. Solid Fuel Transformation	1,40	<u>0,00</u>	<u>0,00</u>	IE	IE
1. B. 1. c. Other (please specify) (3)				<u>NO</u>	<u>NO</u>
		0,00	0,00		

⁽¹⁾ Use the documentation box to specify whether the fuel amount is based on the run-of-mine (ROM) production or on the saleable production.

Note: There are no clear references to the coverage of 1.B.1.b. and 1.B.1.c. in the IPCC Guidelines. Make sure that the emissions entered here are not reported elsewhere. If they are reported under another source category, indicate this (IE) and make a reference in Table 9 (completeness) and/or in the documentation box.

Documentation box:

1 B 1 b: Emissions from coke ovens are included in 1 A 2 a Iron and Steel

1 B 1 a ii: emissions from Post-Mining are included in Mining

submission 2005

Austria

2003

Additional information (a)

Description	Value
Amount of CH ₄ drained (recovered) and utilized or flared (Gg)	0,00
Number of active underground mines	0,00
Number of mines with drainage (recovery) systems	NE

⁽a) For underground mines.

⁽²⁾ Emissions both for Mining Activities and Post-Mining Activities are calculated with the activity data in lines Underground Mines and Surface Mines respectively.

⁽³⁾ Please click on the button to enter any other solid fuel related activities resulting in fugitive emissions, such as emissions from abandoned mines and waste piles,

TABLE 1.B.2 SECTORAL BACKGROUND DATA FOR ENERGY

Fugitive Emissions from Oil and Natural Gas

(Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK	ACTIVITY DA	ATA		IMPLIE	ED EMISSION F	ACTORS	I	EMISSION	S
CATEGORIES	Description (1)	Unit	Value	CO ₂ (kg/unit) (2)	CH ₄ (kg/unit) (2)	N ₂ O (kg/unit) (2)	CO ₂ (Gg)	CH ₄ (Gg)	N ₂ O (Gg)
1. B. 2. a. Oil (3)							133,00	4,20	
i. Exploration	(e.g. number of wells drilled)			<u>0,00</u>	0,00		ΙE	ΙE	
ii. Production ⁽⁴⁾	Oil throughput	Mt	1,02	131.034.482,76	3.862.068,97		133,00	3,92	
iii. Transport	(e.g. PJ oil loaded in tankers)			<u>0,00</u>	<u>0,00</u>		NE	NE	
iv. Refining / Storage	Oil refined (SNAP 0401)	Mt	8.874,30	<u>0,00</u>	<u>31,66</u>		NA	0,28	
v. Distribution of oil products	Gasoline Consumption (SNAP 050	Mt	2,22	<u>0,00</u>	<u>0,00</u>		NA	NA	
vi. Other				<u>0,00</u>	0,00		NE	NE	
1. B. 2. b. Natural Gas							100,04	10,71	
Exploration				<u>0,00</u>	0,00		ΙE	ΙE	
i. Production (4) / Processing	Gas throughput (a)	Mm3 G	2.030,00	49.261,08	0,00		100,00	ΙE	
ii. Transmission	Pipelines length (km)	km	1.430,00	<u>24,50</u>	2.900,00		0,04	4,15	
Distribution	Gas Consumption	Mm3 G	8.912,00	0,00	735,96		ΙE	6,56	
iii. Other Leakage	(e.g. PJ gas consumed)		789,43	<u>0,00</u>	0,00		NE	NE	
at industrial plants and power stations				<u>0,00</u>	<u>0,00</u>		NE	NE	
in residential and commercial sectors				<u>0,00</u>	0,00		NE	NE	
1. B. 2. c. Venting (5)							<u>IE</u>	<u>IE</u>	
i. Oil	(e.g. PJ oil produced)			0,00	0,00		ΙE	ΙE	
ii. Gas	(e.g. PJ gas produced)			<u>0,00</u>	<u>0,00</u>		ΙE	ΙE	
iii. Combined				<u>0,00</u>	<u>0,00</u>		ΙE	ΙE	
Flaring							<u>IE</u>	<u>IE</u>	<u>IE</u>
i. Oil	(e.g. PJ gas consumption)			<u>0,00</u>	0,00	0,00	ΙE	ΙE	IE
ii. Gas	(e.g. PJ gas consumption)			0,00	0,00	0,00	ΙE	ΙE	IE
iii. Combined				0,00	0,00	0,00	ΙE	ΙE	IE
1.B.2.d. Other (please specify) (6)							<u>NO</u>	<u>NO</u>	<u>NO</u>
				<u>0,00</u>	<u>0,00</u>	0,00			

2003 submission 2005

Austria

Additional information

Auditional information		
Description	Value	Unit
Pipelines length (km)	1.430,00	km
Number of oil wells	746,00	NUMBE
Number of gas wells	206,00	NUMBE
Gas throughput (a)	2.030,00	Mm3 GA
Oil throughput (a)	1,02	Mt
Other relevant information (specify)		
· · · · · · · · · · · · · · · · · · ·		

(a) In the context of oil and gas production, throughput is a measure of the total production, such as barrels per day of oil, or cubic meters of gas per year. Specify the units of the reported value in the unit column. Take into account that these values should be consistent with the activity data reported under the production rows of the main table.

Documentation box:

1 B 2 a i, 1 B 2 b Exploration and 1 B 2 b i exept CO2 emissions from processing of sour gas are included in 1 B 2 a ii.

1 B 2 a valso includes storage in storage tanks and refinery dispatch station - only NMVOC emissions are estimated.

1 B 2 a iv CO2 is included in 1 A 1 b, flaring in the refinery is also included in 1 A 1 b.

1 B 2 b ii Transmission includes fugitve and venting.

⁽¹⁾ Specify the activity data used and fill in the activity data description column, as given in the examples in brackets. Specify the unit of the activity data in the unit column. Use the document box to specify whether the fuel amount is based on the raw material production or on the saleable production. Note cases where more than one variable is used as activity data.

⁽²⁾ The unit of the implied emission factor will depend on the units of the activity data used, and is therefore not specified in this column. The unit of the implied emission factor for each activity will be kg/unit of activity data.

⁽³⁾ Use the category also to cover emissions from combined oil and gas production fields. Natural gas processing and distribution from these fields should be included under 1.B.2.b.ii and 1.B.2.b.iii, respectively.

⁽⁴⁾ If using default emission factors these categories will include emissions from production other than venting and flaring.

⁽⁵⁾ If using default emission factors, emissions from Venting and Flaring from all oil and gas production should be accounted for here. Parties using the IPCC software could report those emissions together, indicating so in the documentation box.

⁽⁶⁾ For example, fugitive CO₂ emissions from production of geothermal power could be reported here.

GREENHOUSE GAS SOURCE	ACTIVITY DATA	IMPLIE	D EMISSION FAC	CTORS		EMISSIONS	
AND SINK CATEGORIES	Consumption	CO_2	CH ₄	N_2O	CO_2	CH ₄	N ₂ O
	(TJ)	(t/TJ)	(kg/TJ)	(kg/TJ)	(Gg)	(Gg)	(Gg)
Marine Bunkers	0,00				<u>NO</u>	<u>NO</u>	<u>NO</u>
Gasoline	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Gas/Diesel Oil	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Residual Fuel Oil	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Lubricants	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Coal	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Other (please specify)	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		0,00	0,00	0,00			
Aviation Bunkers	19.956,46				1.451,90	0,02	0,05
Jet Kerosene	19.956,46	72,75	1,25	2,66	1.451,90	0,02	0,05
Gasoline	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Multilateral Operations (1)	0,00				IE	IE	IE

Additional information

Fuel	Allocation	(a) (percent)
consumption	Domestic	International
Marine	100,00	0,00
Aviation	4,40	95,60

⁽a) For calculating the allocation of fuel consumption, use the sums of fuel consumption by domestic navigation and aviation (Table 1.A(a)) and by international bunkers (Table 1.C).

Note: In accordance with the IPCC Guidelines, international aviation and marine bunker fuel emissions from fuel sold to ships or aircraft engaged in international transport should be excluded from national totals and reported separately for informational purposes only.

Documentation box: Please explain how the consumption of international marine and aviation bunkers fuels was estimated and separated from the domestic consumption. Kerosene consumption in Austria is divided into national and international traffic by using national LTO-statistics.

⁽¹⁾ Parties may choose to report or not report the activity data and emission factors for multilateral operation consistent with the principle of confidentiality stated in the UNFCCC reporting guidelines on inventories. In any case, Parties should report the emissions from multilateral operations, where available, under the Memo Items section of the Summary tables and in the Sectoral report table for energy.

GREENHOUSE GAS SOURCE AND SINK	CO_2	CH ₄	N ₂ O	HFC	Cs ⁽¹⁾	PFC	s ⁽¹⁾	SI	6	NO _x	co	NMVOC	SO_2
CATEGORIES				P	A	P	A	P	A				
		(Gg)			CO ₂ equiva	alent (Gg)				(G	g)		
Total Industrial Processes	8.151,09	0,35	2,85	2.311,71	1.308,22	380,59	102,54	0,03	0,02	1,66	23,82	15,71	1,21
A. Mineral Products	3.060,20	0,00	0,00							0,00	9,78	0,00	0,00
Cement Production	1.735,65												NA
2. Lime Production	546,61												
3. Limestone and Dolomite Use	269,71												
4. Soda Ash Production and Use	18,78												
5. Asphalt Roofing	IE										9,78	ΙE	
6. Road Paving with Asphalt	IE									NA	NA	ΙE	NA
7. Other (please specify)	489,45	0,00	0,00							0,00	0,00	0,00	0,00
Bricks and Tiles (decarbonizing)	115,92	NA	NA							NA	NA	NA	NA
MgCO3 Sinter Plants	373,53	NA	NA							NA	NA	NA	NA
B. Chemical Industry	558,88	0,34	2,85	0,00	0,00	0,00	0,00	0,00	0,00	0,69	11,09	12,34	0,77
1. Ammonia Production	493,59	0,05								0,23	0,03	IE	NA
2. Nitric Acid Production	0,41		2,85							0,38			
3. Adipic Acid Production			<u>NO</u>							NO	NO	NO	
4. Carbide Production	40,64	NE									NA	NA	NA
5. Other (please specify)	24,25	0,30	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,08	11,07	12,34	0,77
Other Chemical Products	24,25	0,30	NA	NA	NA	NA	NA	NA	NA	0,08	11,07	12,34	0,77
C. Metal Production	4.532,01	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,09	2,30	0,41	0,45
Iron and Steel Production	4.513,10	0,00								0,07	2,00	0,25	0,05
2. Ferroalloys Production	18,90	NA								NA	NA	NA	NA
3. Aluminium Production	NO	NO					<u>NO</u>			NO	NO	NO	NO
4. SF ₆ Used in Aluminium and Magnesium Foundries									0,00				
5. Other (please specify)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,02	0,31	0,17	0,40
SNAP 040309 Processes in non-ferrous metal industric	NA	NA	NA	NA	NA	NA	NA	NA	NA	0,02	0,31	0,17	0,40

P = Potential emissions based on Tier 1 approach of the IPCC Guidelines. A = Actual emissions based on Tier 2 approach of the IPCC Guidelines. This only applies in sectors where methods exist for both tiers.

⁽¹⁾ The emissions of HFCs and PFCs are to be expressed as CO₂ equivalent emissions. Data on disaggregated emissions of HFCs and PFCs are to be provided in Table 2(II) of this common reporting format.

GREENHOUSE GAS SOURCE AND SINK	CO ₂	CH ₄	N ₂ O	HF	$Cs^{(1)}$	PFC	$Cs^{(1)}$	SF	6	NO _x	CO	NMVOC	SO ₂
CATEGORIES				P	A	P	A	P	A				
		(Gg)			CO ₂ equiv	alent (Gg)				(G	g)		
D. Other Production	NA									0,88	0,64	2,96	0,00
1. Pulp and Paper										0,88	0,64	0,64	NA
2. Food and Drink ⁽²⁾	NA											2,32	
E. Production of Halocarbons and SF ₆					<u>NO</u>		<u>NO</u>		<u>NO</u>				
By-product Emissions					<u>NO</u>		<u>NO</u>		<u>NO</u>				
Production of HCFC-22					<u>NO</u>								
Other					<u>NO</u>		<u>NO</u>		<u>NO</u>				
2. Fugitive Emissions					<u>NO</u>		<u>NO</u>		<u>NO</u>				
3. Other (please specify)					<u>NO</u>		<u>NO</u>		<u>NO</u>				
F. Consumption of Halocarbons and SF ₆				2.311,71	1.308,22	380,59	102,54	0,03	0,02				
Refrigeration and Air Conditioning Equipment				ΙE	463,16	ΙE	<u>NO</u>	ΙE	<u>NO</u>				
2. Foam Blowing				ΙE	<u>814,78</u>	ΙE	<u>NO</u>	ΙE	<u>NO</u>				
3. Fire Extinguishers				IE	<u>26,39</u>	ΙE	<u>0,35</u>	IE	<u>NO</u>				
4. Aerosols/ Metered Dose Inhalers				IE	<u>NO</u>	IE	<u>NO</u>	ΙE	<u>NO</u>				
5. Solvents				IE	<u>NO</u>	ΙE	<u>NO</u>	ΙE	<u>NO</u>				
6. Semiconductor Manufacture				IE .	<u>3,88</u>	IE .	102,19	IE	0,02				
7. Electrical Equipment				IE	NO	IE	NO	IE	<u>0,00</u>				
8. Other (please specify)				<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>0,01</u>				
G. Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	0.00	0.00	0,00	0.00
o. Onici (picuse specify)	140	110	110	110	110	110	110	110	110	0,00	0,00	0,00	0,00

⁽²⁾ CO₂ from Food and Drink Production (e.g. gasification of water) can be of biogenic or non-biogenic origin. Only information on CO₂ emissions of non-biogenic origin should be reported.

(Sheet 1 of 2)

submission 2005

GREENHOUSE GAS SOURCE AND	ACTIVITY DATA		IMPLIED	EMISSION FA	CTORS			EMISSION	$IS^{(2)}$		
SINK CATEGORIES	Production/Consumption qua	antity	CO ₂	CH ₄	N ₂ O	CO ₂		CH ₄		N ₂ O	
	Description (1)	(kt)	(t/t)	(t/t)	(t/t)	(Gg)	(2)	(Gg)	(2)	(Gg)	(2)
A. Mineral Products						3.060,20		<u>0,00</u>		<u>0,00</u>	
1. Cement Production	Clinker Production [kt]	3.118,23	0,56			1.735,65					
2. Lime Production	Lime Produced [kt]	719,25	0,76			546,61					
3. Limestone and Dolomite Use	Limestone and Dolomite used [kt]	612,50	0,44			269,71					
4. Soda Ash	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX		******			18,78					
Soda Ash Production	Soda Ash Production	NE	0,00			ΙE					
Soda Ash Use	Soda Ash Used [kt]	45,26	0,42			18,78					
5. Asphalt Roofing	Roofing Material Production [Mio m2	27,95	<u>0,00</u>			ΙE					
6. Road Paving with Asphalt	Asphalt Production [kt]	416,55	<u>0,00</u>			ΙE					
7. Other (please specify)	******	00000				489,45		0,00		0,00	
Bricks and Tiles (decarbonizing)	Bricks Production [kt]	1.904,14	0,06			115,92					
MgCO3 Sinter Plants	MgCO3 sintered [kt]	307,77	1,21	0,00	0,00	373,53					
			0,00	0,00	0,00						
B. Chemical Industry						<u>558,88</u>		0,34		2,85	
1. Ammonia Production (3)	Ammonia Production [kt]	510,89	0,97	0,00	0,00	493,59		0,05		NA	
2. Nitric Acid Production	Nitric Acid Production [kt]	558,23			0,01	0,41				2,85	
3. Adipic Acid Production	Adipic Acid Production	NO			0,00					NO	
4. Carbide Production	Carbide Production	31,37	1,30	<u>0,00</u>		40,64		<u>NE</u>			
Silicon Carbide	Silicon Carbide Production	NO	0,00	0,00		NO		NO			
Calcium Carbide	Calcium Carbide Production	31,37	1,30	<u>0,00</u>		40,64		NE			
5. Other (please specify)	*****************					24,25		0,30		0,00	
Carbon Black	Carbon Black Production	NE		0,00				NE			
Ethylene	Ethylene Production [kt]	NE	<u>0,00</u>	<u>0,00</u>	0,00	NE		NE		NE	
Dichloroethylene	Dichloroethylene Production	NO		0,00				NO			
Styrene	Styrene Production [kt]	NO		<u>0,00</u>				NO			
Methanol	Methanol Production	NE		0,00				NE			
Other Chemical Products	Other Chemical Products [kt]	NA	0,00	0,00	0,00	24,25		0,30		NA	
			0,00	0,00	0,00						

⁽¹⁾ Where the IPCC Guidelines provide options for activity data, e.g. cement or clinker for estimating the emissions from Cement Production, specify the activity data used (as shown in the example in brackets) in order to make the choice of emission factor more transparent and to facilitate comparisons of implied emission factors.

⁽²⁾ Enter cases in which the final emissions are reduced with the quantities of emission recovery, oxidation, destruction, transformation. Adjusted emissions are reported and the quantitative information on recovery, oxidation, destruction, and transformation should be given in the additional columns provided.

⁽³⁾ To avoid double counting make offsetting deductions from fuel consumption (e.g. natural gas) in Ammonia Production, first for feedstock use of the fuel, and then to a sequestering use of the feedstock.

GREENHOUSE GAS SOURCE AND	ACTIVITY D	ATA	IMPLIED	EMISSION FA	ACTORS			EMISSION	NS ⁽²⁾		
SINK CATEGORIES	Production/Consumpt	tion Quantity	CO ₂	CH ₄	N ₂ O	CO ₂		CH ₄		N ₂ O	
	Description (1)	(kt)	(t/t)	(t/t)	(t/t)	(Gg)	(2)	(Gg)	(2)	(Gg)	(2)
C. Metal Production (4)						4.532,01		0,00		0,00	
Iron and Steel Production			0,00			4.513,10		<u>0,00</u>			
Steel	Steel Production [kt]	6.275,18	0,11			684,62		0,00			
Pig Iron	Iron Production [kt]	4.676,74	<u>0,82</u>	<u>0,00</u>		3.828,48		NE			
Sinter	Sinter Production [kt]	3.527,74	<u>0,00</u>	<u>0,00</u>		IE		NE			
Coke	Coke Production [kt]	1,40	<u>0,00</u>	<u>0,00</u>		IE		NE			
Other (please specify)	200000000000000000000000000000000000000			99999		0,00		0,00			
			0,00	0,00	0,00						
2. Ferroalloys Production	Ferroalloys Production [kt]	13,90	<u>1,36</u>	<u>0,00</u>		18,90		NA			
3. Aluminium Production	Aluminium production [kt]	NO	<u>0,00</u>	<u>0,00</u>		NO		NO			
4. SF ₆ Used in Aluminium and Magnesium											
Foundries											
5. Other (please specify)						0,00		0,00		0,00	
SNAP 040309 Processes in non-ferrou	Non-ferrous metal Production	123,37	<u>0,00</u>	<u>0,00</u>	<u>0,00</u>	NA		NA		NA	
			0,00	0,00	0,00						
D. Other Production	***************************************					0,00					
Pulp and Paper											
2. Food and Drink	Beer, Spirits Production [kt]	1.495,16	<u>0,00</u>			NA					

Note: In case of confidentiality of the activity data information, the entries should provide aggregate figures but there should be a note in the documentation box indicating this

Documentation box:

Other (please specify)

(Sheet 2 of 2)

Emissions from Sinter and Coke Production is included in 1 A 2 a Iron and Steel.

Emissions from 2A5 Asphalt Roofing and 2A6 Road Paving with Asphalt are included in the Solvent Sector.

Soda ash is produced in the Solvay process only which is CO2-neutral except for coke used for calcination of limestone. This coke used in soda ash production is considered as fuel in the energy sector (subcategory 1 A 2 c), that's why CO2 emissions of soda ash production is reported as "IE".

0,00

NO

⁽⁴⁾ More specific information (e.g. data on virgin and recycled steel production) could be provided in the documentation box.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	HFC-23	HFC-32	HFC-41	HFC-43-10mee	HFC-125	HFC-134	HFC-134a	HFC-152a	HFC-143	HFC-143a	HFC-227ea	HFC-236fa	HFC-245ca	Total HFCs ⁽¹⁾	CF_4	$\mathrm{C}_2\mathrm{F}_6$	C_3F_8	$\mathrm{C}_4\mathrm{F}_{10}$	c-C4F8	C_sF_{12}	C_6F_{14}	Total PFCs ⁽¹⁾	${ m SF}_6$
												$(t)^{(2)}$											
Total Actual Emissions of Halocarbons (by chemical) and ${\bf SF}_6$	2,23	4,11	0,00	0,00	41,51	0,00	738,60	519,09	0,00	33,21	1,43	0,00	0,00		6,90	5,14	1,44	0,05	0,00	0,00	0,00		24,83
C. Metal Production															0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
Aluminium Production															0,00	0,00	0,00	0,00	0,00	0,00	0,00		
SF ₆ Used in Aluminium Foundries																							0,00
SF ₆ Used in Magnesium Foundries																							0,00
E. Production of Halocarbons and SF ₆	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
1. By-product Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
Production of HCFC-22	NO																						
Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
2. Fugitive Emissions	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
3. Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	<u>NO</u>	NO	NO	NO	NO	NO		0,00
$F(a)$. Consumption of Halocarbons and SF_6 (actual emissions - Tier 2)	<u>2,23</u>	<u>4,11</u>	<u>NO</u>	<u>NO</u>	41,51	<u>NO</u>	738,60	<u>519,09</u>	<u>NO</u>	33,21	<u>1,43</u>	<u>NO</u>	<u>NO</u>		<u>6,90</u>	<u>5,14</u>	<u>1,44</u>	0,05	<u>NO</u>	<u>NO</u>	<u>NO</u>		24,83
Refrigeration and Air Conditioning Equipment	0,00	4,11	0,00	0,00	41,51	0,00	,	0,78	0,00	33,21	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
2. Foam Blowing	0,00	0,00	0,00	0,00	0,00	0,00	570,94	518,31	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
3. Fire Extinguishers	1,90	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	1,43	0,00	0,00		0,00	0,00	0,00	0,05	0,00	0,00	0,00		0,00
4. Aerosols/Metered Dose Inhalers	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00
5. Solvents	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00 15,77
Semiconductor Manufacture Electrical Equipment	0,33	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		6,90	5,14	1,44	0,00	0,00	0,00	0,00		1,32
* *	NO	NO	NO	NO	NO	NO	0,00	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		7,74
8. Other (please specify)	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO		NO NO	NO NO	NO NO	NO NO	NO NO	NO NO	NO NO		1,64
Noise insulating windows	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO		NO	NO	NO	NO	NO	NO	NO		6,11
Noise insulating windows	110	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	110	NO		110	NO	140	NO	NO	NO	NO		0,11
G. Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
0. 0 (p																							

⁽¹⁾ Although shaded, the columns with HFCs and PFCs totals on sheet 1 are kept for consistency with sheet 2 of the table.

Note: Where information is confidential the entries should provide aggregate figures but there should be a note indicating this in the relevant documentation boxes of the Sectoral background data tables or as a comment to the corresponding cell. Gases with GWP not yet agreed upon by the COP, should be reported in Table 9 (Completeness), sheet 2.

⁽²⁾ Note that the units used in this table differ from those used in the rest of the Sectoral report tables, i.e. [t] instead of [Gg].

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	HFC-23	HFC-32	HFC-41	HFC-43-10mee	HFC-125	HFC-134	HFC-134a	HFC-152a	HFC-143	HFC-143a	HFC-227ea	HFC-236fa	HFC-245ca	Total HFCs	CF_4	$\mathrm{C}_2\mathrm{F}_6$	$_{ m C}$ $_{ m 3F}$ $_{ m 8}$	$\mathrm{C}_4\mathrm{F}_{10}$	c-C ₄ F ₈	C_5F_{12}	C_6F_{14}	Total PFCs	${ m SF}_6$
												$(t)^{(2)}$											
$F(p)$. Total Potential Emissions of Halocarbons (by chemical) and $SF_6^{\ (3)}$	<u>6,65</u>	13,78	0,00	0,00	119,80	0,00	1.223,58	519,48	0,00	106,15	<u>8,13</u>	0,00	0,00		<u>25,45</u>	22,17	<u>1,60</u>	0,01	<u>NO</u>	<u>NO</u>	<u>NO</u>		34,02
Production ⁽⁴⁾	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	NO	NO	NO	NO	NO		NO
Import:	<u>6,65</u>	13,78	0,00	0,00	119,80	0,00		<u>519,48</u>	0,00	106,15	<u>8,13</u>	0,00	0,00		<u>25,45</u>	22,17	<u>1,60</u>	0,01	NO NO	<u>NO</u>	NO		34,02
In bulk	6,65	13,78	NO	NO	119,80	NO	1.223,58	519,48	NO	106,15	8,13	NO	NO		25,45	22,17	1,60	0,01	NO	NO	NO		34,02
In products (5)	ΙE	ΙE	NE	NE	ΙE	NE	ΙE	ΙE	NE	ΙE	ΙE	NE	NE		NO	NO	NO	NO	NO	NO	NO		ΙE
Export:	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		0,00	0,00	0,00	0,00	NO NO	NO	NO NO		0,00
In bulk	ΙE	ΙE	NO	NO		NO		ΙE	NO	ΙE	ΙE	NO	NO		ΙE	ΙE	ΙE	ΙE	NO	NO	NO		ΙE
In products (5)	ΙE	ΙE	NE	NE		NE			NE	ΙE	ΙE	NE	NE		NO	NO	NO	NO	NO	NO	NO		ΙE
Destroyed amount	NE	NE	NO	NO	NE	NO	NE	NE	NO	NE	NE	NO	NO		NE	NE	NE	NE	NO	NO	NO		NE
GWP values used									300		2900	6300			6500		7000	7000	8700	7500	7400		23900
Total Actual Emissions ⁽⁶⁾ (Gg CO ₂ eq.)	26,13	2,67	0,00	0,00	116,23	0,00	960,18	72,67	0,00	126,19	4,14	0,00	0,00	1.308,22	44,85	47,26	10,08	0,36	0,00	0,00	0,00	102,54	593,52
C. Metal Production	270	270	110	170	110	110	170	27.0	110	270	170	110	110		0,00	0,00	0,00	0,00	0,00	0,00	0,00	<u>NO</u>	0,00
E. Production of Halocarbons and SF ₆	NO	NO		NO		NO			NO		NO	NO		NO.	NO	NO	NO	NO	NO	NO	NO	NO.	NO
F(a). Consumption of Halocarbons and SF ₆	26,13	2,67	NO	NO	,	NO		72,67	NO		4,14	NO	NO	1.308,22	44,85	47,26	10,08	0,36	NO	NO	NO	102,54	593,52
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	<u>NO</u>	NO	NO	NO	NO	NO	NO	NO	<u>NO</u>	NO
Ratio of Potential/Actual Emissions from Consumption of Halocarbons and ${\bf SF}_6$																							
Actual emissions - F(a) (Gg CO ₂ eq.)	26,13	2,67	NO	NO	116,23	NO	960,18	72,67	NO	126,19	4,14	NO	NO	1.308,22	44,85	47,26	10,08	0,36	NO	NO	NO	102,54	593,52
Potential emissions - F(p) (7) (Gg CO ₂ eq.)	77,82	8,96	0,00	0,00	335,45	0,00	1.590,65	72,73	0,00	403,39	23,56	0,00	0,00	2.512,56	165,40	203,92	11,20	0,07	NO	NO	NO	380,59	812,96
Potential/Actual emissions ratio	2,98	3,35	0,00	0,00	2,89	0,00	1,66	1,00	0,00	3,20	5,69	0,00	0,00	1,92	3,69	4,32	1,11	0,20	0,00	0,00	0,00	3,71	1,37

⁽³⁾ Potential emissions of each chemical of halocarbons and SF6 estimated using Tier 1a or Tier 1b of the IPCC Guidelines (Volume 3. Reference Manual, pp. 2.47-2.50). When potential emissions estimates are available in a disaggregated manner corresponding to the subsectors for actual emissions defined on sheet 1 of this table, these should be reported in an annex to sheet 2, using the format of sheet 1, sector F(a). Use Summary 3 of this common reporting format to indicate whether Tier 1a or Tier 1b was used.

Note: As stated in the revised UNFCCC guidelines, Parties should report actual emissions of HFCs, PFCs and SF₆, where data are available, providing disaggregated data by chemical and source category in units of mass and in CO₂ equivalents. Parties reporting actual emissions should also report potential emissions for the sources where the concept of potential emissions applies, for reasons of transparency and comparability.

⁽⁴⁾ Production refers to production of new chemicals. Recycled substances could be included here, but it should be ensured that double counting of emissions is avoided. Relevant explanations should be provided as a comment to the corresponding cell.

⁽⁵⁾ Relevant just for Tier 1b.

⁽⁶⁾ Sums of the actual emissions of each chemical of halocarbons and SF6 from the source categories given in sheet 1 of the table multiplied by the corresponding GWP values.

⁽⁷⁾ Potential emissions of each chemical of halocarbons and SF6 taken from row F(p) multiplied by the corresponding GWP values.

TABLE 2(II). C, E SECTORAL BACKGROUND DATA FOR INDUSTRIAL PROCESSES Metal Production; Production of Halocarbons and SF_6 (Sheet 1 of 1)

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DA	ıΤΑ	IMPLIED EMISSION FACTORS ⁽²⁾	EMISSIONS ⁽²⁾	
	Description (1)	(t)	(kg/t)	(t)	(3)
C. PFCs and SF ₆ from Metal Production					
PFCs from Aluminium Production					
CF ₄	Aluminium production [kt]	NO	0,00	0,00	
C_2F_6	Aluminium production [kt]	NO	0,00	0,00	
SF ₆	000000000000			0,00	
Aluminium Foundries	cast Aluminium [t]	С	0,00	0,00	
Magnesium Foundries	cast Magnesium [t]	3.600,00	<u>0,00</u>	0,00	
E. Production of Halocarbons and SF ₆	55555555555				
1. By-product Emissions					
Production of HCFC-22					
HFC-23	 HFC-23 production	NO	0,00	NO	
Other (specify chemical)					
			0,00		
2. Fugitive Emissions				-	
HFCs (specify chemical)	 ************	~~~~	0.00	********	
DECs (specifical amical)	 ******		0,00		Color.
PFCs (specify chemical)	***********		0.00		
SF ₆	NO	NO	0.00	NO	
3. Other (please specify)			0,00		
or Other (picuse speedy)			0.00		

⁽¹⁾ Specify the activity data used as shown in the examples within brackets. Where applying Tier 1b (for C), Tier 2 (for E) and country specific methods, specify any other relevant activity data used in the documentation box below.

Note: Where the activity data are confidential, the entries should provide aggregate figures, but there should be a note in the documentation box indicating this.

Documentation box:

"Import in products" and "Exports in products" and "Exports in bulk" are included in "Import in bulk" because emission calculation is based on consumption data of halocarbons and SF6 or products (net import/export).

 $^{^{\}left(2\right)}$ Emissions and implied emission factors are after recovery.

⁽³⁾ Enter cases in which the final emissions are reported after subtracting the quantities of emission recovery, oxidation, destruction, transformation. Enter these quantities in the specified column and use the documentation box for further explanations.

GREENHOUSE GAS SOURCE		ACTIVITY DATA			IMPLIED EMISSION FACTORS			EMISSIONS		
AND SINK CATEGORIES		Filled in new manufactured products	Amount of fluid In operating systems (average annual stocks)	Remained in products at decommissioning (1)	Product manufacturing factor	Product life factor	Disposal loss factor	From manufacturing	From stocks	From disposal
		(t)			(% per annum)			(t)		
1 Refrigeration		******				****	****			
Air Conditioning Equipment			**************	.*.*.*.*.*.*.*.	"-"-"-"-"-"-"-"-	,*.*.*.*.*.*.		".*.*.*.*.*.*.	**********	*******
Domestic Refrigeration (Spe chemical) (2)						2000				
HFC-134a		0,00	65,35	NE	NE	1,50		NE	0,98	N
G :1D 6: 2										
Commercial Refrigeration HFC-134a		0,00	32,90	NE	NE	1,50	NE	NE	0,49	N
T. (D.C.										
Transport Refrigeration HFC-134a		5,00	40,72	NE	NE	10,00	NE		4,07	N
Industrial Refrigeration		***********	***********		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		000000			JUUUUU
HFC-152a		1,17	9,70	NE	NE	8,00		NE	0,78	N
HFC-32		3,68	15,08	NE	NE	8,00			1,21	N
HFC-143a		105,04	410,51	NE		8,00			32,84	N
HFC-125 HFC-134a		107,88 126,40	475,55 710,18	NE NE		8,00 8,00			38,04 56,81	N N
Stationary Air-Conditioning		*****	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				*****		000000	
HFC-32		10.10	40,44	NE	NE	7,18		IE.	2,90	N
HFC-143a		1,11	6,70	NE		5,48		NE	0,37	N
HFC-125		11,92	65,08	NE	NE	5,33	NE	NE	3,47	N
HFC-134a		36,62	269,20	NE	NE	5,24	NE	NE	14,10	N
Mobile Air-Conditioning		*****	****				*****		*****	*****
HFC-134a		149,02	690,87	NE	NE	13,20	NE NE	NE	91,20	N
2 Foam Blowing										
Hard Foam			<u>.*.*.*.*.*.*.*.</u>		<u> </u>	<u>*************************************</u>		<u> </u>	<u> </u>	
HFC-152a HFC-134a		518,31 345,54	0,00 1,292,53	NA NE	100,00 NE	NA 1.56		518,31 NE	0,00 20,14	N N
ПГС-1348			,			,			20,14	IN
Soft Foam HFC-134a		561.00	552,50	0.00	NE	99.69	NA	NE.	550,80	0.0
HFC-134a		361,00	332,30	0,00	NE	99,09	NA	NE	330,80	0,0

⁽¹⁾ Parties should use the documentation box to provide information on the amount of the chemical recovered (recovery efficiency) and other relavant information used in the emission estimation.

Note: Table 2.(II).F provides for reporting of the activity data and emission factors used to calculate actual emissions from consumption of halocarbons and SF6 using the "bottom-up approach" (based on the total stock of equipment and estimated emission rates from this equipment). Some Parties may prefer to estimate their actual emissions following the alternative "top-down approach" (based on annual sales of equipment and/or gas). These Parties should provide the activity data used in the current format and any other relevant information in the documentation box at the end of Table2(II)Fs2. Data these Parties should provide includes (1) the amount of fluid used to fill new products, (2) the amount of fluid used to service existing products, (3) the amount of fluid originally used to fill retiring products (the total nameplate capacity of retiring products), (4) the product lifetime, and (5) the growth rate of product sales, if this has been used to calculate the amount of fluid originally used to fill retiring products. Alternatively, Parties may provide alternative formats with equivalent information. These formats may be considered for future versions of the common reporting format after the trial period.

⁽²⁾ Please click on the button to specify the chemical consumed, as given in the example. If needed, new rows could be added for reporting the disagregated chemicals from a source by clicking on the corresponding button.

TABLE 2(II).F SECTORAL BACKGROUND DATA FOR INDUSTRIAL PROCESSES Consumption of Halocarbons and ${\rm SF}_6$

Austria 2003

(Sheet 2 of 2)

submission 2005

GREENHOUSE GAS SOURCE			ACTIVITY DATA		IMPLIE	ED EMISSION FA	CTORS		EMISSIONS	
AND SINK CATEGORIES		Filled in new manufactured products	Amount of fluid In operating systems (average annual stocks)	Remained in products at decommissioning (1)	Product manufacturing factor		Disposal loss factor	From manufacturing	From stocks	From disposal
			<u>(t)</u>			(% per annum)			(t)	
3 Fire Extinguishers								******		<u></u>
C4F10		0,00	1,00	NE	NE	- ,		NE	0,05	NE
HFC-227ea		8,13	28,57	NE	NE	5,00		NE	1,43	NE
HFC-23		5,38	38,03	NE	NE	5,00	NE NE	NE	1,90	NE
4 Aerosols								• • • • • • • • •		
Metered Dose Inhalers		0000000000	1000000000	00000000000	00000000	0000000	00000000	000000000	XXXXXXXX	X00000X
Other		***********	***********		***************************************	********	***************************************	*******	******	******
5 Solvents		**********	*******	******	***************************************		******	0000000		3333333
6 Semiconductors		000000000	00000000	*****	00000000	0000000	0000000	00000000	0000000	2000000
C3F8		C	NA	NA	C	NA		0,00	NA	NA
C4F10		C	NA	NA	C	NA	. NA	1,44	NA	NA
SF6		C	NA	NA	C	NA	. NA	15,77	NA	NA
C2F6		C	NA	NA	C	NA	. NA	5,14	NA	NA
CF4		C	NA	NA	C	NA	. NA	6,90	NA	NA
HFC-23		C	NA	NA	C	NA	. NA	0,33	NA	NA
7 Electric Equipment										
SF6		6,55	131,65	NE	NE	1,00	NE NE	NE	1,32	NE
8 Other (please specify)		*********	*******		*****			0000000		
research and other use		0,17	1,48	NA	NE			NE	1,64	NA
Noise insulating window	/S	11,12	294,43	0,00	25,00	1,13	NE	2,78	3,33	0,00
		I .	1	l	1	1		l l		·

Note: Where the activity data are confidential, the entries should provide aggregate figures, but there should be a note indicating this and explanations in the documentation box.

ocumentation box:	

TABLE 3 SECTORAL REPORT FOR SOLVENT AND OTHER PRODUCT USE (Sheet 1 of 1)

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂	N ₂ O	NMVOC
		(Gg)	
Total Solvent and Other Product Use	193,60	0,75	82,63
A. Paint Application	59,60	NA	23,48
B. Degreasing and Dry Cleaning	25,64	NA	9,58
C. Chemical Products, Manufacture and Processing	25,84		11,77
D. Other (please specify)	82,52	0,75	37,80
Use of N2O for Anaesthesia	NA	0,35	NA
N2O from Fire Extinguishers	NA	NE	NA
N2O from Aerosol Cans	NA	0,40	NA
Other Solvent Use	82,52	NA	37,80

Please account for the quantity of carbon released in the form of NMVOC in both the NMVOC and the CO₂ columns.

Note: The IPCC Guidelines do not provide methodologies for the calculation of emissions of N_2O from Solvent and Other Product Use. If reporting such data, Parties should provide additional information (activity data and emission factors) used to make these estimates in the documentation box to Table 3.A-D.

TABLE 3.A-D SECTORAL BACKGROUND DATA FOR SOLVENT AND OTHER PRODUCT USE (Sheet 1 of 1)

Austria 2003 submission 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DAT	TA .	IMPLIED EMISS	SION FACTORS
	Description	(kt)	CO_2	N_2O
			(t/t)	(t/t)
A. Paint Application	Solvents used [kt]	53,16	1,12	<u>0,00</u>
B. Degreasing and Dry Cleaning	Solvents used [kt]	17,77	<u>1,44</u>	<u>0,00</u>
C. Chemical Products, Manufacture and Processing	Solvents used [kt]	97,37		************
D. Other (please specify) (1)	700000000000000000000000000000000000000			
Use of N2O for Anaesthesia	Use of N2O for Anaesthesia [kt	0,35	<u>0,00</u>	1,00
N2O from Fire Extinguishers	N2O from Fire Extinguishers	NE	<u>0,00</u>	0,00
N2O from Aerosol Cans	N2O from Aerosol Cans	0,40	<u>0,00</u>	1,00
Other Solvent Use	Solvents used [kt]	52,23	<u>1,58</u>	0,00

⁽¹⁾ Some probable sources are provided in brackets. Complement the list with other relevant sources. Make sure that the order is the same as in Table 3.

Note: The table follows the format of the IPCC Sectoral Report for Solvent and Other Product Use, although some of the source categories are not relevant to the direct GHG emissions.

Documentation box:		

GREENHOUSE GAS SOURCE AND SINK	CH ₄	N ₂ O	NO _x	CO	NMVOC					
CATEGORIES		(Gg)								
Total Agriculture	189,97	10,84	4,76	1,12	1,76					
A. Enteric Fermentation	147,32									
1. Cattle	137,51									
Dairy Cattle	58,85									
Non-Dairy Cattle	78,65									
2. Buffalo	NO									
3. Sheep	2,60									
4. Goats	0,27									
5. Camels and Llamas	NO									
6. Horses	1,57									
7. Mules and Asses	ΙΕ									
8. Swine	4,87									
9. Poultry	0,17									
10. Other (please specify)	0,33									
Deer	0,33									
B. Manure Management	<u>42,16</u>	2,27			<u>NE</u>					
1. Cattle	21,41									
Dairy Cattle	10,64									
Non-Dairy Cattle	10,77									
2. Buffalo	NO									
3. Sheep	0,06									
4. Goats	0,01									
5. Camels and Llamas	NO									
6. Horses	0,12									
7. Mules and Asses	IE.									
8. Swine	19,54									
9. Poultry	1,02									

GREENHOUSE GAS SOURCE AND SINK	CH ₄	N ₂ O	NO _x	СО	NMVOC
CATEGORIES			(Gg)		
B. Manure Management (continued)					
10. Anaerobic Lagoons		NO			NE
11. Liquid Systems		0,06			NE
12. Solid Storage and Dry Lot		2,12			NE
13. Other (please specify)	0,01	0,08			0,00
Manure without bedding		0,08			NE
Deer	0,01				
C. Rice Cultivation	<u>NO</u>				<u>NO</u>
1. Irrigated	NO				NO
2. Rainfed	NO				NO
3. Deep Water	NO				NO
4. Other (please specify)	NO				0,00
D. Agricultural Soils (1)	0,43	8,57	4,73		1,63
Direct Soil Emissions	NA	4,56			1,63
2. Animal Production	NA	0,70			NA
3. Indirect Emissions	NA	3,28			NA
4. Other (please specify)	0,43	0,03			0,00
Sewage sludge	0,43	0,03			NE
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	0,06	0,00	0,03	1,12	0,13
1 . Cereals	0,04	0,00	0,03	0,90	0,07
2. Pulse	NO	NO	NO	NO	NO
3 . Tuber and Root	NO	NO	NO	NO	NO
4 . Sugar Cane	NO	NO	NO	NO	NO
5 . Other (please specify)	0,02	0,00	0,00	0,22	0,05
Vine	0,02	0,00	0,00	0,22	0,05
G. Other (please specify)	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>

⁽¹⁾ See footnote 4 to Summary 1.A of this common reporting format. Parties which choose to report CO₂ emissions and removals from agricultural soils under 4.D. Agricultural Soils category of the sector Agriculture should indicate the amount [Gg] of these emissions or removals in the documentation box to Table 4.D. Additional information (activity data, implied emissions factors) should also be provided using the relevant documentation box to Table 4.D. This table is not modified for reporting the CO₂ emissions and removals for the sake of consistency with the IPCC tables (i.e. IPCC Sectoral Report for Agriculture).

Note: The IPCC Guidelines do not provide methodologies for the calculation of CH₄ emissions, CH₄ and N₂O removals from agricultural soils, or CO₂ emissions from savanna burning or agricultural residues burning. If you have reported such data, you should provide additional information (activity data and emission factors) used to make these estimates using the relevant documentation boxes of the Sectoral background data tables.

TABLE 4.A SECTORAL BACKGROUND DATA FOR AGRICULTURE

Enteric Fermentation (Sheet 1 of 1)

2003 submission 2005

Austria

GREENHOUSE GAS SOURCE AND SINK CATEGORIES		ACTIVITY DATA ⁽¹⁾ AND OTHER RELATED INFORMATION							
	Population size (2)	Average daily feed intake	CH ₄ conversion	CH ₄					
	(1000 head)	(MJ/day)	(%)	(kg CH ₄ /head/yr)					
1. Cattle	2.052	200,9	6,00	67,01					
Dairy Cattle ⁽³⁾	558	268,1	6,00	105,50					
Non-Dairy Cattle	1.494	133,8	6,00	52,64					
2. Buffalo	NO	NO	NO	0,00					
3. Sheep	325	NE	NE	8,00					
4. Goats	55	NE	NE	5,00					
5. Camels and Llamas	NO	NO	NO	0,00					
6. Horses	87	NE	NE	18,00					
7. Mules and Asses	IE	IE	IE	0,00					
8. Swine	3.245	NE	NE	1,50					
9. Poultry	13.027	2,2	0,09	0,01					
10. Other (please specify)	************	2000000	XXXXX	*********					
Deer	41	NE	NE	8,00					
				0,00					

Additional information (for Tier 2)(a)

Disaggregated list of animals ^(b) Indicators:		Dairy Cattle	Non- Dairy Cattle	Other (specify)	
Weight	(kg)	642,00	408,28		
Feeding situation (c)		NE	NE		
Milk yield	(kg/day)	15,45	NO		
Work	(hrs/day)	0,00	0,00		
Pregnant	(%)	NE	NE		
Digestibility		74,33	71,50		
of feed	(%)				

^(a) Compare to Tables A-1 and A-2 of the IPCC Guidelines (Volume 3. Reference Manual, pp. 4.31-4.34). These data are relevant if Parties do not have data on average feed intake.

Documentation box:

Population statistics are on a yearly basis.

Population size of category 4 A 8 Swine includes young swine.

⁽b) Disaggregate to the split actually used. Add columns to the table if necessary.

⁽c) Specify feeding situation as pasture, stall fed, confined, open range, etc.

⁽¹⁾ In the documentation boxes to all Sectoral background data tables for Agriculture, Parties should provide information on whether the activity data is one year or a 3-year average.

 $^{^{(2)}}$ Parties are encouraged to provide detailed livestock population data by animal type and region in a separate table below the documentation box. This consistent set of animal population statistics should be used to estimate CH₄ emissions from enteric fermentation, CH₄ and N₂O from manure management, N₂O direct emissions from soil and N₂O emissions associated with manure production, as well as emissions from the use of manure as fuel, and sewage-related emissions reported in the waste sector.

⁽³⁾ Including data on dairy heifers, if available.

TABLE 4.B(a) SECTORAL BACKGROUND DATA FOR AGRICULTURE CH₄ Emissions from Manure Management (Sheet 1 of 1)

Austria 2003

submission 2005

G]	REENHOUSE GAS SOURCE	ACT	ACTIVITY DATA AND OTHER RELATED INFORMATION							
Al	ND SINK CATEGORIES	Population size Allocation by		Typical	VS ⁽³⁾ daily	CH ₄ producing	FACTORS			
		(1)		te regi		animal	excretion	potential (Bo) ⁽³⁾		
			Cool	Temperate	Warm	mass			CH ₄	
				Tem	1					
		(1000 head)		(%)		(kg)	(kg dm/head/yr)	(CH ₄ m ³ /kg VS)	(kg CH ₄ /head/yr)	
1.	Cattle	2.052	100,0	0,0	0,0	524,4	1.054,7	0,2	10,43	
	Dairy Cattle ⁽⁴⁾	558	100,0	0,0	0,0	642,0	1.446,1	0,2	19,07	
	Non-Dairy Cattle	1.494	100,0	0,0	0,0	408,3	663,2	0,2	7,21	
2.	Buffalo	NO	NO	NO	NO	NO	NO	NO	0,00	
3.	Sheep	325	100,0	0,0	0,0	43,0	146,0	0,2	0,19	
4.	Goats	55	100,0	0,0	0,0	30,0	102,2	0,2	0,12	
5.	Camels and Llamas	NO	NO	NO	NO	NO	NO	NO	0,00	
6.	Horses	87	100,0	0,0	0,0	238,0	627,8	0,3	1,39	
7.	Mules and Asses	ΙE	IE	ΙE	ΙE	238,0	627,8	0,3	0,00	
8.	Swine	1.578	100,0	0,0	0,0	82,0	146,6	0,5	12,38	
9.	Poultry	13.027	100,0	0,0	0,0	1,1	36,5	0,3	0,08	

⁽¹⁾ See footnote 1 to Table 4.A of this common reporting format.

Documentation Box:

Population statistics are on a yearly basis

4 B 7 Mules and Asses" are included in "4 B 6 Horses"

Population size of category 4 B 8 Swine does not include young swine because the emission factor of breeding sows considers young swine.

Additional information (for Tier 2)

r y (a)	tor	ion		Animal '	waste m	anageme	nt syster	n
Animal categor	Indicator	Climate region	Anaerobic lagoor	Liquid system	Daily spread	Solid storage and dry lo	Pasture range paddock	отре
	on(%)	Cool	0,00	18,95	0,00	70,40	10,65	0,00
le	Allocation(%	Temperate	NO	NO	NO	NO	NO	NO
Catt	IΑ	Warm	NO	NO	NO	NO	NO	NO
Dairy Cattle	(0	Cool	90,00	39,00	0,00	1,00	1,00	1,00
Д	$MCF^{(b)}$	Temperate	NO	NO	NO	NO	NO	NO
	~	Warm	NO	NO	NO	NO	NO	NO
	(%)uc	Cool	0,00	24,31	0,00	66,14	9,56	0,00
attle	Allocation(%	Temperate	NO	NO	NO	NO	NO	NO
iry C	IΑ	Warm	NO	NO	NO	NO	NO	NO
Non-Dairy Cattle	0	Cool	90,00	39,00	0,00	1,00	1,00	1,00
Non	$MCF^{(b)}$	Temperate	NO	NO	NO	NO	NO	NO
	I	Warm	NO	NO	NO	NO	NO	NO
	on(%)	Cool	0,00	71,50	0,00	28,50	0,00	0,00
	Allocation(%	Temperate	NO	NO	NO	NO	NO	NO
Swine	IIA	Warm	NO	NO	NO	NO	NO	NO
Sw	0	Cool	90,00	39,00	0,00	1,00	1,00	1,00
	$MCF^{(b)}$	Temperate	NO	NO	NO	NO	NO	NO
	V	Warm	NO	NO	NO	NO	NO	NO

⁽a) Copy the above table as many times as necessary.

⁽²⁾ Climate regions are defined in terms of annual average temperature as follows: Cool=less than 15°C; Temperate=15°C to 25°C inclusive; and Warm=greater than 25°C (see Table 4.2 of the IPCC Guidelines (Volume 3, Reference Manual, p. 4.8)).

⁽³⁾ VS=Volatile Solids; Bo=maximum methane producing capacity for manure IIPCC Guidelines (Volume 3, Reference Manual, p.4.23 and p. 4.15.

⁽⁴⁾ Including data on diary heifers, if available.

⁽b) MCF = Methane Conversion Factor (IPCC Guidelines, (Volume 3. Reference Manual, p. 4.9)). In the case of use of other climate region categorization, please replace the entries in the cells with the climate regions for which the MCFs are specified.

GREENHOUSE GAS SOURCE		ACT	TIVITY DATA	AND OTHER	RELATED IN	FORMATION			IMPLIED EMISSION FAC	TORS	
AND SINK CATEGORIES	Population size	Nitrogen excretion	N	itrogen excretio	n per animal wa	ste manageme	nt system (kg N/yı	r)	Emission factor per animal waste management system		
	(1000s)	(kg N/head/yr)	Anaerobic lagoon	Liquid system	Daily spread	Solid storage and dry lot	Pasture range and paddock	Other	(kg N ₂ O-N/kg N)		
Non-Dairy Cattle	1.494	34,5	NO	12.369.534,1	NO	32.867.678,7	6.269.899,1	NO	Anaerobic lagoon	0,000	
Dairy Cattle	558	67,6	NO	7.161.552,8	NO	26.535.437,9	3.995.392,6	NO	Liquid system	0,001	
Sheep	325	20,0	NO	NO	NO	130.198,0	5.663.613,0	716.089,0	Solid storage and dry lot	0,020	
Swine	1.578	17,5	NO	19.709.873,6	NO	7.940.681,5	NO	NO	Other	0,005	
Poultry	13.027	0,9	NO		NO						
Other (please specify)		*******						9999			
Goats	55	20,0	NO	NO	NO			43.685,6			
Horses	87	50,0	NO	NO	NO	NO	4.179.456,0	174.144,0			
Deer	41	20,0	NO	NO	NO	NO	790.848,0	32.952,0			
Total per AWMS ⁽²⁾			0,0	40.700.738,4	0,0	67.586.286,7	22.172.244,3	10.399.281,3			

⁽¹⁾ See footnote 1 to Table 4.A of this common reporting format.

Documentation box:

Population statistics are on a yearly basis

4 B 7 Mules and Asses" are included in "4 B 6 Horses"

Population size of category 4 B 8 Swine does not include young swine because the emission factor of breeding sows considers young swine.

⁽²⁾ AWMS - Animal Waste Management System.

2003

Austria

submission 2005

Rice Cultivation (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND		ACTIVITY DATA AND	OTHER RELATED IN	IMPLIED EMISSION FACTOR (1)	EMISSIONS	
SINK CATEGORIES		Harvested area (2)	Organic amendmen	ts added ⁽³⁾ :	$\mathrm{CH_4}$	CH ₄
		$(10^{-9} \mathrm{m^2/yr})$	type	(t/ha)	(g/m^2)	(Gg)
1. Irrigated						<u>NO</u>
Continuously Flooded		NO			0,00	NO
Intermittently	Single Aeration	NO			0,00	NO
Flooded	Multiple Aeration	NO			0,00	NO
2. Rainfed						<u>NO</u>
Flood Prone		NO			0,00	NO
Drought Prone		NO			0,00	NO
3. Deep Water						<u>NO</u>
Water Depth 50-100	cm	NO			0,00	NO
Water Depth > 100 cr		NO			0,00	NO
4. Other (please specify)					<u>NO</u>
		NO			0,00	NO
	Upland Rice ⁽⁴⁾	NO				
	Total (4)					

⁽¹⁾ The implied emission factor takes account of all relevant corrections for continuously flooded fields without organic amendment plus the correction for the organic amendments, if used, as well as of the effect of different soil characteristics, if taken into account, on methane emissions.

Documentation box: When dissagregating by more than one region within a country, provide additional information in the documentation box. Where available, provide activity data and scaling factors by soil type and rice cultivar. There is no rice cultivation in Austria

⁽²⁾ Harvested area is the cultivated area multiplied by the number of cropping seasons per year.

⁽³⁾ Specify dry weight or wet weight for organic amendments.

⁽⁴⁾ These rows are included to allow comparison with the international statistics. Upland rice emissions are assumed to be zero and are ignored in the emission calculations.

Austria 2003

Agricultural Soils⁽¹⁾
(Sheet 1 of 1)

submission 2005

IMPLIED EMISSION FACTORS **EMISSIONS** ACTIVITY DATA AND OTHER RELATED GREENHOUSE GAS SOURCE INFORMATION AND SINK CATEGORIES Description Value Unit (Gg N₂O) **Direct Soil Emissions** N input to soils (kg N/yr 4,56 Synthetic Fertilizers Use of synthetic fertilizers 96.942.250 0,013 1,90 (kg N2O-N/kg N)(2) (kg N/vr) Animal Wastes Applied to Soils Nitrogen input from manure applied to soils 92.042.066 0,013 1,81 (kg N2O-N/kg N)(2) (kg N/yr) N-fixing Crops pulses and soybeans produced 19.933.080 0.013 0.39 (kg N fixed/yr) (kg N2O-N/kg dry biomass)(2) Crop Residue N-input from Dry production of other crops 23.331.181 0.012 0.46 (kg N/vr) (kg N2O-N/kg dry biomass)(2) Cultivation of Histosols Area of cultivated organic soils (ha) NO (kg N2O-N/ha)⁽²⁾ 0,000 NC Animal Production N excretion on pasture range and paddock (kg 0.020 0.70 (kg N2O-N/kg N)(2) N/yr) Indirect Emissions 3,28 Atmospheric Deposition Volatized N (NH3 and NOx) from fertilizers and 31.740.639 0,010 0.50 (kg N2O-N/kg N)(2) animal wastes (kg N/yr) Nitrogen Leaching and Run-off N from fertilizers and animal wastes that is lost 0.025 2,78 through leaching and run off (kg N/yr) (kg N2O-N/kg N)⁽²⁾ Other (please specify) 0.03 ••• 1.555.320 (kg N2O-N/kg N)⁽²⁾ Sewage sludge 0,013 0.03 N from sewage sludge spreading (kg N/yr) 0,000

Additional information

Fraction (a)	Description	Value
Frac _{BURN}	Fraction of crop residue burned	0,003
Frac _{FUEL}	Fraction of livestock N excretion in excrements burned for fuel	0,000
Frac _{GASF}	Fraction of synthetic fertilizer N applied to soils that volatilizes as NH ₃ and NOx	0,031
Frac _{GASM}	Fraction of livestock N excretion that volatilizes as NH ₃ and NOx	0,203
Frac _{GRAZ}	Fraction of livestock N excreted and deposited onto soil during grazing	0,157
Frac _{LEACH}	Fraction of N input to soils that is lost through leaching and runoff	0,300
Frac _{NCRBF}	Fraction of N in non-N-fixing crop	0,005
Frac _{NCRO}	Fraction of N in N-fixing crop	0,015
Frac _R	Fraction or crop residue removed from the field as crop	0,341

Documentation box:			

^(a) Use the fractions as specified in the IPCC Guidelines (Volume 3. Reference Manual, pp. 4.92 - 4.113).

⁽¹⁾ See footnote 4 to Summary 1.A. of this common reporting format. Parties which choose to report CO₂ emissions and removals from agricultural soils under 4.D. Agricultural Soils category should indicate the amount [Gg] of these emissions or removals and relevant additional information (activity data, implied emissions factors) in the documentation box.

⁽²⁾ To convert from N₂O-N to N₂O emissions, multiply by 44/28.

TABLE 4.E SECTORAL BACKGROUND DATA FOR AGRICULTURE

Prescribed Burning of Savannas

(Sheet 1 of 1)

2003 submission 2005

Austria

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	AC	TIVITY DATA AND OT	HER RELATED	IMPLIED EMIS	SION FACTORS	EMISSIONS			
	Area of savanna burned	Average aboveground biomass density	Fraction of savanna burned	Biomass burned	Nitrogen fraction in	(kg/t	: dm)	(Gg)	
	(k ha/yr)	(t dm/ha)		(Gg dm)	biomass	CH ₄	N ₂ O	CH ₄	N ₂ O
(specify ecological zone)								<u>NO</u>	<u>NO</u>
	NO					0,00	0,00	NO	NO

Additional information

	Living	Dead
Fraction of aboveground biomass		
Fraction oxidized		
Carbon fraction		

Documentation box:	
No occurrance of savannas in Austria	

Austria 2003

Field Burning of Agricultural Residues (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND		ACTIVITY DATA AND OTHER RELATED INFORMATION						IMPLIED EMISSION FACTORS		EMISSIONS	
SINK CATEGORIES	Crop production	Residue/ Crop ratio	Dry matter fraction	Fraction burned in fields	Biomass burned	Nitrogen fraction in biomass of residues	CH ₄	N ₂ O	CH ₄	N ₂ O	
	(t)				(Gg dm)		(kg/t dm)	(kg/t dm)	(Gg)	(Gg)	
1. Cereals	900000								0,04	0,00	
Wheat	4.245.756,82	1,30	0,86	0,00	14,74	ΙΕ	2,91	0,06	0,04	0,00	
NA	NA	NA	NA	NA	ΙE	NA	0,00	0,00	ΙE	IE	
Maize	NA	NA	NA	NA	IE	NA	0,00	0,00	ΙE	IE	
Oats	NA	NA	NA	NA	ΙE	NA	0,00	0,00	IE	IE	
Rye	NA	NA	NA	NA	ΙE	NA	0,00	0,00	ΙE	IE	
Rice	NO	NO	NO	NO	NO	NO	0,00	0,00	NO	NO	
Other (please specify)	20000000	2000000	XXXXXXX	X000000X	X00000	**********	0.00	0,00	0,00	0,00	
2. Pulse (1)	0000000	000000	000000	0000000	000000	000000000	0,00	0,00	<u>NO</u>	<u>NO</u>	
Dry bean	NO	NO	NO	NO	NO	NO	0,00	0,00	NO	NO	
Peas	NO	NO	NO	NO	NO	NO	0,00	0,00	NO	NO	
Soybeans	NO	NO	NO	NO	NO	NO	0,00	0,00	NO	NO	
Other (please specify)	0000000		555555	0000000		0000000000			0,00	0,00	
							0,00	0,00			
3 Tuber and Root	5555555								<u>NO</u>	<u>NO</u>	
Potatoes	NO	NO	NO	NO	NO	NO	0,00	0,00	NO	NO	
Other (please specify)				• • • • • • •					0,00	0,00	
		-					0,00	0,00			
4 Sugar Cane	NO	NO	NO		NO	NO	0,00	0,00	NO	NO	
5 Other (please specify)	- XXXXXXXX	*******	XXXXXX		***				0,02	0,00	
Vine	NE	NE	NE	NE	87,28	NE	0,21	0,00	0,02	0,00	

⁽¹⁾ To be used in Table 4.D of this common reporting format.

Documentation Box:	
Wheat includes cereals total	

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂ emissions	CO ₂ removals	Net CO ₂ emissions/ removals	CH ₄	N ₂ O	NO _x	со		
	(Gg)								
Total Land-Use Change and Forestry	0,00	0,00	<u>-12.772,55</u>	<u>NE</u>	<u>NE</u>	<u>NE</u>	<u>NE</u>		
A. Changes in Forest and Other Woody Biomass Stocks	0,00	0,00	0,00						
Tropical Forests			0,00						
2. Temperate Forests			0,00						
3. Boreal Forests			0,00						
4. Grasslands/Tundra			0,00						
5. Other (please specify)	0,00	0,00	0,00						
Harvested Wood (1)			0,00						
			0,00						
B. Forest and Grassland Conversion (2)	0,00			0,00	0,00	0,00	0,00		
Tropical Forests									
Temperate Forests									
3. Boreal Forests									
4. Grasslands/Tundra									
5. Other (please specify)	0,00			0,00	0,00	0,00	0,00		
C. Abandonment of Managed Lands	0,00	0,00	0,00						
Tropical Forests			0,00						
Temperate Forests			0,00						
3. Boreal Forests			0,00						
4. Grasslands/Tundra			0,00						
5. Other (please specify)	0,00	0,00	0,00						
			0,00						
D. CO ₂ Emissions and Removals from Soil	0,00	0,00	0,00						
Cultivation of Mineral Soils			0,00						
Cultivation of Organic Soils			0,00						
Liming of Agricultural Soils			0,00						
Forest Soils			0,00						
Other (please specify) (3)	0,00	0,00	0,00						
			0,00						
E. Other (please specify)	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
,			0,00	.,					

⁽¹⁾ Following the IPCC Guidelines, the harvested wood should be reported under Changes in Forest and Other Woody Biomass Stocks (Volume 3. Reference Manual, p.5.17).

Note: See footnote 4 to Summary 1.A of this common reporting format.

⁽²⁾ Include only the emissions of CO₂ from Forest and Grassland Conversion. Associated removals should be reported under section D.

⁽³⁾ Include emissions from soils not reported under sections A, B and C.

TABLE 5.A SECTORAL BACKGROUND DATA FOR LAND-USE CHANGE AND FORESTRY

Austria 2003

submission 2005

Changes in Forest and Other Woody Biomass Stocks (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES		ACTIVITY	Z DATA	IMPLIED EMISSION FACTORS	ESTIMATES		
				Area of forest/biomass stocks	Average annual growth rate	Implied carbon uptake factor	Carbon uptake increment
				(kha)	(t dm/ha)	(t C/ha)	(Gg C)
Tropical	Plantations		Acacia spp.			0,00	
			Eucalyptus spp.			0,00	
			Tectona grandis			0,00	
			Pinus spp			0,00	
			Pinus caribaea			0,00	
			Mixed Hardwoods			0,00	
			Mixed Fast-Growing Hardwoods			0,00	
			Mixed Softwoods			0,00	
	Other Forests		Moist			0,00	
			Seasonal			0,00	
			Dry			0,00	
	Other (specify)					0,00	
						0,00	
Temperate	Plantations					0,00	
						0,00	
	Commercial		Evergreen			0,00	
			Deciduous			0,00	
	Other (specify)					0,00	
						0,00	
Boreal						0,00	
				Number of trees	Annual growth rate	Carbon uptake factor	Carbon uptake
							increment
				(1000s of trees)	(kt dm/1000 trees)	(t C/tree)	(Gg C)
Non-Forest Trees (specify type)						0,00	
						0,00	,
Total annual growth increment							0,00
						Gg CO ₂	0,00
						35 202	0,0

	Amount of biomass removed	Carbon emission factor	Carbon release
	(kt dm)	(t C/t dm)	(Gg C)
Total biomass removed in Commercial Harvest		0,00	
Traditional Fuelwood Consumed		0,00	
Total Other Wood Use		0,00	
	Total Biomass Consu	mption from Stocks (1) (Gg C)	0,00
	Other Change		
		$\operatorname{Gg}\operatorname{CO}_2$	0,00

Net annual carbon uptake (+) or release (-) (Gg C)	0,00
Net CO ₂ emissions (-) or removals (+) (Gg CO ₂)	0,00

 $^{^{\}left(1\right)}$ Make sure that the quantity of biomass burned off-site is subtracted from this total.

Note: Sectoral background data tables on Land-Use Change and Forestry should be filled in only by Parties using the IPCC default methodology. Parties that use country specific methods and models should report information on them in a transparent manner, also providing suggestions for a possible sectoral background data table suitable for their calculation method.

Emissions and removals from Land Use Change and Forestry are reported by the new LULUCF-Format.

⁽²⁾ The net annual carbon uptake/release is determined by comparing the annual biomass growth versus annual harvest, including the decay of forest products and slash left during harvest. The IPCC Guidelines recommend default assumption that all carbon removed in wood and other biomass from forests is oxidized in the year of removal. The emissions from decay could be included under Other Changes in Carbon Stocks.

Forest and Grassland Conversion (Sheet 1 of 1)

GREENHOU	SE GAS SOURCE		ACTIVITY D	ATA AN	D OTHE	R RELATED IN	NFORMATIO	N		MPLIED E	MISSION FA	CTORS]	EMISSION	S	
AND SINK C	AND SINK CATEGORIES On and off site burning		Decay of a	Decay of above-ground biomass ⁽¹⁾														
		Area	Annual net	Quan	ntity of	Average area	Average	Average		Burr	ing		Decay		Bur	ning		Decay
		converted	loss of	biomas	s burned	converted	annual net	quantity of		On site		Off site			On site		Off site	
		annually	biomass				loss of	biomass left to										
				On site	Off site		biomass	decay	CO_2	CH_4	N_2O	CO_2	CO_2	CO_2	CH_4	N ₂ O	CO_2	CO_2
Vegetation ty		(kha)	(kt dm)	(kt dm)	(kt dm)	(kha)	(t dm/ha)	(kt dm)			(t/ha)					(Gg)		
Tropical	Wet/Very Moist								0,00	0,00	0,00	0,00	0,00					
	Moist, short dry season								0,00	0,00	0,00	0,00	0,00					
	Moist, long dry season								0,00	0,00	0,00	0,00	0,00					
	Dry								0,00	0,00	0,00	0,00	0,00					
	Montane Moist								0,00	0,00	0,00	0,00	0,00					
	Montane Dry								0,00	0,00	0,00	0,00	0,00					
Tropical Savan	na/Grasslands								0,00	0,00	0,00	0,00	0,00					
Temperate	Coniferous								0,00	0,00	0,00	0,00	0,00					
	Broadleaf								0,00	0,00	0,00	0,00	0,00					
	Mixed Broadleaf/ Coniferous								0,00	0,00	0,00	0,00	0,00					
Grasslands									0,00	0,00	0,00	0,00	0,00					
Boreal	Mixed Broadleaf/ Coniferous								0,00	0,00	0,00	0,00	0,00					
	Coniferous								0,00	0,00	0,00	0,00	0,00					
	Forest-tundra								0,00	0,00	0,00	0,00	0,00					
Grasslands/Tur	ndra								0,00	0,00	0,00	0,00	0,00					
Other (please	specify)								0,00	0,00	0,00	0,00	0,00					
									0,00	0,00	0,00	0,00	0,00					
Total		-																

⁽¹⁾ Activity data are for default 10-year average. Specify the average decay time which is appropriate for the local conditions, if other than 10 years.

Emissions/Removals	On site	Off site
Immediate carbon release from burning		
Total On site and Off site (Gg C)		
Delayed emissions from decay (Gg C)		
Total annual carbon release (Gg C)		
Total annual CO ₂ emissions (Gg CO ₂)		

Additional information

Fractions	On site	Off site
Fraction of biomass burned (average)		
Fraction which oxidizes during burning (average)		
Carbon fraction of aboveground biomass (average)		
Fraction left to decay (average)		
Nitrogen-carbon ratio		

Note: Sectoral background data tables on Land-Use Change and Forestry should be filled in only by Parties using the IPCC default methodology. Parties that use country specific methods and models should report information on them in a transparent manner, also providing suggestions for a possible sectoral background data table suitable for their calculation method.

Documentation box:

Emissions and removals from Land Use Change and Forestry are reported by the new LULUCF-Format.

ACTIVITY DAGGREENHOUSE GAS SOURCE AND			OATA AND OTHE	R RELATED INF	ORMATION		IMPLIED EMISS	SION FACTORS	ESTIMATES		
SINK CATEGORIES		Total area abandoned and regrowing		Annual rate of aboveground biomass growth		Carbon fraction of aboveground biomass		Rate of aboveground biomass carbon uptake		Annual carbon uptake in aboveground biomass	
		first 20 years	>20 years	first 20 years	>20 years	first 20 years	>20 years	first 20 years	>20 years	first 20 years	>20 years
Original natur	al ecosystems	(kha)	(kha)	(t dm/ha)	(t dm/ha)			(t C/ha/yr)	(t C/ha/yr)	(Gg C/yr)	(Gg C/yr)
Tropical	Wet/Very Moist							0,00	0,00		
	Moist, short dry season							0,00	0,00		
	Moist, long dry season							0,00	0,00		
	Dry							0,00	0,00		
	Montane Moist							0,00	0,00		
	Montane Dry							0,00	0,00		
Tropical Savar	nna/Grasslands							0,00	0,00		
Temperate	Mixed Broadleaf/Coniferous							0,00	0,00		
	Coniferous							0,00	0,00		
	Broadleaf							0,00	0,00		
Grasslands								0,00	0,00		
Boreal	Mixed Broadleaf/Coniferous							0,00	0,00		
	Coniferous							0,00	0,00		
	Forest-tundra							0,00	0,00		
Grasslands/Tur	ndra							0,00	0,00		
Other (please s	specify)							0,00	0,00		
								0,00	0,00		

0,00	Total annual carbon uptake (Gg C)
0,00	Total annual CO ₂ removal (Gg CO ₂)

⁽¹⁾ If lands are regenerating to grassland, then the default assumption is that no significant changes in above-ground biomass occur.

Note: Sectoral background data tables on Land-use Change and Forestry should be filled in only by Parties using the IPCC default methodology. Parties that use country specific methods and models should report information on them in a transparent manner, also providing suggestions for a possible sectoral background data table suitable for their calculation method.

ocumentation box:	
missions and removals from Land Use Change and Forestry are reported by the new LULUCF-Format.	

TABLE 5.D SECTORAL BACKGROUND DATA FOR LAND-USE CHANGE AND FORESTRY CO_2 Emissions and Removals from Soil

Austria 2003

submission 2005

Land area	GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DATA	IMPLIED EMISSION FACTORS	ESTIMATES	
Cultivation of Mineral Soils (1) NE High Activity Soils 0,00 Low Activity Soils 0,00 Sandy 0,00 Volcanic 0,00 Wetland (Aquic) 0,00 Other (please specify) 0,00 Land area Annual loss rate Carbon emissions from organic soils (Mg C/ha/yr) Cultivation of Organic Soils 0 Cool Temperate 0 Upland Crops 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00		Land area		Net change in soil carbon in mineral soils	11
High Activity Soils 0,00 Low Activity Soils 0,00 Sandy 0,00 Wetland (Aquic) 0,00 Other (please specify) 0,00 Land area Annual loss rate Carbon emissions from organic soils (Mg C/ha/yr) (Mg C/yr) Cultivation of Organic Soils 0,00 Pasture/Forest 0,000 Warm Temperate 0,000 Pasture/Forest 0,000		(Mha)	(Mg C/ha/yr)	(Tg C over 20 yr)	
Low Activity Soils	Cultivation of Mineral Soils (1)	NE		0,00	
Sandy	High Activity Soils		0,00		Н
Volcanic 0,00 Wetland (Aquic) 0,00 Other (please specify) 0,00 Land area Annual loss rate Carbon emissions from organic soils (Mg C/ha/yr) Cultivation of Organic Soils (Mg C/ha/yr) Cool Temperate 0,00 Pasture/Forest 0,00 Warm Temperate 0,00 Upland Crops 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00	Low Activity Soils		0,00		
Wetland (Aquic) 0,00 Other (please specify) 0,00 Land area Annual loss rate organic soils (Mg C/ha/yr) Carbon emissions from organic soils (Mg C/yr) Cultivation of Organic Soils (Mg C/ha/yr) (Mg C/yr) Cool Temperate 0,00 0,00 Pasture/Forest 0,00 0,00	Sandy		0,00		
Other (please specify) 0,00 Land area Annual loss rate organic soils (Mg C/ha/yr) Carbon emissions from organic soils (Mg C/yr) Cultivation of Organic Soils (Mg C/ha/yr) (Mg C/yr) Cool Temperate 0,00 Pasture/Forest 0,00 Warm Temperate 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00 Pasture/Forest Upland Crops 0,00 Pasture/Forest Upland Crops 0,00 Pasture/Forest 0,00	Volcanic		0,00		8
Land area Annual loss rate Carbon emissions from organic soils (Mg C/ha/yr) (Mg C/yr)	Wetland (Aquic)				
Land area (ha) Annual loss rate (Mg C/ha/yr) Carbon emissions from organic soils (Mg C/yr) Cultivation of Organic Soils ————————————————————————————————————	Other (please specify)	2000000		0,00	
(ha) (Mg C/ha/yr) organic soils (Mg C/yr) Cultivation of Organic Soils			0,00		Ш
(ha) (Mg C/ha/yr) (Mg C/yr) Cultivation of Organic Soils		Land area	Annual loss rate		
Cool Temperate 0,00 Upland Crops 0,00 Pasture/Forest 0,00 Warm Temperate 0,00 Pasture/Forest 0,00 Tropical 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00		(ha)	(Mg C/ha/yr)	.,,	
Upland Crops 0,00 Pasture/Forest 0,00 Warm Temperate 0,00 Upland Crops 0,00 Pasture/Forest 0,00 Tropical 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00	Cultivation of Organic Soils			0,00	Ш
Pasture/Forest 0,00 Warm Temperate 0,00 Upland Crops 0,00 Pasture/Forest 0,00 Tropical 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00	Cool Temperate	0000000		0,00	(a
Warm Temperate 0,00 Upland Crops 0,00 Pasture/Forest 0,00 Tropical 0,00 Pasture/Forest 0,00 Pasture/Forest 0,00	Upland Crops		0,00		р
Upland Crops	Pasture/Forest		0,00		s
Pasture/Forest 0,00 Tropical 0,00 Upland Crops 0,00 Pasture/Forest 0,00	Warm Temperate	20000000	0000000000000	0,00	n
Upland Crops 0,00 Pasture/Forest 0,00	Upland Crops		0,00		d
Upland Crops 0,00 Pasture/Forest 0,00	Pasture/Forest		0,00		(
Upland Crops 0,00 Pasture/Forest 0,00	Tropical			0,00	ľ
Pasture/Forest 0,00				.,,,,	1
Total annual Carbon conversion factor Carbon emissions from lin	* *		0,00		1
amount of lime		_ 0 1111 1111111111	Carbon conversion factor	Carbon emissions from liming	

	Additional informati	on						
	Climate (a)	land-use/ management	Soil type					
Year		system ^(a)	High activity soils	Low activity soils	Sandy	Volcanic	Wetland (Aquic)	Organic soil
				perc	ent distri	bution (%	(a)	
Į.								
years prior								
ars								
ye								
20								
늄								
inventory year								
ory								
ent								
inv								
(3)								

(a) These should represent the major types of land management systems per climate regions presented in the country as well as ecosystem types which were either converted to agriculture (e.g., forest, savanna, grassland) or have been derived from previous agricultural land-use (e.g., abandoned lands, reforested lands). Systems should also reflect differences in soil carbon stocks that can be related to differences in management (IPCC Guidelines (Volume 2. Workbook, Table 5-9, p. 5.26, and Appendix (pp. 5-31 - 5.38)).

(Mg)

Liming of Agricultural Soils

Limestone Ca(CO₃)

Dolomite CaMg(CO₃)₂

(Mg C)

0,00

Note: Sectoral background data tables on Land-Use Change and Forestry should be filled in only by Parties using the IPCC default methodology. Parties that use country specific methods and models should report information on them in a transparent manner, also providing suggestions for a possible sectoral background data table suitable for their calculation method.

0,00

0,00

Documentation Box:	
Emissions and removals from Land Use Change and Forestry are reported by the new LULUCF-Format.	

Total annual net carbon emissions from agriculturally impacted soils (Gg C)

Total annual net CO₂ emissions from agriculturally impacted soils (Gg CO₂)

0,0

⁽¹⁾ The information to be reported under Culitvation of Mineral Soils aggregates data per soil type over all land-use/management systems. This refers to land area data and to the emission estimates and implied emissions factors accordingly.

GREENHOUSE GAS SOURCE AND SINK	CO ₂ ⁽¹⁾	CH ₄	N ₂ O	NO _x	CO	NMVOC	SO_2			
CATEGORIES	(Gg)									
Total Waste	11,27	150,31	0,80	0,03	9,49	0,13	0,05			
A. Solid Waste Disposal on Land	0,00	134,71		0,00	9,48	0,13				
Managed Waste Disposal on Land	NA	134,71		NA	9,48	0,13				
2. Unmanaged Waste Disposal Sites	NO	NO		NO	NO	NO				
3. Other (<i>please specify</i>)	0,00	0,00		0,00	0,00	0,00				
B. Wastewater Handling		14,42	0,62	0,00	0,00	0,00				
Industrial Wastewater		4,90	0,14	NA	NA	NA				
2. Domestic and Commercial Wastewater		9,51	0,48	NA	NA	NA				
3. Other (please specify)		0,00	0,00	0,00	0,00	0,00				
C. Waste Incineration	11,27	0,00	0,00	0,03	0,01	0,00	0,05			
D. Other (please specify)	0,00	1,19	0,18	0,00	0,00	0,00	0,00			
Compost production	NA	1,19	0,18	NA	NA	NA	NA			

⁽¹⁾ Note that CO₂ from Waste Disposal and Incineration source categories should only be included if it stems from non-biological or inorganic waste sources.

TABLE 6.A SECTORAL BACKGROUND DATA FOR WASTE

Solid Waste Disposal

(Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK ACTIVITY DATA AND OTHER RELATED INFORMATION IMPLIED EMISSION EMISSIONS(1 CATEGORIES FACTOR Annual MSW at the MCF DOC degraded CH₄ CO₂ CH₄ CH4 recovery $CO_2^{(3)}$ SWDS Managed Waste Disposal on Land 2.212.7 165.07 21,73 134,71 2 Unmanaged Waste Disposal Sites NO NO - deep (>5 m) NO NO NO 0,00 0.00 NO NO NC - shallow (<5 m) NO NO NO NO NO NC 0.00 Other (please specify)

TABLE 6.C SECTORAL BACKGROUND DATA FOR WASTE

Waste Incineration

(Sheet 1 of 1)

(Sheet 1 of 1)							
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DATA Amount of incinerated		ED EMISSION F	EMISSIONS			
	wastes (Gg)	CO ₂ (kg/t waste)	CH ₄ (kg/t waste)	N ₂ O (kg/t waste)	CO ₂ (3) (Gg)	CH ₄ (Gg)	N ₂ O (Gg)
Waste Incineration (please specify)	3,00				11,27	0,00	0,00
(biogenic)(3)	NA	0,00	0,00	0,00	NA	NA	NA
(plastics and other non-biogenic waste) (3)	NA	0,00	0,00	0,00	NA	NA	NA
Incineration of corpses [Number]	9.136,00	0,18	0,00	0,00	1,60	NA	NA
municipal solid waste [Gg]	NO	0,00	0,00	0,00	NO	NO	NO
waste oil [Gg]	3,00	3.224,00	0,00	0,02	9,67	0,00	0,00
		0,00	0,00	0,00			
		0,00	0,00	0,00			
		0,00	0,00	0,00			

MSW - Municipal Solid Waste, SWDS - Solid Waste Disposal Site, MCF - Methane Correction Factor, DOC - Degradable Organic Carbon

(IPCC Guidelines (Volume 3. Reference Manual, section 6.2.4)). MSW includes household waste, yard/garden waste, commercial/market waste and organic industrial solid waste. MSW should not include inorganic industrial waste such as construction or demolition materials.

Documentation box

All relevant information used in calculation should be provided in the additional information box and in the documentation box.

Parties that use country specific models should note this with a brief rationale in the documentation box and fill the relevant cells only.

Recycling and treatment of waste from households and similar establishments:

34.3% recycling

15.4% recycling biogenous waste

0.8% treatment in plants for hazardous waste

6.3% mechanic-biological pre-treatment

14.7% thermal treatment (incineration)

28.5% direct depositoion at landfills

MSW not considered in category 6A and 6C but in category 6D - other - compost production:

mechanical biological treated residual waste: 294Gg/a

composted waste: 1349Gg/a

composted sludge: 53Gg/a

Austria 2003 submission 2005

Additional information

Description	Value
Total population (1000s) ^(a)	8.053,11
Urban population (1000s) ^(a)	5.369,00
Waste generation rate (kg/capita/day)	0,75
Fraction of MSW disposed to SWDS	0,29
Fraction of DOC in MSW	0,12
Fraction of wastes incinerated	0,15
Fraction of wastes recycled	0,34
CH4 oxidation factor (b)	0,10
CH ₄ fraction in landfill gas	0,55
Number of SWDS recovering CH ₄	54,00
CH ₄ generation rate constant (k) (c)	NA
Time lag considered (yr) (c)	NA
Composition of landfilled waste (%)	
Paper and paperboard	14,00
Food and garden waste	20,40
Plastics	15,00
Glass	3,00
Textiles	4,20
Other (specify)	
other - inert	NA
other - organic	NA
other - sanatory products	12,00
other - metals	4,60
other - unspecified	26,80

^(a) Specify whether total or urban population is used and the rationale for doing so.

⁽¹⁾ Actual emissions (after recovery).

⁽²⁾ CH₄ recovered and flared or utilized.

⁽³⁾ Under Waste Disposal, CO₂ emissions should be reported only when the disposed wastes are combusted at the disposal site which might constitute a management practice. CO₂ emissions from non-biogenic wastes are included in the totals, while the CO₂ emissions from biogenic wastes are not included in the totals.

⁽b) See IPCC Guidelines (Volume 3. Reference Manual, p. 6.9).

⁽c) For Parties using Tier 2 methods.

TABLE 6.B SECTORAL BACKGROUND DATA FOR WASTE

Wastewater Handling

(Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND IMPLIED EMISSION FACTOR ACTIVITY DATA AND RELATED INFORMATION(1) EMISSIONS(2) SINK CATEGORIES Total organic product CH₄ recovered and/or flared CH CH₄ N₂O (3) Sludge Wastewater Wastewater Sludge Wastewater (kg/kg DC) (kg/kg DC) (kg/kg DC) Industrial Wastewater 4,90 Domestic and Commercial Wastewater NA NA 9,51 0,00 Other (please specify)

GREENHOUSE GAS SOURCE AND	AC	TIVITY DATA AND OTHER REL	ATED INFORMATION	IMPLIED EMISSION FACTOR	EMISSIONS
SINK CATEGORIES	Population ⁽⁴⁾	Protein consumption	N fraction	N ₂ O	N ₂ O
	(1000s)	(protein in kg/person/yr)	(kg N/kg protein)	(kg N ₂ O-N/kg sewage N produced)	(Gg)
N ₂ O from human sewage (3)	8.053	40,00	0,16	0,01	0,48

⁽¹⁾ DC - degradable organic component. DC indicators are COD (Chemical Oxygen Demand) for industrial wastewater and BOD (Biochemical Oxygen Demand) for Domestic/Commercial wastewater/sludge (IPCC Guidelines (Volume 3. Reference Manual, pp. 6.14, 6.18)).

Documentation box:

N2O from human sewage: 10 g N / person / day is released into wastewater. 75 % of wastewater is treated in sewage plants. 10 % of N is denitrified. 1 % of denitrified N reacts to N2O. IE: CH4-Emissions from sludge are reported under emissions from wastewater.

Additional information

	Domestic	Industrial
Total wastewater (1000 m ³):	1.068.000,00	NE
Treated wastewater (%):	68%	NE

Austria

submission 2005

2003

Wastewater streams:	Wastewater output	DC
	(m ³)	(kgCOD/m ³)
Industrial wastewater	NE	NE
Iron and steel	NE	NE
Non-ferrous	NE	NE
Fertilizers	NE	NE
Food and beverage	NE	NE
Paper and pulp	NE	NE
Organic chemicals	NE	NE
Other (specify)	NE	NE
	DC (kg BOD/1	000 person/yr)
Domestic and Commercial	NE	
Other	NE	

Handling systems:	Industrial wastewater treated (%)	Ind. sludge treated (%)	Domestic wastewater treated (%)	Domestic sludge treated (%)
Aerobic	NE	NE	NE	NE
Anaerobic	NE	NE	NE	NE
Other (specify)	NE	NE	NE	NE

⁽²⁾ Actual emissions (after recovery).

⁽³⁾ Parties using other methods for estimation of N₂O emissions from human sewage or wastewater treatment should provide corresponding information on methods, activity data and emission factors used in the documentation box. Use the table to provide aggregate data.

⁽⁴⁾ Specify whether total or urban population is used in the calculations and the rationale for doing so. Provide explanation in the documentation box.

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND SINK	CO ₂	CO ₂	CH ₄	N ₂ O	HFC	Cs ⁽¹⁾	PFC	Cs ⁽¹⁾	SI	6	NO _x	CO	NMVOC	SO ₂
CATEGORIES	emissions	removals			P	A	P	A	P	A				
	(Gg)					CO ₂ equiv	alent (Gg)				(G	g)		
Total National Emissions and Removals	76.213,26	-12.772,55	371,74	17,88	2.311,71	1.308,22	380,59	102,54	0,03	0,02	229,03	801,78	182,30	34,14
1. Energy	67.857,30		31,11	2,65							222,58	767,35	82,08	32,87
A. Fuel Combustion Reference Approach (2)	72.162,78													
Sectoral Approach (2)	67.624,26		15,82	2,65							222,58	767,35	78,63	32,72
Energy Industries	16.030,35		0,31	0,22							15,64	4,35	0,74	8,43
Manufacturing Industries and Construction	14.163,39		0,47	0,53							33,49	168,82	3,69	11,90
3. Transport	22.692,33		1,07	0,91							135,69	186,73	23,64	2,24
4. Other Sectors	14.702,00		13,96	0,98							37,70	407,23	50,54	10,14
5. Other	36,19		0,00	0,00							0,08	0,21	0,01	0,01
B. Fugitive Emissions from Fuels	233,04		15,29	0,00							0,00	0,00	3,45	0,15
Solid Fuels	0,00		0,39	0,00							0,00	0,00	0,00	0,00
2. Oil and Natural Gas	233,04		14,91	0,00							0,00	0,00	3,45	0,15
2. Industrial Processes	8.151,09		0,35	2,85	2.311,71	1.308,22	380,59	102,54	0,03	0,02	1,66	23,82	15,71	1,21
A. Mineral Products	3.060,20		0,00	0,00							0,00	9,78	0,00	0,00
B. Chemical Industry	558,88		0,34	2,85	0,00	0,00	0,00	0,00	0,00	0,00	0,69	11,09	12,34	0,77
C. Metal Production	4.532,01		0,00	0,00				0,00		0,00	0,09	2,30	0,41	0,45
D. Other Production (3)	NA										0,88	0,64	2,96	0,00
E. Production of Halocarbons and SF ₆						NO		NO		NO				
F. Consumption of Halocarbons and SF ₆					2.311,71	1.308,22	380,59	102,54	0,03	0,02				
G. Other	NO		NO	NO	NO	NO	NO	NO	NO	NO	0,00	0,00	0,00	0,00

P = Potential emissions based on Tier 1 approach of the IPCC Guidelines.

Note: The numbering of footnotes to all tables containing more than one sheet continue to the next sheet. Common footnotes are given only once at the first point of reference.

A = Actual emissions based on Tier 2 approach of the IPCC Guidelines.

⁽¹⁾ The emissions of HFCs and PFCs are to be expressed as CO₂ equivalent emissions. Data on disaggregated emissions of HFCs and PFCs are to be provided in Table 2(II) of this common reporting format.

⁽²⁾ For verification purposes, countries are asked to report the results of their calculations using the Reference approach and to explain any differences with the Sectoral approach. Where possible, the calculations using the Sectoral approach should be used for estimating national totals. Do not include the results of both the Reference approach and the Sectoral approach in national totals.

⁽³⁾ Other Production includes Pulp and Paper and Food and Drink Production.

Austria 2003

GREENHOUSE GAS SOURCE AND SINK	CO ₂	CO ₂	CH ₄	N ₂ O	HFC	Cs (1)	PFC	Cs ⁽¹⁾	SI	F ₆	NO _x	co	NMVOC	SO_2
CATEGORIES	emissions	removals			P	A	P	A	P	A				
		(G	g)			CO ₂ equiv	alent (Gg)	llent (Gg)			(Gg)			
3. Solvent and Other Product Use	193,60			0,75							0,00	0,00	82,63	0,00
4. Agriculture	0,00	0,00	189,97	10,84							4,76	1,12	1,76	0,00
A. Enteric Fermentation			147,32											
B. Manure Management			42,16	2,27									NE	
C. Rice Cultivation			NO										NO	
D. Agricultural Soils	(4) NA	(4) NA	0,43	8,57							4,73		1,63	
E. Prescribed Burning of Savannas			NO	NO							NO	NO	NO	
F. Field Burning of Agricultural Residues			0,06	0,00							0,03	1,12	0,13	0,00
G. Other			NO	NO							NO	NO	NO	0,00
5. Land-Use Change and Forestry	(5) 0,00	(5) ########	0,00	0,00							0,00	0,00	0,00	0,00
A. Changes in Forest and Other Woody Biomass Stocks	(5) 0,00	(5) 0,00												
B. Forest and Grassland Conversion	0,00		0,00	0,00							0,00	0,00	NO	
C. Abandonment of Managed Lands	(5) 0,00	(5) <u>IE</u>												
D. CO ₂ Emissions and Removals from Soil	(5) 0,00	_												
E. Other	(5) 0,00	(5) <u>NO</u>	0,00	0,00							0,00	0,00	NO	NO
6. Waste	11,27		150,31	0,80							0,03	9,49	0,13	0,05
A. Solid Waste Disposal on Land	(6) 0,00		134,71									9,48	0,13	
B. Wastewater Handling			14,42	0,62							0,00	0,00	0,00	
C. Waste Incineration	⁽⁶⁾ 11,27		0,00	0,00							0,03	0,01	0,00	0,05
D. Other	0,00		1,19	0,18							0,00	0,00	0,00	0,00
7. Other (please specify)	NO NO	<u>NO</u>	NO NO	NO NO	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	NO NO	NO NO	NO.	NO NO	NO NO

⁽⁴⁾ According to the IPCC Guidelines (Volume 3. Reference Manual, pp. 4.2, 4.87), CO₂ emissions from agricultural soils are to be included under Land-Use Change and Forestry (LUCF). At the same time, the Summary Report 7A (Volume 1. Reporting Instructions, Tables.27) allows for reporting CO₂ emissions or removals from agricultural soils, either in the Agriculture sector, under D. Agricultural Soils or in the Land-Use Change and Forestry sector under D. Emissions and Removals from Soil. Parties may choose either way to report emissions or removals from this source in the common reporting format, but the way they have chosen to report should be clearly indicated, by inserting explanatory comments to the corresponding cells of Summary 1.A and Summary 1.B. Double-counting of these emissions or removals should be avoided. Parties should include these emissions or removals consistently in Table8(a) (Recalculation - Recalculated data) and Table10 (Emission trends).

⁽⁵⁾ Please do not provide an estimate of both CO₂ emissions and CO₂ removals. "Net" emissions (emissions - removals) of CO₂ should be estimated and a single number placed in either the CO₂ emissions or CO₂ removals column, as appropriate. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

⁽⁶⁾ Note that CO₂ from Waste Disposal and Incineration source categories should only be included if it stems from non-biogenic or inorganic waste streams.

GREENHOUSE GAS SOURCE AND SINK	CO ₂	CO ₂	CH ₄	N ₂ O	HI	FCs	PF	'Cs	S	F ₆	NO _x	CO	NMVOC	SO_2
CATEGORIES	emissions	removals			P	A	P	A	P	A				
		(Gg)				CO ₂ equiv	valent (Gg)				(G	g)		
Memo Items: (7)														
International Bunkers	1.451,90		0,02	0,05							4,64	1,43	0,61	0,46
Aviation	1.451,90		0,02	0,05							4,64	1,43	0,61	0,46
Marine	NO		NO	NO							NO	NO	NO	NO
Multilateral Operations	IE		IE	IE							IE	IE	IE	IE
CO ₂ Emissions from Biomass	14.665,91													

⁽⁷⁾ Memo Items are not included in the national totals.

SUMMARY 1.B SHORT SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (IPCC TABLE 7B) (Sheet 1 of 1)

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND SINK	CO ₂	CO ₂	CH ₄	N ₂ O	HF	$Cs^{(1)}$	PFC	Cs ⁽¹⁾	SI	F ₆	NO _x	CO	NMVOC	SO_2
CATEGORIES	emissions	removals			P	A	P	A	P	A				
		(Gg)			CO ₂ equivalent (Gg)						(0	Gg)		
Total National Emissions and Removals	76.213,26	-12.772,55	371,74	17,88	2.311,71	1.308,22	380,59	102,54	0,03	0,02	229,03	801,78	182,30	34,14
1. Energy	67.857,30		31,11	2,65							222,58	767,35	82,08	32,87
A. Fuel Combustion Reference Approach ⁽²⁾	72.162,78													
Sectoral Approach ⁽²⁾	67.624,26		15,82	2,65							222,58	767,35	78,63	32,72
B. Fugitive Emissions from Fuels	233,04		15,29	0,00							0,00	0,00	3,45	0,15
2. Industrial Processes	8.151,09		0,35	2,85	2.311,71	1.308,22	380,59	102,54	0,03	0,02	1,66	23,82	15,71	1,21
3. Solvent and Other Product Use	193,60			0,75							0,00	0,00	82,63	0,00
4. Agriculture (3)	0,00	0,00	189,97	10,84							4,76	1,12	1,76	0,00
5. Land-Use Change and Forestry	(4) 0,00	⁽⁴⁾ -12.772,55	0,00	0,00							0,00	0,00	0,00	0,00
6. Waste	11,27		150,31	0,80							0,03	9,49	0,13	0,05
7. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo Items:														
International Bunkers	1.451,90		0,02	0,05							4,64	1,43	0,61	0,46
Aviation	1.451,90		0,02	0,05							4,64	1,43	0,61	0,46
Marine	NO		NO	NO							NO	NO	NO	NO
Multilateral Operations	IE.		IE.	IE.							IE	IE	IE	IE.
CO ₂ Emissions from Biomass	14.665,91													

P = Potential emissions based on Tier 1 approach of the IPCC Guidelines.

A = Actual emissions based on Tier 2 approach of the IPCC Guidelines.

⁽¹⁾ The emissions of HFCs and PFCs are to be expressed as CO₂ equivalent emissions. Data on disaggregated emissions of HFCs and PFCs are to be provided in Table 2(II) of this common reporting format.

⁽²⁾ For verification purposes, countries are asked to report the results of their calculations using the Reference approach and to explain any differences with the Sectoral approach in document box of Table 1.A(c). Where possible, the calculations using the Sectoral approach should be used for estimating national totals. Do not include the results of both the Reference approach and the Sectoral approach in national totals.

⁽³⁾ See footnote 4 to Summary 1.A.

⁽⁴⁾ Please do not provide an estimate of both CO_2 emissions and CO_2 removals. "Net" emissions (emissions - removals) of CO_2 should be estimated and a single number placed in either the CO_2 emissions or CO_2 removals column, as appropriate. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

GREENHOUSE GAS SOURCE AND SINK	CO2 (1)	CH_4	N ₂ O	HFCs	PFCs	SF ₆	Total
CATEGORIES		*	CO ₂	equivalent (Gg)	*	
Total (Net Emissions) (1)	63.440,70	7.806,62	5.542,26	1.308,22	102,54	593,52	78.793,87
1. Energy	67.857,30	653,33	820,00				69.330,63
A. Fuel Combustion (Sectoral Approach)	67.624,26	332,14	820,00				68.776,41
Energy Industries	16.030,35	6,50	68,38				16.105,23
Manufacturing Industries and Construction	14.163,39	9,96	164,77				14.338,12
3. Transport	22.692,33	22,50	280,75				22.995,58
4. Other Sectors	14.702,00	293,15	305,15				15.300,30
5. Other	36,19	0,03	0,96				37,17
B. Fugitive Emissions from Fuels	233,04	321,19	0,00				554,22
1. Solid Fuels	0,00	8,14	0,00				8,14
Oil and Natural Gas	233,04	313,04	0,00				546,08
2. Industrial Processes	8.151,09	7,30	883,38	1.308,22	102,54	593,52	11.046,05
A. Mineral Products	3.060,20	0,00	0,00	0.00	0.00	0.63	3.060,20
B. Chemical Industry	558,88	7,23	883,38	0,00	0,00	0,00	1.449,49
C. Metal Production	4.532,01	0,07	0,00		0,00	0,00	4.532,08
D. Other Production	NA			NO.	210	***	0,00
E. Production of Halocarbons and SF ₆				NO	NO	<u>NO</u>	0,00
F. Consumption of Halocarbons and SF ₆				1.308,22	102,54	593,52	2.004,28
G. Other	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	0,00
3. Solvent and Other Product Use	193,60		232,50				426,10
4. Agriculture	0,00	3.989,38	3.359,68				7.349,06
A. Enteric Fermentation		3.093,65	500 - 1				3.093,65
B. Manure Management		885,35	703,64				1.589,00
C. Rice Cultivation	27.	0,00					0,00
D. Agricultural Soils ⁽²⁾	NA	9,09	2.655,72				2.664,80
E. Prescribed Burning of Savannas		0,00	0,00				0,00
F. Field Burning of Agricultural Residues		1,29	0,32				1,61
G. Other		0,00	0,00				0,00
5. Land-Use Change and Forestry ⁽¹⁾	-12.772,55	0,00	0,00				-12.772,55
6. Waste	11,27	3.156,61	246,70				3.414,59
A. Solid Waste Disposal on Land	0,00	2.828,85					2.828,85
B. Wastewater Handling		302,76	192,43				495,19
C. Waste Incineration	11,27	0,00	0,02				11,29
D. Other	0,00	25,00	54,25				79,25
7. Other (please specify)	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Memo Items:							0,00
International Bunkers	1.451,90	0,52	16,47				1.468,89
Aviation	1.451,90	0,52	16,47				1.468,89
Marine	NO	NO	NO				0,00
Multilateral Operations	IE	<u>IE</u>	<u>IE</u>				0,00
CO ₂ Emissions from Biomass	14.665,91						14.665,91

⁽¹⁾ For CO₂ emissions from Land-Use Change and Forestry the net emissions are to be reported. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

 $^{^{(2)}}$ See footnote 4 to Summary 1.A of this common reporting format.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	CO ₂ emissions	CO ₂ removals	Net CO ₂ emissions / removals	CH ₄	N ₂ O	Total emissions
Land-Use Change and Forestry			CO ₂ equiv	ralent (Gg)		
A. Changes in Forest and Other Woody Biomass Stocks	0,00	0,00	0,00			0,00
B. Forest and Grassland Conversion	0,00		0,00	<u>0,00</u>	<u>0,00</u>	0,00
C. Abandonment of Managed Lands	0,00	0,00	0,00			0,00
D. CO ₂ Emissions and Removals from Soil	0,00	0,00	0,00			0,00
E. Other	0,00	0,00	0,00	0,00	<u>0,00</u>	0,00
Total CO ₂ Equivalent Emissions from Land-Use Change and Forestry	0,00	0,00	<u>-12.772,55</u>	0,00	0,00	-12.772,55

- 1		
	Total $ m CO_2$ Equivalent Emissions without Land-Use Change and Forestry $^{(a)}$	91.566,42
	Total CO ₂ Equivalent Emissions with Land-Use Change and Forestry (a)	78.793,87

⁽a) The information in these rows is requested to facilitate comparison of data, since Parties differ in the way they report emissions and removals from Land-Use Change and Forestry.

GREENHOUSE GAS SOURCE AND SINK	C	O_2	C	H ₄	N	2O	HI	FCs	P	FCs	Sl	F ₆
CATEGORIES	Method	Emission	Method	Emission factor	Method	Emission factor	Method	Emission	Method	Emission factor	Method	Emission
	applied (1)	factor (2)	applied (1)	(2)	applied (1)	(2)	applied (1)	factor (2)	applied (1)	(2)	applied (1)	factor (2)
1. Energy	NA	NA	NA	NA	NA	NA						
A. Fuel Combustion	NA	NA	NA	NA	NA	NA						
Energy Industries	C	CS	C	CS	C	CS						
Manufacturing Industries and Construction	C	CS	C	CS	C	CS						
3. Transport	M, CS	CS	M, T1	CS	M, T1	CS						
4. Other Sectors	C	CS	C	CS	C	CS						
5. Other	M, CS	CS	M, T1	CS	M, T1	CS						
B. Fugitive Emissions from Fuels	NA	NA	NA	NA	NA	NA						
Solid Fuels	NA	NA	T1	D	NA	NA						
2. Oil and Natural Gas	T1, CS	D, CS, PS	T1, CS	CS, D	NA	. NA						
2. Industrial Processes	NA	NA	NA	NA	NA		NA	NA	NA	NA	NA	NA
A. Mineral Products	T2	D, CS	NA	NA	NA	NA						
B. Chemical Industry	PS	PS	PS	PS	PS	PS	NA	NA	NA	NA	NA	NA
C. Metal Production	C, T2		C	CS	NA	NA			NA	NA	NA	NA
D. Other Production	NA	NA										
E. Production of Halocarbons and SF ₆							NA	NA	NA	NA	NA	NA
F. Consumption of Halocarbons and SF ₆							CS	CS	CS	CS	CS	CS
G. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

⁽¹⁾ Use the following notation keys to specify the method applied: D (IPCC default), RA (Reference Approach), T1 (IPCC Tier 1), T1a, T1b, T1c (IPCC Tier 1a, Tier 1b and Tier 1c, respectively), T2 (IPCC Tier 2), T3 (IPCC Tier 3), C (CORINAIR), CS (Country Specific), M (Model). If using more than one method, enumerate the relevant methods. Explanations of any modifications to the default IPCC methods, as well as information on the proper use of methods per source category where more than one method is indicated, and explanations on the country specific methods, should be provided in the documentation box of the relevant Sectoral background data table.

⁽²⁾ Use the following notation keys to specify the emission factor used: D (IPCC default), C (CORINAIR), CS (Country Specific), PS (Plant Specific), M (Model). Where a mix of emission factors has been used, use different notations in one and the same cells with further explanation in the documentation box of the relevant Sectoral background data table.

GREENHOUSE GAS SOURCE AND SINK	C	O_2	C	H ₄	N	₂ O	HI	FCs	P	FCs	S	6F ₆
CATEGORIES	Method applied ⁽¹⁾	Emission factor	Method applied (1)	Emission factor	Method applied ⁽¹⁾	Emission factor	Method applied	Emission factor	Method applied ⁽¹⁾	Emission factor	Method applied ⁽¹⁾	Emission factor
3. Solvent and Other Product Use	C, CS	CS			CS	CS						
4. Agriculture	NA	NA	NA	NA	NA	NA						
A. Enteric Fermentation			T1, T2	D, CS								
B. Manure Management			T1, T2	D, CS								
C. Rice Cultivation			NA	NA								
D. Agricultural Soils	NA	NA	CS	CS	T1	D						
E. Prescribed Burning of Savannas			NA	NA	NA	NA						
F. Field Burning of Agricultural Residues			CS	CS	CS	CS						
G. Other		NA	NA			NA						
5. Land-Use Change and Forestry	T3	CS	NA	NA	NA	NA						
A. Changes in Forest and Other Woody												
		NA										
B. Forest and Grassland Conversion		NA	NA	NA	NA	NA						
C. Abandonment of Managed Lands	NA	NA										
D. CO ₂ Emissions and Removals from Soil	NA	NA										
E. Other	NA	NA	NA	NA	NA	NA						
6. Waste	NA	NA	NA	NA	NA	NA						
A. Solid Waste Disposal on Land	NA	NA	CS	CS								
B. Wastewater Handling			CS	CS	T1	D, CS						
C. Waste Incineration	C	CS	C	CS	C	CS						
D. Other	NA	NA	C, CS	CS	NA	NA						
7. Other (please specify)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Austria 2003

submission 2005

GREENHOUSE GAS SOURCE AND	C	O_2	C	H ₄	N ₂	O	HF	'Cs	PF	Cs	Sl	F ₆	NO) _x	C	0	NM	VOC	SC	\mathcal{O}_2
SINK CATEGORIES	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
Total National Emissions																				
and Removals																				
1 Energy																				
A. Fuel Combustion Activities																				
Reference Approach	ALL	Н																		
Sectoral Approach	ALL	H	ALL	L	ALL	M							ALL	L	ALL	L	ALL	L	ALL	M
Energy Industries	ALL	Н		L	ALL	L							ALL	M	ALL	M	ALL	L	ALL	Н
2. Manufacturing Industries	ALL	H	ALL	L	ALL	L							ALL	L	ALL	L	ALL	L	ALL	Н
and Construction																				
3. Transport	ALL	Н		M	ALL	M							ALL	M	ALL	M	ALL	M	ALL	Н
Other Sectors	ALL	H		L	ALL	L							ALL	L	ALL	L	ALL	L	ALL	M
5. Other	ALL	Н	ALL	M	ALL	M							ALL	M	ALL	M	ALL	M	ALL	H
B. Fugitive Emissions from Fuels																				
Solid Fuels	NA	NA		L	NA	NA														
Oil and Natural Gas	PART	L	PART	L	PART	L							PART	L	PART	L	PART	L	PART	L
2 Industrial Processes																				
A. Mineral Products	ALL	Н	NA	NA	NA	NA							ALL	M	PART	M	ALL	M	ALL	M
B. Chemical Industry	ALL	Н		Н	ALL	Н	NA	NA		NA			ALL	M	PART	M	ALL	M	ALL	M
C. Metal Production	ALL	M		L	NA	NA			NA	NA	ALL	M	ALL	M	PART	M		M	ALL	M
D. Other Production	NO	NO											ALL	M	ALL	M	ALL	M	NE	NE
E. Production of Halocarbons and SF ₆							NO	NO	NO	NO	NO	NO								

⁽¹⁾ This table is intended to be used by Parties to summarize their own assessment of completeness (e.g. partial, full estimate, not estimated) and quality (high, medium, low) of major source/sink inventory estimates. The latter could be understood as a quality assessment of the uncertainty of the estimates. This table might change once the IPCC completes its work on managing uncertainties of GHG inventories. The title of the table was kept for consistency with the current table in the IPCC Guidelines.

Note: To fill in the table use the notation key as given in the IPCC Guidelines (Volume 1. Reporting Instructions, Tables. 37).

GREENHOUSE GAS SOURCE AND SINK	CO	O_2	Cl	H ₄	N ₂	O	HF	Cs	PF	Cs	Sl	F ₆	N	O_x	C	0	NM	VOC	S	O_2
CATEGORIES	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
2 Industrial Processes (continued)																				
F. Consumption of Halocarbons and SF ₆																				
Potential (2)							ALL	M	ALL	M	ALL	M								
Actual (3)							ALL	M	ALL	M	ALL	M								
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NC
3 Solvent and Other Product Use	ALL	M			ALL	L							NA	NA	NA	NA	ALL	M	NA	NA
4 Agriculture																				1
A. Enteric Fermentation			ALL	M																
B. Manure Management			ALL	M	ALL	M											NE	NE		
C. Rice Cultivation			NO	NO													NO	NO		
D. Agricultural Soils	NA	NA	ALL	M	ALL	M											ALL	L		
E. Prescribed Burning of Savannas			NO	NO	NO	NO							NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues			ALL	L	ALL	L							ALL	L	ALL	L	ALL	L	ALL	I
G. Other			NO	NO	NO	NO							NO	NO	NO	NO	NO	NO	NO	NO
5 Land-Use Change and Forestry	PART	H	NE	NE	NE	NE							NE	NE	NE	NE	NE	NE	NE	NE
A. Changes in Forest and	NA	NA																		
Other Woody Biomass Stocks																				
B. Forest and Grassland Conversion	NA	NA	NA	NA	NA	NA							NA	NA	NA	NA	NA	NA		

⁽²⁾ Potential emissions based on Tier 1 approach of the IPCC Guidelines.

⁽³⁾ Actual emissions based on Tier 2 approach of the IPCC Guidelines.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	C	O_2	C	H_4	N ₂	O	HI	Cs	PF	'Cs	S	F ₆	N(O_{x}	C	0	NMV	/OC	S	O_2
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality	Estimate	Quality
5 Land-Use Change and Forestry (continued)																				
C. Abandonment of Managed Lands	ΙE	ΙE																		
D. CO ₂ Emissions and Removals from Soil	NE	NE																		
E. Other	NO	NO	NO	NO	NO	NO							NO	NO	NO	NO	NO	NO	NO	NO
6 Waste																				
A. Solid Waste Disposal on Land	NE	NE	ALL	L											ALL	M	ALL	L		
B. Wastewater Handling			ALL	L	ALL	L							NE	NE	NE	NE	NE	NE		
C. Waste Incineration	ALL	L	ALL	M	ALL	L							ALL	M	ALL	M	ALL	L	ALL	Н
D. Other	NE	NE	ALL	M	NE	NE							NE	NE	NE	NE	NE	NE	NE	NE
7 Other (please specify)	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Memo Items:																				
International Bunkers	ALL	H	ALL	M	ALL	M							ALL	M	ALL	M	ALL	M	ALL	H
Aviation	ALL	Н	ALL	M	ALL	M							ALL	M	ALL	M	ALL	M	ALL	Н
Marine	NO	NO	NO	NO	NO	NO							NO	NO	NO	NO	NO	NO	NO	NO
Multilateral Operations	IE	IE	IE	IE	IE	IE							IE	ΙE	IE	IE	IE	IE	IE	IE
CO ₂ Emissions from Biomass	ALL	L																		

GREE	ENHOUSE GAS SOURCE AND SINK CATEGORIES		CO_2			CH ₄			N ₂ O	
		Previous submission	Latest submission	Difference ⁽¹⁾	Previous submission	Latest submission	Difference ⁽¹⁾	Previous submission	Latest submission	Difference ⁽¹⁾
		CO ₂ equiv	alent (Gg)	(%)	CO ₂ equiv	alent (Gg)	(%)	CO ₂ equiv	valent (Gg)	(%)
Total	National Emissions and Removals	0,00	63.440,70	0,00		7.806,62	0,00		5.542,26	0,00
1. Ene			67.857,30	0,00		653,33	0,00		820,00	0,00
	Fuel Combustion Activities		67.624,26	0,00		332,14	0,00		820,00	0,00
	Energy Industries		16.030,35	0,00		6,50	0,00		68,38	0,00
1.A.2.	Manufacturing Industries and Construction		14.163,39	0,00		9,96	0,00		164,77	0,00
1.A.3.	Transport		22.692,33	0,00		22,50	0,00		280,75	0,00
1.A.4.	Other Sectors		14.702,00	0,00		293,15	0,00		305,15	0,00
1.A.5.	Other		36,19	0,00		0,03	0,00		0,96	0,00
1.B.	Fugitive Emissions from Fuels		233,04	0,00		321,19	0,00		IE	0,00
1.B.1.	Solid fuel		NA	0,00		8,14	0,00		NA	0,00
1.B.2.	Oil and Natural Gas		233,04	0,00		313,04	0,00		IE	0,00
2. Ind	lustrial Processes		8.151,09	0,00		7,30	0,00		883,38	0,00
2.A.	Mineral Products		3.060,20	0,00		NA	<u>0,00</u>		NA	0,00
2.B.	Chemical Industry		558,88	0,00		7,23	0,00		883,38	0,00
2.C.	Metal Production		4.532,01	0,00		0,07	0,00		IE	0,00
2.D.	Other Production		NA	0,00						
2.G.	Other		NO	0,00		NO	0,00		NO	0,00
3. Sol	vent and Other Product Use		193,60	0,00					232,50	0,00
4. Ag	riculture		NA	0,00		3.989,38	0,00		3.359,68	0,00
4.A.	Enteric Fermentation		NA			3.093,65	0,00			
4.B.	Manure Management		NA			885,35	0,00		703,64	0,00
4.C.	Rice Cultivation		NO			NO	0,00			
4.D.	Agricultural Soils (2)		NA	0,00		9,09	0,00		2.655,72	0,00
4.E.	Prescribed Burning of Savannas		NO			NO	0,00		NO	0,00
4.F.	Field Burning of Agricultural Residues		NA			1,29	0,00		0,32	0,00
4.G.	Other		NO			NO	0,00		NO	0,00
5. La:	nd-Use Change and Forestry (net)		-12.772,55	0,00	NE	NE	0,00	NE	NE	0,00
5.A.	Changes in Forest and Other Woody Biomass Stocks	NA	NA	0,00						
5.B.	Forest and Grassland Conversion	NA	NA	0,00	NA	NA	0,00	NA	NA	0,00
5.C.	Abandonment of Managed Lands	NA	NA	0,00						
5.D.	CO ₂ Emissions and Removals from Soil	NA	NA	0,00						
5.E.	Other	NA	NA	0,00	NA	NA	0,00	NA	NA	0,00

⁽¹⁾ Estimate the percentage change due to recalculation with respect to the previous submission (Percentage change = 100% x [(LS-PS)/PS], where LS = Latest submission and PS = Previous submission. All cases of recalculation of the estimate of the source/sink category, should be addressed and explained in Table 8(b) of this common reporting format.

⁽²⁾ See footnote 4 to Summary 1.A of this common reporting format.

TABLE 8(a)	RECALCULATION .	- RECALCULATED	DATA

Recalculated year:

2003 submission 2005

Austria

(Sheet 2 of 2)

GREE	NHOUSE GAS SOURCE AND SINK CATEGORIES		CO_2			CH_4			N_2O	
		Previous	Latest	Difference ⁽¹⁾	Previous	Latest	Difference ⁽¹⁾	Previous	Latest	Difference ⁽¹⁾
		submission	submission		submission	submission		submission	submission	
		CO ₂ equiv	alent (Gg)	(%)	CO ₂ equiv	alent (Gg)	(%)	CO ₂ equiva	lent (Gg)	(%)
6. Wa	ste		11,27	0,00		3.156,61	0,00		246,70	0,00
6.A.	Solid Waste Disposal on Land		NA	0,00		2.828,85	0,00			
6.B.	Wastewater Handling					302,76	0,00		192,43	0,00
6.C.	Waste Incineration		11,27	0,00		0,00	0,00		0,02	0,00
6.D.	Other		NA	0,00		25,00	0,00		54,25	0,00
7. Otl	ner (please specify)	NO	NO	0,00	NO	NO	0,00	NO	NO	0,00
				0,00			0,00			0,00
Memo	Items:									
Intern	ational Bunkers		1.451,90	0,00		0,52	0,00		16,47	0,00
Multil	ateral Operations		Œ	0,00		IE	0,00		Œ	0,00
CO ₂ F	Emissions from Biomass		15.829,15	0,00					•	

GRE	ENHOUSE GAS SOURCE AND SINK CATEGORIES		HFCs			PFCs			SF ₆	
		Previous	Latest	Difference ⁽¹⁾	Previous	Latest	Difference ⁽¹⁾	Previous	Latest	Difference ⁽¹⁾
		submission	submission		submission	submission		submission	submission	
			ralent (Gg)	(%)	CO ₂ equiv	ralent (Gg)	(%)	CO ₂ equiva	lent (Gg)	(%)
Total	Actual Emissions		1.308,22	0,00		102,54	0,00		593,52	0,00
2.C.3	. Aluminium Production					NE	0,00		NE	0,00
2.E.	Production of Halocarbons and SF ₆	NO	NO	0,00	NO	NO	0,00	NO	NO	0,00
2.F.	Consumption of Halocarbons and SF ₆		1.308,22	0,00		102,54	0,00		593,52	0,00
	Other		NO	0,00	NO	NO	0,00	NO	NO	0,00
Poter	Potential Emissions from Consumption of HFCs/PFCs and SF ₆		2.311,71			380,59		<u> </u>	812,96	

	Previous submission	Latest submission	Difference ⁽¹⁾
	CO ₂ equiv	valent (Gg)	(%)
Total CO ₂ Equivalent Emissions with Land-Use Change and Forestry (3)	0,00	66.021,32	0,00
Total CO ₂ Equivalent Emissions without Land-Use Change and Forestry (3)	0,00	78.793,87	0,00

⁽³⁾ The information in these rows is requested to facilitate comparison of data, since Parties differ in the way they report emissions and removals from Land-Use Change and Forestry.

Spec	cify the sector and source/sink	GHG		RECA	ALCULATION DUE TO	
catego	ry ⁽¹⁾ where changes in estimates			CHANGES IN:		Addition/removal/ replacement
	have occurred:		Methods (2)	Emission factors (2)	Activity data (2)	of source/sink categories
1 A 1 a	Public electricity and heat production	CO2, CH4, N2O		CO2 emissions factor for municipal waste is updated according to information from plant operators.	Energy statistics is revised by STATISTIK AUSTRIA. Details are provided in the NIR. Activity data reported due to emission declarations for plants > 50 MWth are completed for the year 2002.	
1 A 1 b	Petroleum Refining	CO2, CH4, N2O	The methodology is now more transparent and consistent regarding activity data and selection of emission factors.	Plant Specific emission factors are used. In the previous submission the CO2-emissions were reported by the plant operator and disaggregated to fuels from the energy statistics.	1990 to 2002: Energy statistics is revised by STATISTIK AUSTRIA.	
1 A 1 c	Combustion of natural gas for Oil/Gas extraction	CO2, CH4, N2O			1990 to 2002: Energy statistics is revised by STATISTIK AUSTRIA. Details are provided in the NIR.	Removal: Emissions from LPG used in gas works were double counted with gas works gas.
1 A 2	Fuel combustion in industry- stationary	CO2, CH4, N2O			Energy statistics is revised for all subcategories by STATISTIK AUSTRIA. Details are provided in the NIR.	
1 A 2	Fuel combustion in industry- mobile	CO2, CH4, N2O			Updated by national transport model.	
1 A 3 b	Road transport	CO2, CH4, N2O		Emission factors have been updated using the new handbook of emission factors (version 2.1). The handbook is the result of new measurements.	Updated by national transport model.	
1 A 3 e	Pipeline compressors	CO2, CH4, N2O			Energy statistics is revised by STATISTIK AUSTRIA. Details are provided in the NIR.	
1 A 4	Other Sectors-stationary	CO2, CH4, N2O			Energy statistics is revised by STATISTIK AUSTRIA. Details are provided in the NIR.	
1 A 4	Other Sectors-mobile	CO2, CH4, N2O			Updated by national transport model.	
1 B 1 a	Coal Mining				Updated for 2002	
	Oil refining and storage				Updated for 2002	
	Natural Gas Distribution				Updated for whoe time series by means of revised energy	
1 6 2 0 11	Ivaturai Gas Distribution				balance	
2 C 1	Iron and Steel	CO2	process specific CO2 emissions from pig iron production have been recalculated as the underlying activity data used for the calculation (non-energy use of coke) has been updated in the national energy balance	for calculating CO2 emissions electric arc furnaces now a country specific emission factor is used (previously an emission factor taken from a swiss publication was applied).	Update for 2002	
2 C 2	Ferroalloys	CO2				Addition of CO2 emissions
2 C 3	Aluminium Production	PFC, CO2			Activity data used for calculation of PFC and CO2 emissions from Aluminium Pro-duction has been harmonized	
2 A 1	Cement Production	CO2		emission data for CO2 emissions from Cement Production 1998-2002 have been updated using data from a study based on plant specific data		
2 A 4	Soda Ash Production and Use	CO2				CO2 Emissions from Soda Ash Production are now reported as "IE", as coke used in the process is already considered as fuel in the Energy Sector (1 A 2 c Chemical In-dustries).
2 A 5	2 A 5 Asphalt Roofing					Removal: emissions are now reported as "IE", as emissions are already included in the Sol-vents Sector.

Spe	cify the sector and source/sink	GHG		RECA	ALCULATION DUE TO	
catego	ory ⁽¹⁾ where changes in estimates	0.20		CHANGES IN:		Addition/removal/ replacement
curege	have occurred:		Methods (2)	Emission factors (2)	Activity data (2)	of source/sink categories
2 A 6	Road Paving with Asphalt					Removal: emissions are now reported as "IE", as emissions are already included in the Sol-vents Sector.
2 A 7 a	Bricks				Updated for 2002	
2 B 5	Chemical Industries - Other	CO2	CO2 emissions from fertilizer production for 1992 1994 have been updated using information from Industry. As indicated in the NIR 2004, the time series for CH4 emissions from urea production was inconsistent; Time series has been recalculated to improve time series consistency.	Emissions from 1990-1991 were recalculated using the average EF from 1993-2003	Openied to 2002	
2 F	Consumption of Halocarbons and SF6		During an extensive Audit several mistakes and inconsistencies were identified and corrected and the data quality could be improved for some subsectors using information from industry. Furthermore emissions from 2001 and 2002 were updated by using extrapolation techniques (following recommendations from the ERT) and data from industries.			
4 A 1	Non Diary Cattle	CH4			The S&A report 2004 noticed high inter-annual variations in the N2O IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.	
4 A 10	Other animals: Deer	CH4			As recommended in the centralized review (October 2004), in this inventory for the years 1990 to 1992 the animal number of 1993 was used.	Addition: for 1990 to 1992
4 B 1	Diary Cattle	CH4		In the last submissions, the Nex and VSex values from 1999 to 2003 were extrapo-lated on the basis of the published Nex and VSex data with a corresponding milk yield of 5000 kg. In this year's calculations also the corresponding Nex and VSex values of a milk yield of 6000 kg published in [GRUBER & STEINWIDDER, 1996] were con-sidered. The values were calculated via interpolation.		
4 B 1	Non Diary Cattle	CH4			The S&A report 2004 noticed high inter-annual variations in the N20 IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.	
	Other animals: Deer	CH4			As recommended in the centralized review (October 2004), in this inventory for the years 1990 to 1992 the animal number of 1993 was used.	Addition: for 1990 to 1992
4 D	Non Diary Cattle	N2O			The S&A report 2004 noticed high inter-annual variations in the N2O IEF values between 1992/1993 and 1993/1994. An error regarding activity data of non-dairy cattle for the year 1993 was identified and corrected in this submission.	

Spe	cify the sector and source/sink	GHG		REC	ALCULATION DUE TO	•
	ory ⁽¹⁾ where changes in estimates			CHANGES IN:		Addition/removal/ replacement
cutego	have occurred:		Methods (2)	Emission factors (2)	Activity data (2)	of source/sink categories
4 D 1	Direct Soil Emissions	N2O			The S&A report 2004 noticed high inter-annual variations in N2O emissions. These variations are caused by effects of storage as well as the difference between the calendar year and the agricultural economic year: the amounts of synthetic fertilizers over the years reflect the amounts sold in one calen dar year. However, the economic year for the farmer does not correspondend to the calendar year. Not the whole amount purchased is applied in the year of purchase. Considering these effects, in this submission the arithmetic average of each two years was used as fertilizer application data.	
4 D 3	Atmospheric nitrogen deposition	N2O	Following a recommendation of the centralized review (October 2004), in contrast to the last submission also N volatized in housing, storage and pasture was taken into account. Now, in accordance with the IPCC good practice, the value FracGASM re-lates to N excreted by livestock and not to Nex left for spreading			
4 F	Feld Burning	CH4, N2O	As recommended in the Centralized Review 2003 the IPCC methodology using de-fault values was applied			
5	LUCF	CO2			Forest area updated based upon new forest inventory from 1997 on.	Addition: land use conversion from and to forests. New estimates for subsectors.
6 A 1	Managed Waste disposal	CH4		As recommended in the Centralized Review 2004 the IPCC default CH4 oxidation factor (0.1) was applied.	Update of disposed waste by information from new reporting obligation of disposal site operators.	
6 B	Waste Water Handling	N2O, CH4	Emissions of N2O have been recalculated taking into account the increasing amount of waste water treated in waste water treatment plants and the increasing amount of denitrification. The data were taken from the Austrian reports on water pollution con-trol (GEWÄSSERSCHUTZBERICHTE 1993 –1996).		The number of inhabitants and the daily protein intake were updated according to STATISTIK AUSTRIA and FAO statistics respectively	
6 C	Waste Incineration-Waste oil	CH4				Addition of CH4 emissions from waste oil incineration-
6 D	OTHER WASTE - compost production	CH4, N2O			Activity data was updated and interpolated for years where no data was available	

⁽¹⁾ Enter the identification code of the source/sink category (e.g. 1.B.1) in the first column and the name of the category (e.g. Fugitive Emissions from Solid Fuels) in the second column of the table (see Table 8(a)).

Documentation box: Use the documentation box to report the justifications of the changes as to improvements in the accuracy, completeness and consistency of the inventory.

For Justification of recalculatons refer to the relevant sector-chapters in the NIR

⁽²⁾ Explain changes in methods, emission factors and activity data that have resulted in recalculation of the estimate of the source/sink as indicated in Table 8(a). Include relevant changes in the assumptions and coefficients under the "Methods" column.

Sources and sinks not reported (NE) ⁽¹⁾					
GHG		Sector ⁽²⁾	Source/sink category (2)		Explanation
$\overline{\mathrm{CO}_2}$					
		1 B 2 a	Transport and Distribution of Oil Pro	ducts	CO2 emissions are assumed to be neglible. Only NMVOC Emissions
CH ₄					
·		1 B 2 a	Transport and Distribution of Oil		CH4 emissions are assumed to be neglible. Only NMVOC Emissions
			Products		are estimated from this source.
					CH4 emissions from that source are included in the NMVOC
		2 B 5	Carbon Black/Methanol/Ethylene		estimate. The share of CH4 in these emissions is not known.
N ₂ O					
HEC					
HFCs					
PF(
SF ₆					
SF ₆					
		•	Sources and sinks	reported elsewhere (IE) ⁽³⁾	
GHG		Source/sink category	Allocation as per IPCC Guidelines	Allocation used by the Party	Explanation
CO					
		Oil Exploration, Gas	1 B 2 a i, 1 B 2 b Exploration, 1 B 2	1 B 2 a iI Oil Production	As all oil fields are combined oil and gas production fields, total
		Exploration, Gas	b i		emissions together with emissions from gas production fields are
		Production/Processing			reported here (total figures are reported from the Association of Oil Industry).
		Refining/Storage	1 B 2 b iv	1 A 1 b Petroleum Refining	The emission declaration of the refinery includes all emissions from
		V - 2 - 1 - 1 - 1	1.00	1.4.11. D 1 D	the plant.
		Venting and Flaring	1 B 2 c	1 A 1 b Petroleum Refining	The emission declaration of the refinery includes all emissions from the plant.
		Multilateral Operations	Memo Item: Multilateral Operations	1 A 4 Other Sectors	No explicit information in the national energy statistics about
					multilateral operations. Since the emissions of this sector are very low
					they are included in the residential/commercial sector.
CIT					
CH ₄		Petroleum Refining	1 A 1 b	1 B 2 fugitive emissions from	Total CH4 emissions from petroleum refining are estimated. CH4
		r cu oleum Remning	17110	fuels	emissions from fuel combustion are a minor source of total CH4
					emisions from refinery.

		T	T	1
	Oil Exploration, Gas	1 B 2 a i, 1 B 2 b Exploration, 1 B 2	1 B 2 a iI Oil Production	As all oil fields are combined oil and gas production fields, total
	Exploration,	b i		emissions together with emissions from gas production fields are
	Production/Processing			reported here (total figures are reported from the Association of Oil
				Industry).
	Venting and Flaring	1 B 2 c	1 B 2 b iv Refining Storage	The emission declaration of the refinery includes all emissions from
				the plant.
	Multilateral Operations	Memo Item: Multilateral Operations	1 A 4 Other Sectors	see explanation for CO2.
	Enteric Fermentation - Mules		4 A 6 Enteric Fermentation -	In the national statistics mules, asses and horses are published
	and Asses	and Asses	Horses	together.
	Manure Managment - Mules and Asses	4 B 7 Manure Managment - Mules and Asses	4 B 6 Manure Managment - Horses	In the national statistics mules, asses and horses are published together.
			6 B 1, 6 B 2 emissions from	Emissions from sewage sludge are included in emissions from
	Emissions from sewage staage	Table 6.B	wastewater, Table 6.B	wastewater handling. The country specific method does not separate
			,	between the two emission sources.
				between the two emission sources.
N_2O				
	Multilateral Operations	Memo Item: Multilateral Operations	1 A 4 Other Sectors	see explanation for CO2.
	Venting and Flaring	1 B 2 c	1 A 1 b Petroleum Refining	see explanation for CO2.
HFCs				
HFCs	Consumption of HFCs -	2 F 1 to 2 F 8	2 F Consumption of	No detailed information about potential emissions of HFCs.
	Potential Emissions By Sectors		Halocarbons and SF6	F
	1			
HFCs	Potential Emissions of HFCs -	2 F(p) Import in Products	2 F(p) Import in Bulk	No detailed information about import of HFCs in bulk.
	Import in Products	47 1	47	1
PF(
	Consumption of PFCs -	2 F 1 to 2 F 8	2 F Consumption of	see explanation for HFCs.
PFCs	Potential Emissions By Sectors		Halocarbons and SF6	
	D	0.F/.).	OF() I D. II	l di C IIII
PFCs		2 F(p) Import in Products	2 F(p) Import in Bulk	see explanation for HFCs.
	Import in Products			
SF ₆				
	Consumption of SF6 -Potential	2 F 1 to 2 F 8	2 F Consumption of	see explanation for HFCs.
	Emissions By Sectors		Halocarbons and SF6	
	Potential Emissions of SF6 -	2 F(p) Import in Products	2 F(p) Import in Bulk	see explanation for HFCs.
	Import in Products	21 (p) import in 1 foducts	2 1 (p) import in buik	see explanation for the Cs.

⁽¹⁾ Please, clearly indicate sources and sinks which are considered in the IPCC Guidelines but are not considered in the submitted inventory. Explain the reason for excluding these sources and sinks, in order to avoid arbitrary interpretations. An entry should be made for each source/sink category for which the indicator "NE" is entered in the sectoral tables.

⁽²⁾ Indicate omitted source/sink following the IPCC source/sink category structure (e.g. sector: Waste, source category: Wastewater Handling).

⁽³⁾ Please clearly indicate sources and sinks in the submitted inventory that are allocated to a sector other than that indicated by the IPCC Guidelines. Show the sector indicated in the IPCC Guidelines and the sector to which the source or sink is allocated in the submitted inventory. Explain the reason for reporting these sources and sinks in a different sector. An entry should be made for each source/sink for which the indicator "IE" is used in the sectoral tables.

			Additio	onal GHG emissions re	eported ⁽⁴⁾	
GHG 	Source category	Emissions (Gg)	Estimated GWP value (100-year horizon)	Emissions CO ₂ equivalent (Gg)	Reference to the data source of GWP value	*

⁽⁴⁾ Parties are encouraged to provide information on emissions of greenhouse gases whose GWP values have not yet been agreed upon by the COP. Please include such gases in this table if they are considered in the submitted inventory. Provide additional information on the estimation methods used.

	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CHEENHOUSE CAS SOURCE AND SINK CATEGORIES	base year	1990	1991	1992	(Gg)	1994	1995	1990	1997	1998	1999	2000	2001	2002	2003
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	53,527,09	53.527.09	57.226.00	52.425.77	53.037.84	53.027.87	55.667.06	50 420 20	58,797,95	50 007 (1	57.399.85	57 (1(50	61.475.09	62.586,99	67.857.30
1. Energy A. Fuel Combustion (Sectoral Approach)	53.527,09	53.425.06	57.125.96	52.305.74	52,925,81	52,900,34	55.540.03	59,359,36	58.677.44	58,665,78	57.229.31	57.616,58 57.452,05	61.292.36	62.419.95	67.624.26
A. Fuel Combustion (Sectoral Approach) 1. Energy Industries	13.622.41	13.622.41	14.416.96	11.346.25	11.384.60	11.644.66	12,677,57	13,762,22	13.371,32	12.897.76	12,258,63	12,275,76	13,423,01	13,347,79	16,030,35
Manufacturing Industries and Construction	12.970.71	12.970,71	13.379,09	12.274,18	12.813.11	13.817.64	13.904.54	13.777.76	16.121,87	14.589,73	13.556,77	14.298.68	14.064.14	14.394.72	14.163,39
Transport	12.404.87	12.404.87	13.997,14	13.941,35	14.119,23	14.081,96	14.466,30	16.042,44	14.977,02	17.182,90	16.596,33	17.735,29	18.886,06	20.973,52	22.692,33
4. Other Sectors	14.392.05	14.392,05	15.295,67	14.710,26	14.569,45	13.314,49	14.459,03	15.738,00	14.170,10	13.952,94	14.775,96	13.097,37	14.882,92	13.662.92	14.702,00
5. Other	35.02	35.02	37.11	33,70	39,43	41.60	32,59	38,94	37.13	42,45	41.62	44,95	36,23	41.00	36,19
B. Fugitive Emissions from Fuels	102.03	102.03	111,03	120,03	112,03	127,53	127,03	71.03	120,51	141,83	170,53	164,53	182,73	167,03	233,04
Solid Fuels	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oil and Natural Gas	102,03	102,03	111,03	120,03	112,03	127,53	127,03	71,03	120,51	141,83	170,53	164,53	182,73	167,03	233,04
2. Industrial Processes	7.432,16	7.432,16	7.259,88	6.727,09	6.665,95	6.994,08	7.248,43	6.948.86	7.528,56	7.226,96	7.044,61	7.645,23	7.599,70	8.202,61	8.151,09
A. Mineral Products	3.242,73	3.242,73	3.100,60	3.118,54	3.052,83	3.166,86	2.825,81	2.738,24	2.938,01	2.784,78	2.770,53	2.928,28	2.946,53	3.055,39	3.060,20
B. Chemical Industry	464,46	464,46	471,67	450,80	469,98	429,52	514,86	516,90	507,83	555,63	524,86	532,29	509,05	510,25	558,88
C. Metal Production	3.724,97	3.724,97	3.687,60	3.157,75	3.143,14	3.397,69	3.907,75	3.693,72	4.082,72	3.886,54	3.749,22	4.184,65	4.144,13	4.636,97	4.532,01
D. Other Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Production of Halocarbons and SF ₆															
F. Consumption of Halocarbons and SF ₆															
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	282,67	282,67	236,77	187,74	187,35	171,54	189,88	172,81	190,09	172,24	158,37	181,02	193,60	193,60	193,60
4. Agriculture	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
A. Enteric Fermentation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Manure Management	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C. Rice Cultivation	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Agricultural Soils (2)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5. Land-Use Change and Forestry (3)	-9.013,33	-9.013,33	-11.773,04	-8.434,82	-8.760,71	-7.639,93	-7.046,36	-5.191,59	-11.690,45	-12.707,10	-12.637,45	-13.645,91	-13.344,77	-11.310,96	-12.772,55
A. Changes in Forest and Other Woody Biomass Stocks	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Forest and Grassland Conversion	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C. Abandonment of Managed Lands	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D. CO ₂ Emissions and Removals from Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6. Waste	20,70	20,70	18,45	7,55	8,50	9,75	10,09	10,40	10,70	10,99	11,31	11,28	11,24	11,27	11,27
A. Solid Waste Disposal on Land	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Waste-water Handling	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C. Waste Incineration	20,70	20,70	18,45	7,55	8,50	9,75	10,09	10,40	10,70	10,99	11,31	11,28	11,24	11,27	11,27
D. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
7. Other (please specify)	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>
Total Emissions/Removals with LUCF (4)	52.249,29	52.249,29	52.979,04	50.913,32	51.138,93	52.563,31	56.069,09	61.370,87	54.836,85	53.510,71	51.976,69	51.808,21	55.934,87	59.683,51	63.440,70
Total Emissions without LUCF ⁽⁴⁾	61.262,62	61.262,62	64.752,08	59.348,14	59.899,64	60.203,24	63.115,45	66.562,46	66.527,30	66.217,81	64.614,14	65.454,12	69.279,64	70.994,47	76.213,26
Memo Items:	007.07	005.05	002.00	1.055.11	1 120 00	1.105.55	1 207 12	1.466.12	1 505 55	1.550.51	1.541.55	1.654.00	1.645.45	1.506.11	1.451.00
International Bunkers	885,97 885,97	885,97 885,97	993,88 993,88	1.077,44 1.077,44	1.139,98 1.139,98	1.185,65 1.185,65	1.327,42 1.327,42	1.466,42 1.466,42	1.525,57 1.525,57	1.578,21 1.578,21	1.541,67 1.541,67	1.674,93 1.674,93	1.647,45 1.647,45	1.526,14 1.526,14	1.451,90 1.451,90
Aviation Marine	885,97 NO	885,97 NO	993,88 NO	1.0//,44 NO	1.139,98 NO		1.327,42 NO	1.466,42 NO	1.525,57 NO	1.5/8,21 NO		1.6/4,93 NO	1.647,45 NO	1.526,14 NO	1.451,90 NO
Multilateral Operations	IE	IE.	IE NO	NO IE	IE.		IE	NO IE	IE.			IE.	IE	NO IE	NO IE
•															
CO ₂ Emissions from Biomass	9.750,10	9.750,10	10.612,24	10.367,55	10.923,44	10.553,40	11.217,02	11.940,19	12.022,34	11.436,51	12.734,05	12.017,13	13.410,61	13.296,77	14.665,91

⁽¹⁾ Fill in the base year adopted by the Party under the Convention, if different from 1990.

⁽²⁾ See footnote 4 to Summary 1.A of this common reporting format.

⁽³⁾ Take the net emissions as reported in Summary 1.A of this common reporting format. Please note that for the purposes of reporting, the signs for uptake are always (-) and for emissions (+).

 $^{^{(4)}}$ The information in these rows is requested to facilitate comparison of data, since Parties differ in the way they report CO_2 emissions and removals from Land-Use Change and Forestry.

	Base year ⁽¹⁾	1990	1001	1992	1002	1994	1995	1996	1997	1000	1999	2000	2001	2002	2002
GREENHOUSE GAS SOURCE AND SINK CATEGORIES	base year	1990	1991	1992	1993 (Gg)	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
Total Emissions	466,56	466,56	464,76	450,50	448,84	440,84	435,37	426,61	413,40	407,48	398,37	387.92	381,93	374,11	371,74
1. Energy	35,56	35,56	37,09	34,97	34,65	32,43	33,46	35,35	30,76	30,15	30,32	28,89	30,27	29,70	31,11
A. Fuel Combustion (Sectoral Approach)	22,34	22,34	23,70	21,65	20,98	19,01	19,51	20,43	15,94	15,36	15,32	14,31	15,53	14,82	15,82
Energy Industries	0,15	0,15	0,17	0,16	0,16	0,16	0,16	0,19	0,19	0,19	0,16	0,17	0,19	0,21	0,31
Manufacturing Industries and Construction	0,39	0,39	0,43	0.43	0,43	0,45	0,45	0,46	0,50	0,47	0,46	0,47	0,47	0.49	0,47
3. Transport	2,91	2,91	2,88	2,61	2,40	2,19	1,99	1,82	1,63	1,56	1,40	1,29	1,19	1,14	1,07
4. Other Sectors	18,88	18,88	20,21	18,45	18,00	16.21	16,90	17,96	13,63	13,13	13,30	12.38	13,68	12,98	13,96
5. Other	0.00	0,00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0,00	0,00	0.00	0.00	0,00
B. Fugitive Emissions from Fuels	13,22	13,22	13,40	13,31	13,67	13,42	13,96	14,92	14,82	14,80	15,01	14,58	14,74	14,88	15,29
Solid Fuels	0,52	0,52	0,45	0,37	0,36	0,29	0,28	0,24	0,24	0,24	0,24	0,27	0,26	0,39	0,39
2. Oil and Natural Gas	12,70	12,70	12,95	12,94	13,31	13,13	13,68	14,68	14,58	14,55	14,76	14,31	14,49	14,49	14,91
2. Industrial Processes	0,36	0,36	0,35	0,32	0,35	0,36	0,34	0,35	0,36	0,39	0,35	0,35	0,32	0,36	0,35
A. Mineral Products	NA	ŃΑ	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Chemical Industry	0,35	0,35	0,35	0,31	0,35	0,36	0,33	0,34	0,35	0,38	0,34	0,35	0,32	0,35	0,34
C. Metal Production	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
D. Other Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Production of Halocarbons and SF ₆															
F. Consumption of Halocarbons and SF ₆															
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	NA NA	NA.	NA.	NA	NA.	NA.	NA.	NA.	NA NA	NA.	NA.	NA.	NA.	NA.	NA.
4. Agriculture	219.15	219.15	216.17	208.14	208,72	210.63	211,77	208.45	206,11	205,52	201.19	197.73	195,49	191,25	189,97
A. Enteric Fermentation	170.15	170,15	167,85	160.53	160,56	162,74	164.02	161,60	159,25	158.15	156.28	154,15	151.58	148,74	147,32
B. Manure Management	48,60	48,60	47,93	47,23	47,63	47,42	47,25	46,34	46,35	46,86	44,39	43,06	43,41	42,02	42,16
C. Rice Cultivation	NO NO	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO	NO	NO NO	NO
D. Agricultural Soils	0,33	0,33	0,33	0,31	0,47	0,40	0,44	0,45	0,45	0,45	0,45	0,45	0,43	0,43	0,43
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	0.07	0.07	0.07	0.06	0.06	0.06	0.07	0.06	0.07	0.07	0.07	0.06	0.07	0.07	0.06
G. Other	NO.	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5. Land-Use Change and Forestry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Changes in Forest and Other Woody Biomass Stocks	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Forest and Grassland Conversion	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C. Abandonment of Managed Lands	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D. CO ₂ Emissions and Removals from Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6. Waste	211.49	211.49	211.14	207.08	205,12	197,42	189,80	182,46	176,17	171,42	166,51	160,94	155.84	152.80	150,31
A. Solid Waste Disposal on Land	197,34	197,34	196,82	192,51	190,26	182,35	174,64	167,23	160,94	156,13	151,14	145,55	140,39	137,27	134,71
B. Waste-water Handling	13,64	13,64	13,77	13,93	14,04	14,09	14,12	14,14	14,15	14,17	14,19	14,23	14,28	14,36	14,42
C. Waste Incineration	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0.00	0.00	0,00
D. Other	0.52	0,52	0,54	0,65	0,82	0,98	1,04	1,09	1,08	1,12	1,18	1,16	1,17	1,17	1,19
7. Other (please specify)	NO NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
n outer prease speegy)	<u> </u>	110	110	110	<u> </u>	110	110	<u> </u>	<u>.10</u>	110	110	110	110	110	110
Memo Items:															
International Bunkers	0.01	0.01	0.02	0.02	0,02	0,02	0,02	0.02	0,03	0,03	0.03	0,03	0.03	0.03	0,02
Aviation	0,01	0,01	0,02	0,02	0,02	0,02	0,02	0,02	0,03	0,03	0,03	0,03	0,03	0,03	0,02
Marine	NO NO	NO	NO	NO.	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO NO
Multilateral Operations	IE	IE	IE	IE.	IE	IE.	IE.	IE	IE	IE	IE	IE	IE	IE	IE.
CO ₂ Emissions from Biomass															
CO2 Emissions II on Diomass															

Austria 2003

submission 2005

	Base vear ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
GREENHOUSE GAS SOURCE AND SINK CATEGORIES		2550	2,7,2	2272	(Gg)	2,,,,	2,,,,	2330	2,,,,	2330	2,,,,	2000	2001	2002	2002
Total Emissions	18,43	18,43	19,55	18,41	17,94	19,47	19,80	18,69	19,00	19,27	18,73	18,58	18,49	18,18	17,88
1. Energy	2,17	2,17	2,43	2,49	2,60	2,67	2,68	2,73	2,71	2,73	2,67	2,55	2,64	2,63	2,65
A. Fuel Combustion (Sectoral Approach)	2,17	2,17	2,43	2,49	2,60	2,67	2,68	2,73	2,71	2,73	2,67	2,55	2,64	2,63	2,65
Energy Industries	0,15	0,15	0,17	0,14	0,14	0,15	0,16	0,16	0,15	0,17	0,17	0,18	0,20	0,20	0,22
Manufacturing Industries and Construction	0,51	0,51	0,54	0,53	0,53	0,56	0,55	0,54	0,59	0,57	0,58	0,55	0,55	0,55	0,53
3. Transport	0,55	0,55	0,76	0,88	0,98	1,03	1,02	1,00	0,94	0,99	0,91	0,89	0,88	0,91	0,91
4. Other Sectors	0,95	0,95	0,95	0,94	0,94	0,93	0,94	1,03	1,03	0,99	1,01	0,93	1,00	0,96	0,98
5. Other	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
B. Fugitive Emissions from Fuels	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Solid Fuels	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Oil and Natural Gas	IE	ΙE													
2. Industrial Processes	2,94	2,94	2,99	2,70	2,83	2,66	2,77	2,82	2,78	2,89	2,98	3,07	2,54	2,60	2,85
A. Mineral Products	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Chemical Industry	2,94	2,94	2,99	2,70	2,83	2,66	2,77	2,82	2,78	2,89	2,98	3,07	2,54	2,60	2,85
C. Metal Production	IE.	ΙE													
D. Other Production	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Production of Halocarbons and SF ₆															
F. Consumption of Halocarbons and SF ₆															
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
3. Solvent and Other Product Use	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75	0,75
4. Agriculture	12,43	12,43	13,24	12,31	11,57	13,13	13,26	11,97	12,31	12,36	11,73	11,52	11,77	11,41	10,84
A. Enteric Fermentation	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Manure Management	2,54	2,54	2,51	2,41	2,43	2,46	2,50	2,45	2,43	2,42	2,38	2,34	2,32	2,28	2,27
C. Rice Cultivation	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
D. Agricultural Soils	9,90	9,90	10,73	9,89	9,14	10,66	10,76	9,52	9,88	9,93	9,34	9,18	9,44	9,13	8,57
E. Prescribed Burning of Savannas	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
F. Field Burning of Agricultural Residues	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
G. Other	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
5. Land-Use Change and Forestry	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
A. Changes in Forest and Other Woody Biomass Stocks	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Forest and Grassland Conversion	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
C. Abandonment of Managed Lands	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
D. CO ₂ Emissions and Removals from Soil	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
E. Other	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
6. Waste	0,13	0,13	0,14	0,16	0,18	0,26	0,34	0,42	0,45	0,54	0,61	0,68	0,79	0,79	0,80
A. Solid Waste Disposal on Land	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
B. Waste-water Handling	0,05	0,05	0,06	0,06	0,06	0,12	0,19	0,26	0,30	0,38	0,44	0,51	0,62	0,62	0,62
C. Waste Incineration	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
D. Other	0,08	0,08	0,08	0,10	0,12	0,14	0,15	0,16	0,15	0,16	0,17	0,17	0,17	0,17	0,18
7. Other (please specify)	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>
Memo Items:															
International Bunkers	0,03	0,03	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,05	0,06	0,06	0,05	0,05
Aviation	0,03	0,03	0,03	0,04	0,04	0,04	0,05	0,05	0,05	0,06	0,05	0,06	0,06	0,05	0,05
Marine	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO	NO
Multilateral Operations	IE	IE	IE	ΙE	IE	ΙE	IE	ΙE	IE	IE	IE	IE	IE	IE	IE.
CO ₂ Emissions from Biomass															

TABLE 10 EMISSION TRENDS (HFCs, PFCs and SF_6) (Sheet 4 of 5)

Austria

2003

submission 2005

GREENHOUSE GAS	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
SOURCE AND SINK CATEGORIES					(Gg)										
Emissions of HFCs ⁽⁵⁾ - CO ₂ equivalent (Gg)	<u>555,26</u>	219,16	334,57	386,59	444,24	505,20	<u>555,26</u>	637,15	729,62	812,53	866,99	1.019,00	1.122,34	1.218,92	1.308,22
HFC-23	0,0011	0,0002	0,0003	0,0004	0,0006	0,0009	0,0011	0,0014	0,0015	0,0012	0,0014	0,0017	0,0019	0,0021	0,0022
HFC-32	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0002	0,0004	0,0007	0,0010	0,0019	0,0026	0,0034	0,0041
HFC-41	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
HFC-43-10mee	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
HFC-125	0,0015	0,0000	0,0000	0,0000	0,0000	0,0000	0,0015	0,0057	0,0110	0,0143	0,0151	0,0198	0,0276	0,0349	0,0415
HFC-134	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
HFC-134a	0,4128	0,1671	0,2550	0,2940	0,3363	0,3808	0,4128	0,4576	0,5068	0,5594	0,5941	0,6348	0,6720	0,7065	0,7386
HFC-152a	0,0001	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0003	0,0006	0,0007	0,0006	0,4897	0,4991	0,5085	0,5191
HFC-143	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
HFC-143a	0,0004	0,0000	0,0000	0,0000	0,0000	0,0000	0,0004	0,0025	0,0056	0,0079	0,0089	0,0125	0,0200	0,0269	0,0332
HFC-227ea	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0001	0,0001	0,0002	0,0004	0,0005	0,0008	0,0011	0,0014
HFC-236fa	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
HFC-245ca	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Emissions of PFCs ⁽⁵⁾ - CO ₂ equivalent (Gg)	<u>68,74</u>	1.079,24	1.087,08	462,67	<u>52,92</u>	<u>58,65</u>	<u>68,74</u>	66,27	<u>96,83</u>	<u>44,75</u>	64,54	<u>72,33</u>	<u>82,15</u>	<u>86,87</u>	102,54
CF ₄	0,0060	0,1410	0,1414	0,0592	0,0050	0,0052	0,0060	0,0058	0,0085	0,0027	0,0048	0,0063	0,0063	0,0064	0,0069
C_2F_6	0,0032	0,0177	0,0182	0,0084	0,0022	0,0027	0,0032	0,0031	0,0045	0,0029	0,0036	0,0033	0,0044	0,0041	0,0051
C ₃ F ₈	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0011	0,0014
C_4F_{10}	0,0001	0,0000	0,0000	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001	0,0001
c-C ₄ F ₈	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
C_5F_{12}	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
C_6F_{14}	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000	0,0000
Emissions of SF ₆ ⁽⁵⁾ - CO ₂ equivalent (Gg)	<u>1.139,16</u>	502,58	653,36	697,85	793,71	985,70	1.139,16	1.218,05	1.120,15	907,99	683,96	633,31	636,62	640,83	<u>593,52</u>
SF_6	0,05	0,02	0,03	0,03	0,03	0,04	0,05	0,05	0,05	0,04	0,03	0,03	0,03	0,03	0,02

Chemical	GWP
Н	FCs
HFC-23	11700
HFC-32	650
HFC-41	150
HFC-43-10mee	1300
HFC-125	2800
HFC-134	1000
HFC-134a	1300
HFC-152a	140
HFC-143	300
HFC-143a	3800
HFC-227ea	2900
HFC-236fa	6300
HFC-245ca	560
P	FCs
CF ₄	6500
C_2F_6	9200
C ₃ F ₈	7000
C_4F_{10}	7000
c-C ₄ F ₈	8700
C_5F_{12}	7500
C_6F_{14}	7400
SF ₆	23900

 $^{^{(5)}}$ Enter information on the actual emissions. Where estimates are only available for the potential emissions, specify this in a comment to the corresponding cell. Only in this row the emissions are expressed as CO_2 equivalent emissions in order to facilitate data flow among spreadsheets.

Austria 2003

submission 2005

GREENHOUSE GAS EMISSIONS	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
				CO	equivalent	(Gg)									
Net CO ₂ emissions/removals	52.249,29	52.249,29	52.979,04	50.913,32	51.138,93	52.563,31	56.069,09	61.370,87	54.836,85	53.510,71	51.976,69	51.808,21	55.934,87	59.683,51	63.440,70
CO ₂ emissions (without LUCF) ⁽⁶⁾	61.262,62	61.262,62	64.752,08	59.348,14	59.899,64	60.203,24	63.115,45	66.562,46	66.527,30	66.217,81	64.614,14	65.454,12	69.279,64	70.994,47	76.213,26
CH ₄	9.797,69	9.797,69	9.759,88	9.460,60	9.425,66	9.257,72	9.142,84	8.958,72	8.681,40	8.557,07	8.365,73	8.146,25	8.020,50	7.856,28	7.806,62
N_2O	5.711,76	5.711,76	6.060,03	5.706,80	5.561,46	6.034,88	6.137,65	5.794,74	5.890,80	5.973,57	5.807,59	5.758,53	5.730,53	5.636,41	5.542,26
HFCs	555,26	219,16	334,57	386,59	444,24	505,20	555,26	637,15	729,62	812,53	866,99	1.019,00	1.122,34	1.218,92	1.308,22
PFCs	68,74	1.079,24	1.087,08	462,67	52,92	58,65	68,74	66,27	96,83	44,75	64,54	72,33	82,15	86,87	102,54
SF_6	1.139,16	502,58	653,36	697,85	793,71	985,70	1.139,16	1.218,05	1.120,15	907,99	683,96	633,31	636,62	640,83	593,52
Total (with net CO ₂ emissions/removals)	69.521,89	69.559,72	70.873,96	67.627,81	67.416,92	69.405,45	73.112,74	78.045,80	71.355,65	69.806,62	67.765,51	67.437,64	71.527,01	75.122,83	78.793,87
Total (without CO ₂ from LUCF) (6)	78.535,22	78.573,05	82.647,00	76.062,64	76.177,63	77.045,38	80.159,10	83.237,39	83.046,10	82.513,72	80.402,96	81.083,55	84.871,78	86.433,79	91.566,42

GREENHOUSE GAS SOURCE AND SINK	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003
CATEGORIES				CO ₂	equivalent	(Gg)									
1. Energy	54.945,90	54.945,90	58.769,48	53.932,46	54.573,05	54.536,96	57.200,73	61.019,19	60.283,20	60.287,29	58.865,23	59.014,77	62.927,72	64.026,01	69.330,63
2. Industrial Processes	10.114,82	10.152,65	10.269,45	9.118,31	8.842,87	9.376,47	9.875,84	9.751,84	10.345,24	9.897,07	9.590,82	10.328,82	10.234,05	10.963,93	11.046,05
3. Solvent and Other Product Use	515,17	515,17	469,27	420,24	419,85	404,04	422,38	405,31	422,59	404,74	390,87	413,52	426,10	426,10	426,10
4. Agriculture	8.456,23	8.456,23	8.643,69	8.187,31	7.970,20	8.492,49	8.557,75	8.089,34	8.144,83	8.146,26	7.860,19	7.724,46	7.753,92	7.552,64	7.349,06
5. Land-Use Change and Forestry (7)	-9.013,33	-9.013,33	-11.773,04	-8.434,82	-8.760,71	-7.639,93	-7.046,36	-5.191,59	-11.690,45	-12.707,10	-12.637,45	-13.645,91	-13.344,77	-11.310,96	-12.772,55
6. Waste	4.503,10	4.503,10	4.495,12	4.404,33	4.371,66	4.235,43	4.102,39	3.971,72	3.850,23	3.778,36	3.695,85	3.601,98	3.529,99	3.465,11	3.414,59
7. Other	<u>NO</u>	NO NO	NO NO	NO NO	NO NO	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	<u>NO</u>	NO NO	<u>NO</u>	NO NO

 $^{^{(6)}}$ The information in these rows is requested to facilitate comparison of data, since Parties differ in the way they report CO_2 emissions and removals from Land-Use Change and Forestry.

⁽⁷⁾ Net emissions.

TABL	E 11 CHECK LIST OF RE	PORTED INV	VENTORY I	NFORMATI($ON^{(1)}$		
Party:	Austria				Year:	2003	
	Focal point for national GHG inventories:	Manfred Ritter					
t info	Address:		5, A-1090 Vienna,				
Contact info:	Telephone:	++43+1-31304- 5951		++43+1-31304- 5959	E-mail:	manfred.ritter@um	weltbundesamt.at
	Main institution preparing the inventory:	Umweltbundesamt	GmbH				
ö	Date of submission:						
al inf	Base years:	1990		PFCs, HI	FCs, SF ₆ :	1995	
General info:	Year covered in the submission: Gases covered:	2003 CO2, CH4, N2O,	PFCs. HFCs. SF6.	NOX, CO, NMVO	C. SO2		
Ğ	Omissions in geographic coverage:		11 05, 111 05, 51 0,	11011, 00, 11111	,502		
		Energy	Ind. Processes	Solvent Use	LUCF	Agriculture	Waste
	Sectoral report tables:	<u> </u>	V	V	V	<u> </u>	V
	Sectoral background data tables:	V	V	V	V	Ø	V
	Summary 1 (IPCC Summary tables):	IPCC T	able 7A:		IPCC T	able 7B:	
:sa	Summary 2 (CO ₂ equivalent emissions):						
Tables:	Summary 3 (Methods/Emission factors):			V			
	Uncertainty:	IPCC T	able 8A:	V	National is	nformation:	V
	Recalculation tables:			V			
	Completeness table:			V			
	Trend table:						
2	Comparison of	Worksl	neet 1-1	Percentage (of difference	Explanation o	f differences
CO2	CO ₂ from fuel combustion:	٥	1	6,	71	~]
		Energy	Ind.Processes	Solvent Use	LUCF	Agriculture	Waste
	CO ₂	V	V		V		
ä	CH_4	7	V			Ø	V
ation	N_2O	ר	5			V	V
Recalculation:	HFCs, PFCs, SF ₆		<u> </u>				
Rec	Explanations:	\	\		ר	V	V
	Recalculation tables for all recalculated years:			V			
	Full CRF for the recalculated base year:			V			
		Н	² Cs	PF	Cs	SF	6
SF 6:	Disaggregation by species:	<u> </u>		Ū	2		
PFCs,	Production of Halocarbons/SF ₆ :			ū	1	V	
HFCs, PFCs, SF 6:	Consumption of Halocarbons/SF ₆ :	Actual 🔽	Potential ✓	Actual	Potential ✓	Actual 🗾	Potential
H	Potential/Actual emission ratio:		92	3,		1,3	
	Reference to National Inventory Report and/or national inventory web site:						

CRF - Common Reporting Format. LUCF - Land-Use Change and Forestry.

 $^{^{(1)}}$ For each omission, give an explanation for the reasons by inserting a comment to the corresponding cell.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Net CO ₂ emissions/ removals ^{(1), (2)}	CH₄	N ₂ O	NO_x	со
			(Gg)		
Total Land-Use Categories	-12772,55	0,00	0,00	0,00	0,00
A. Forest Land	-13059,89	0,00	0,00	0,00	0,00
Forest Land remaining Forest Land	-13010,81	0,00	<u>NE</u>	NE	NE
2. Land converted to Forest Land	-49,08	0,00	<u>NE</u>	NE	NE
B. Cropland	116,30	0,00	0,00	0,00	0,00
Cropland remaining Cropland	3,99	0,00	0,00	NE	NE
2. Land converted to Cropland	4,82	0,00	0,00	NE	NE
C. Grassland	131,22	0,00	0,00	0,00	0,00
Grassland remaining Grassland	81,06	0,00	0,00	NE	NE
2. Land converted to Grassland	50,16	0,00	0,00	NE	NE
D. Wetlands ⁽³⁾	2,86	0,00	0,00	0,00	0,00
Wetlands remaining Wetlands	0,00	0,00	0,00	NE	NE
2. Land converted to Wetlands	2,86	0,00	0,00	NE	NE
E. Settlements (3)	14,28	0,00	0,00	0,00	0,00
Settlements remaining Settlements	0,00	NE	NE	NE	
2. Land converted to Settlements	14,28	NE		NE	NE
F. Other Land ⁽⁴⁾	22,67	0,00	0,00	0,00	0,00
Other Land remaining Other Land		NE		NE	NE
2. Land converted to Other Land	22,67	NE	NE	NE	NE
G. Other (please specify) (5)	<u>NE</u>	<u>NE</u>	<u>NE</u>	<u>NE</u>	<u>NE</u>
Harvested Wood Products ⁽⁶⁾	NE	NE	NE	NE	NE
Information items ⁽⁷⁾					
Forest Land converted to Other Land-Use Categories	94,79	NE	NE	NE	NE
Grassland converted to Other Land-Use Categories	NE	NE	NE	NE	NE

⁽¹⁾ According to the Revised 1996 IPCC Guidelines, for the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+). Net changes in carbon stocks are converted to CO₂ by multiplying C by 44/12 and by changing the sign for net CO₂ removals to be negative (-) and for net CO₂ emissions to be positive (+).

Note: The totals for N_2O (5.A and 5.D), CO_2 (5.B and 5.C) and CO_2 , CH_4 , N_2O (5.E and 5.F) may not equal the summation of the subcategories included in this table, because these totals include data from tables 5(II), 5(IV) and 5(V), where the subcategories are not available. Emissions of CO_2 , CH_4 , N_2O from 5.G Other are estimated based on the information provided in the background data tables.

Documentation box:

• Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if any additional information and/or further details are needed to understand the content of this table.

• If estimates are reported under 5.G Other, use this documentation box to provide information regarding activities covered under this category and to provide reference to the section in the NIR where background information can be found.

For category 5 B 1 and 5 C 1 an estimate was performed for the year 1990 only and extrapolated for the remaining time series.

⁽²⁾ CO₂ emissions from liming and biomass burning are included in this column.

⁽³⁾ Parties do not have to prepare estimates for categories contained in appendices 3a.2, 3a.3 and 3a.4 of the IPCC good practice guidance for LULUCF, although they may do so if they wish and report in this row.

⁽⁴⁾ Parties do not have to prepare estimates for this category contained in Chapter 3.7 of the IPCC good practice guidance for LULUCF, although they may do so if they wish and report in this row. This land-use category is to allow the total of identified land area to match the national area.

⁽⁵⁾ May include other non-specified sources and sinks.

Parties do not have to prepare estimates for this category contained in appendix 3a.1 of the IPCC good practice guidance for LULUCF, although they may do so if they wish and report in this row.

⁽⁷⁾ These items are listed for information only and will not be added to the totals, because they are already included in subcategories 5.A.2 to 5.F.2.

TABLE 5.A SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY Forest Land (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES		ACTIVITY DATA		IMPLII	ED EMISSION FA	CTORS			EM	ISSIONS/REMOV	ALS	
Land-Use Category	Sub-division ⁽¹⁾	Total area (kha)	Carbon stock ch	ange in living bion	nass per area (2,3)	Net carbon stock change in dead organic matter per area ⁽³⁾	Net carbon stock change in soils per area (3)	Carbon stoo	ck change in living	biomass (2,3)	Net carbon stock change in dead organic matter ⁽³⁾	Net carbon stock change in soils ⁽³⁾
			Increase	Decrease	Net change	per area		Increase	Decrease	Net change		
					(Mg C/ha)					(Gg C)		
A. Total Forest Land		3373,69	2,77	-1,71	1,06	0,00	0,00	9331,66	-5769,87	3561,79	0,00	0,00
Forest Land remaining Forest Land		3362,31	2,77	7.5			0,00	9318,27	-5769,87	3548,40	0,00	0,00
	Coniferous	2481,38	2,77	-1,88	0,89	NE	NE	6879,78	-4662,51	2217,27	NE	NE
	Deciduous	880,93	2,77	-1,26	1,51	NE	NE	2438,49	-1107,36	1331,13	NE	NE
2. Land converted to Forest Land ⁽⁴⁾		11,38	1,18	0,00	1,18	0,00	0,00	13,38	0,00	13,38	0,00	0,00
2.1 Cropland converted to Forest Land		1,82	1,18	0,00	1,18	0,00	0,00	2,14	0,00	2,14	0,00	0,00
	Total	1,82	1,18	0,00	1,18	NE	NE	2,14	0,00	2,14	NE	NE
2.2 Grassland converted to Forest Land		6,72	1,18	0,00	1,18	0,00	0,00	7,90	0,00	7,90	0,00	0,00
	Total	6,72	1,18	0,00	1,18	NE	NE	7,90	0,00	7,90	NE	NE
2.3 Wetlands converted to Forest Land		0,57	1,18	0,00	1,18	0,00	0,00	0,67	0,00	0,67	0,00	0,00
	Total	0,57	1,18	0,00	1,18	NE	NE	0,67	0,00	0,67	NE	NE
2.4 Settlements converted to Forest Land		1,59	1,18	0,00	1,18	0,00	0,00	1,87	0,00	1,87	0,00	0,00
	Total	1,59	1,18	0,00	1,18	NE	NE	1,87	0,00	1,87	NE	NE
2.5 Other Land converted to Forest Land		0,68	1,18	0,00	1,18	0,00	0,00	0,80	0,00	0,80	0,00	0,00
	Total	0,68	1,18	0,00	1,18	NE	NE	0,80	0,00	0,80	NE	NE

⁽¹⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

Documentation box

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the and/or further details are needed to understand the content of this table.

⁽²⁾ CO, emissions and removals (carbon stock increase and decrease) should be listed separately except where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽³⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽⁴⁾ A Party may report aggregate estimates for all conversions of land to forest land when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for g provided in table 5 as an information item.

Cropland (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGO	ACTIVITY DATA	IMPLIED EMISSION FACTORS						EMISSIONS/REMOVALS					
Land-Use Category	Sub-division (1)	Total area (kha)	Carbon stock change in living biomass per area (2),			Net carbon stock change in dead organic matter per area ⁽³⁾	change in dead organic matter per		change in living b		Net carbon stock change in dead organic matter ^(3,5)	Net carbon stock change in soils ⁽³⁾	
			Increase	Decrease	Net change	area		Increase	Decrease	Net change			
					(Mg C/ha)					(Gg C)			
B. Total Cropland		1480,62	0,02	0,00	0,02	-,	-0,03	36,17	,-	34,86	0,00	-37,26	
Cropland remaining Cropland		1480,35	0,02	0,00	0,02		-7	36,17	0,00	36,17	0,00	-37,26	
		1480,35	0,02	0,00	0,02	0,00	-0,03	36,17	0,00	36,17	0,00	-37,26	
2. Land converted to Cropland ⁽⁶⁾		0,27	0,00	-4,87	-4,87	0,00	0,00	0,00	-1,31	-1,31	0,00	0,00	
2.1 Forest Land converted to Cropland		0,27	0,00	-4,87	-4,87	0,00	0,00	0,00	-1,31	-1,31	0,00	0,00	
		0,27	0,00	-4,87	-4,87	NE	NE	0,00	-1,31	-1,31	NE	NE	
2.2 Grassland converted to Cropland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO	
2.3 Wetlands converted to Cropland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO	
2.4 Settlements converted to Cropland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO	
2.5 Other Land converted to Cropland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE	NE	NE	0,00	NE	NE	

⁽¹⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the details are needed to understand the content of this table.

⁽²⁾ CO2 emissions and removals (carbon stock increase and decrease) should be listed separately except in cases where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽³⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽⁴⁾ For category 5.B.1 Cropland remaining Cropland this column only includes changes in perennial woody biomass.

⁽⁵⁾ No reporting on dead organic matter pools is required for category 5.B.1. Cropland remaining Cropland.

⁽⁶⁾ A Party may report aggregate estimates for all land conversions to cropland, when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for fo table 5 as an information item.

TABLE 5.C SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Grassland

(Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIE	GREENHOUSE GAS SOURCE AND SINK CATEGORIES ACTIVITY DATA			IMPLIED EMISSION FACTORS					EMISSIONS/REMOVALS				
Land-Use Category	Sub-division (1)	Total area (kha)	Carbon stoc	k change in li per area ^{(2), (3}	ving biomass	Net carbon stock change in dead organic matter per area ⁽²⁾	Net carbon stock change in soils per area ⁽²⁾	Carbon 1	stock change piomass ^{(2), (3), (}	4)	Net carbon stock change in dead organic matter ^{(2),}	Net carbon stock change in soils ⁽²⁾	
			Increase	Decrease	Net change	per area		Increase	Decrease	Net change			
						(Mg C/ha)					(Gg C)		
C. Total Grassland		1941,81	0,00	-0,01	-0,01	0,00	-0,01	0,00	-13,68	-13,68	0,00	-22,11	
Grassland remaining Grassland		1939,00	0,00	0,00	0,00	0,00	-0,01	0,00	0,00	0,00	0,00	-22,11	
		1939,00	NA	NA	0,00	NA	-0,01	NA	NA	0,00	NA	-22,11	
2. Land converted to Grassland ⁽⁶⁾		2,81	0,00	-4,87	-4,87	0,00	0,00	0,00	-13,68	-13,68	0,00	0,00	
2.1 Forest Land converted to Grassland		2,81	0,00	-4,87	-4,87	0,00	0,00	0,00	-13,68	-13,68	0,00	0,00	
		2,81	0,00	-4,87	-4,87	NE	NE	0,00	-13,68	-13,68	NE	NE	
2.2 Cropland converted to Grassland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO	
2.3 Wetlands converted to Grassland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO		NO	NO	
2.4 Settlements converted to Grassland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00			0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	-,	NO	NO	
2.5 Other Land converted to Grassland		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE	NE	NE	0,00	NE	NE	

⁽¹⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

Documentation box

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the needed to understand the content of this table.

⁽²⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽³⁾ CO₂ emissions and removals (carbon stock increase and decrease) should be listed separately except in cases where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽⁴⁾ For category 5.C.1 Grassland remaining Grassland this column only includes changes in perennial woody biomass.

⁽⁵⁾ No reporting on dead organic matter pools is required for category 5.C.1 Grassland remaining Grassland.

⁽⁶⁾ A Party may report aggregate estimates for all land conversions to grassland, when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for fores item.

TABLE 5.D SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Austria 2003 2005

Wetlands (1) (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGORI	ES	ACTIVITY DATA		IMPLIED EMISSION FACTORS					EMISSIONS/REMOVALS					
Land-Use Category	Sub-division (2) Total area (kha)		Carbon stock change in living biomass per area $^{(3), (4)}$			Net carbon stock change in dead organic matter per area ⁽⁴⁾	nge in dead organic change in soils per area		k change in living b	Net carbon stock change in dead organic matter ⁽⁴⁾	Net carbon stock change in soils ⁽⁴⁾			
			Increase	Decrease	Net change	-)		Increase	Decrease	Net change (Gg C)				
					(Mg C/ha)									
D. Total Wetlands		0,16	0,00	-4,87	-4,87		0,00	0,00	-0,78	-0,78	0,00	0,00		
Wetlands remaining Wetlands		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO		
2. Land converted to Wetlands (5)		0,16	0,00	-4,87	-4,87	0,00	0,00	0,00	-0,78	-0,78	0,00	0,00		
2.1 Forest Land converted to Wetlands		0,16	0,00	-4,87	-4,87	0,00	0,00	0,00	-0,78	-0,78	0,00	0,00		
		0,16	0,00	-4,87	-4,87	NE	NE	0,00	-0,78	-0,78	NE	NE		
2.2 Cropland converted to Wetlands		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO		
2.3 Grassland converted to Wetlands		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO		
2.4 Settlements converted to Wetlands	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO		
2.5 Other Land converted to Wetlands	_	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00		
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO		

⁽¹⁾ Parties do not have to prepare estimates for categories contained in appendices 3a.2, 3a.3 and 3a.4 of the IPCC good practice guidance for LULUCF, although they may do so if they wish.

Documentation box

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if content of this table.

²⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

⁽³⁾ CO₂ emissions and removals (carbon stock increase and decrease) should be listed separately except in cases where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽⁴⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽⁵⁾ A Party may report aggregate estimates for all land conversions to wetlands, when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for fo

TABLE 5.E SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Settlements(1)

(Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORII	es .	ACTIVITY DATA	IMPLIED EMISSION FACTORS					EMISSIONS/REMOVALS					
Land-Use Category	Sub-division (2)	Total area (kha)	Carbon stock ch	Carbon stock change in living biomass per area $^{(3),(4)}$			Net carbon stock change in soils per area ⁽⁴⁾	Carbon stock change in living biomass $^{(3), (4) (5)}$			Net carbon stock change in dead organic matter ⁽⁴⁾	Net carbon stock change in soils ⁽⁴⁾	
			Increase	Decrease	Net change	area ⁽⁴⁾		Increase	Decrease	Net change (Gg C)			
			(Mg C/ha)										
E. Total Settlements		0,80	0,00	-4,87	-4,87	0,00	0,00	0,00	-3,89	-3,89	0,00	0,00	
Settlements remaining Settlements		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NO	NO	NO	NO	NO	NO	NO	NO	0,00	NO	NO	
2. Land converted to Settlements ⁽⁶⁾		0,80	0,00	-4,87	-4,87	0,00	0,00	0,00	-3,89	-3,89	0,00	0,00	
2.1 Forest Land converted to Settlements		0,80	0,00	-4,87	-4,87	0,00	0,00	0,00	-3,89	-3,89	0,00	0,00	
		0,80	0,00	-4,87	-4,87	NE	NE	0,00	-3,89	-3,89	NE	NE	
2.2 Cropland converted to Settlements		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE	NE	NE	0,00	NE	NE	
2.3 Grassland converted to Settlements		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE	NE	NE	0,00	NE	NE	
2.4 Wetlands converted to Settlements		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE	NE	NE	0,00	NE	NE	
2.5 Other Land converted to Settlements		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
		NE	NE	NE	NE	NE	NE.	NE	NE	0,00	NE	NE.	

⁽¹⁾ Parties do not have to prepare estimates for categories contained in appendices 3a.2, 3a.3 and 3a.4 of the IPCC good practice guidance for LULUCF, although they may do so if they wish.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the are needed to understand the content of this table.

⁽²⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

⁽³⁾ CO₂ emissions and removals (carbon stock increase and decrease) should be listed separately except in cases where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽⁴⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽⁵⁾ For category 5.E.1 Settlements remaining Settlements this column only includes changes in perennial woody biomass.

⁽⁶⁾ A Party may report aggregate estimates for all land conversions to settlements, when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for as an information item.

TABLE 5.F SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Other land(1)

(Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES		ACTIVITY DATA	IMPLIED EMISSION FACTORS					EMISSIONS/REMOVALS				
Land-Use Category	Sub-division (2)	Total area (kha)	Carbon stock cha	ange in living bioma	ss per area (3), (4)	Net carbon stock change in dead organic matter per area ⁽⁴⁾	Net carbon stock change in soils per area ⁽⁴⁾		ck change in living t		Net carbon stock change in dead organic matter ⁽⁴⁾	Net carbon stock
			Increase	Decrease	Net change	per area		Increase	Decrease	Net change		
			(Mg C/ha)					(Gg C)				
F. Total Other Land		1,27	0,0000	-4,8686	-4,8686	0,0000	0,0000	0,00	-6,18	-6,18	0,00	0,00
Other Land remaining Other Land		NE										
2. Land converted to Other Land ⁽⁵⁾		1,27	0,0000	-4,8686	-4,8686	0,0000	0,0000	0,00	-6,18	-6,18	0,00	0,00
2.1 Forest Land converted to Other Land		1,27	0,00	-4,87	-4,87	0,00	0,00	0,00	-6,18	-6,18	0,00	0,00
		1,27	0,00	-4,87	-4,87	NE	NE NE	0,00	-6,18	-6,18	NE	NE
2.2 Cropland converted to Other Land		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		NE	NE	NE	NE	NE	NE NE	NE	NE	0,00	NE	NE
2.3 Grassland converted to Other Land		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		NE	NE	NE	NE	NE	NE NE	NE	NE	0,00	NE	NE
2.4 Wetlands converted to Other Land		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		NE	NE	NE	NE	NE	NE NE	NE	NE	0,00	NE	NE
2.5 Settlements converted to Other Land		0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
		NE	NE	NE	NE	NE	NE NE	NE	NE	0,00	NE	NE

⁽¹⁾ Parties do not have to prepare estimates for this category contained in Chapter 3.7 of the IPCC good practice guidance for LULUCF, although they may do so if they wish. This land-use category is to allow the total of identified land area to match the

Documentation box

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the needed to understand the content of this table.

⁽²⁾ Land categories may be further divided according to climate zone, management system, soil type, vegetation type, tree species, ecological zones or national land classification.

⁽³⁾ CO₂ emissions and removals (carbon stock increase and decrease) should be listed separately except in cases where, due to the methods used, it is technically impossible to separate information on increases and decreases.

⁽⁴⁾ The signs for estimates of increases in carbon stocks are positive (+) and of decreases in carbon stocks are negative (-).

⁽⁵⁾ A Party may report aggregate estimates for all land conversions to other land, when data are not available to report them separately. A Party should specify in the documentation box which types of land conversion are included. Separate estimates for an information item.

TABLE 5 (I) SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Direct N_2O emissions from N fertilization ⁽¹⁾ (Sheet 1 of 1)

Austria 2003

2005

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DATA	IMPLIED EMISSION FACTORS	EMISSIONS
(2)	Total amount of fertilizer applied	N ₂ O-N emissions per unit of fertilizer	N_2O
Land-Use Category (2)	(Gg N/yr)	$(kg N_2O-N/kg N)^{(3)}$	(Gg)
Total for all Land Use Categories	<u>NE</u>	NE	<u>NE</u>
A. Forest Land (4), (5)	<u>NO</u>	NO	<u>NO</u>
1. Forest Land remaining Forest Land	NO	NO	NO
2. Land converted to Forest Land	NO	NO	NO
G. Other (please specify)	<u>NE</u>	NE	<u>NE</u>
		0,00	

Direct N_2O emissions from fertilization are estimated using equations 3.2.17 and 3.2.18 of the IPCC good practice guidance for LULUCF based on the amount of fertilizers applied to forest land. The indirect N_2O emissions from forest land are estimated as part of the total indirect emissions (Agriculture sector and Forest Land) in the Agriculture sector based on the total fertilizers used in the country.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if any additional information and/or further details are needed to understand the content of this table.

N₂O emissions from N fertilization of cropland and grassland are reported in the Agriculture sector; therefore only forest land is included in this table.

In the calculation of the implied emission factor, N_2O emissions are converted to N_2O -N by multiplying by 28/44.

 $^{^{(4)}}$ If a Party is not able to separate the fertilizer applied to forest land from that applied to agriculture, it may report all N_2O emissions from fertilization in the Agriculture sector. This should be explicitly indicated in the documentation box.

⁽⁵⁾ A Party may report aggregate estimates for all N fertilization on forest land when data are not available to report forest land remaining forest land and land conversion to forest land separately.

GREENHOUSE GAS SOURCE AND S	INK CATEGORIES	ACTIVITY DATA	IMPLIED EMISSION FACTORS	EMISSIONS
Land-Use Category (2)	Sub-division (3)	Area of drained soils	N ₂ O-N per area drained ⁽⁴⁾	N_2O
Land-Use Category	Sub-division **	(kha)	(kg N ₂ O-N/ha)	(Gg)
Total all Land-Use Categories		0,00	0,00	0,00
A. Forest Land		0,00	0,00	0,00
Organic Soil		0,00	0,00	0,00
	NO	NO	NO	NO
Mineral Soil		0,00	0,00	0,00
	NO	NO	NO	NO
D. Wetlands		0,00	0,00	0,00
Organic Soil		0,00	0,00	0,00
		NE	NE	NE
Mineral Soil		0,00		0,00
		NE	NE	NE
G. Other (please specify)		<u>NE</u>	NE	<u>NE</u>
			0,00	

 $^{^{(1)}}$ Methodologies for estimating N_2O emissions from drainage of soils are not addressed in the Revised 1996 IPCC Guidelines, but are addressed for forest soils in Appendix 3a.2 of the IPCC good practice guidance for LULUCF (equation 3a.2.1) and for wetland soils in appendix 3a.3.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if any additional information and/or further details are needed to understand the content of this table.

N₂O emissions from drained cropland and grassland soils are covered in the Agriculture tables of the CRF under Cultivation of Histosols.

A Party should report further disaggregations of drained soils corresponding to the methods used. Tier 1 disaggregates soils into "nutrient rich" and "nutrient poor" areas, whereas higher-tier methods can further disaggregate into different peatland types, soil fertility or tree species.

In the calculation of the implied emission factor, N₂O emissions are converted to N₂O-N by multiplying by 28/44.

 N_2O emissions from disturbance associated with land-use conversion to cropland $^{(1)}$ (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DATA	IMPLIED EMISSION FACTORS	EMISSIONS
Land-Use Category (2)	Land area converted	N ₂ O-N emissions per area converted ⁽³⁾	N ₂ O
	(kha)	(kg N ₂ O-N/ha)	(Gg)
Total all Land-Use Categories (4)	0,00	0,00	0,00
B. Cropland	0,00	0,00	0,00
2. Lands converted to Cropland (5)	0,00	0,00	0,00
Organic Soils	0,00	0,00	0,00
Mineral Soils	0,00	0,00	0,00
2.1 Forest Land converted to Cropland	0,00	0,00	0,00
Organic Soils	NE	NE	NE
Mineral Soils	NE	NE	NE
2.2 Grassland converted to Cropland	0,00	0,00	0,00
Organic Soils	NE	NE	NE
Mineral Soils	NE	NE	NE
2.3 Wetlands converted to Cropland (6)	0,00	0,00	0,00
Organic Soils	NE	NE	NE
Mineral Soils	NE	NE	NE
2.5 Other Land converted to Cropland	0,00	0,00	0,00
Organic Soils	NE	NE	NE
Mineral Soils	NE	NE	NE
G. Other (please specify)	<u>NE</u>	NE	<u>NE</u>
		0,00	

 $^{^{(1)}}$ Methodologies for N₂O emissions from disturbance associated with land-use conversion are based on equations 3.3.14 and 3.3.15 of the IPCC good practice guidance for LULUCF. N₂O emissions from fertilization in the preceding land use and new land use should not be reported.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF Sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if any additional information and/or further details are needed to understand the content of this table.

According to the IPCC good practice guidance for LULUCF N_2 O emissions from disturbance of soils are only relevant for land conversions to cropland. N_2 O emissions from cropland remaining cropland are included in the Agriculture sector of the good practice guidance. The good practice guidance provides methodologies only for mineral soils.

⁽³⁾ In the calculation of the implied emission factor, N₂O emissions are converted to N₂O-N by multiplying by 28/44.

Parties can separate between organic and mineral soils, if they have data available.

⁽⁵⁾ If activity data cannot be disaggregated to all initial land uses, Parties may report some initial land uses aggregated under other lands converted to cropland (indicate in the documentation box what this category includes).

⁽⁶⁾ Parties should avoid double counting with N2O emissions from drainage and from cultivation of organic soils reported in Agriculture under Cultivation of Histosols.

Carbon emissions from agricultural lime application $^{(1)}$ (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	ACTIVITY DATA	IMPLIED EMISSION FACTORS	EMISSIONS
Land-Use Category	Total amount of lime applied	Carbon emissions per unit of lime	Carbon
	(Mg/yr)	(Mg C/Mg)	(Gg)
Total all Land-Use Categories (2), (3), (4)	244300,00	0,12	29,32
B. Cropland ⁽⁴⁾	244300,00	0,12	29,32
Limestone CaCO ₃	244300,00	0,12	29,32
Dolomite CaMg(CO ₃) ₂	NE	NE	NE
		0,00	
C. Grassland (4)	0,00	0,00	0,00
Limestone CaCO ₃	NE	NE	NE
Dolomite CaMg(CO ₃) ₂	NE	NE	NE
		0,00	
G. Other (please specify) (4,5)	<u>NE</u>	NE	<u>NE</u>
Limestone CaCO ₃	NE	NE	NE
Dolomite CaMg(CO ₃) ₂	NE	NE	NE
		0,00	

⁽¹⁾ Carbon emissions from agricultural lime application are addressed in equation 3.3.6 and 3.4.11 of the IPCC good practice guidance for LULUCF.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the NIR if any additional information and/or further details are needed to understand the content of this table.

⁽²⁾ If Parties are not able to separate liming application for different land-use categories, they should include liming for all land-use categories in the total.

⁽³⁾ Parties that are able to provide data for lime application to forest land should provide this information under 5.G Other and specify in the documentation box that forest land application is included in this category.

⁽⁴⁾ A Party may report agregate estimates for total lime applications when data are not available for limestone and dolomite.

⁽⁵⁾ If a Party has data broken down to limestone and dolomite at national level, it can report these data under 5.G Other.

TABLE 5 (V) SECTORAL BACKGROUND DATA FOR LAND USE, LAND-USE CHANGE AND FORESTRY

Biomass Burning (1)

(Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND SINK		ACTIVITY DATA		IMP	LIED EMISSION FAC	TOR	EMISSIONS			
CATEGORIES	Description(3)	Unit	Values	CO ₂	CH ₄	N ₂ O	CO ₂ (4)	CH ₄	N ₂ O	
Land-Use Category ⁽²⁾		(ha or kg dm)			(Mg/activity data unit)			(Gg)		
Total for Land-Use Categories	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
A. Forest Land	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Forest land remaining Forest Land	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NE	IE	NE NE	NE	IE	NE	N	
2. Land converted to Forest Land	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
B. Cropland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Cropland remaining Cropland ⁽⁵⁾										
Controlled Burning										
Wildfires										
2. Land converted to Cropland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO		NO	NO	NO	NO	
2.1. Forest Land converted to Cropland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
C. Grassland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Grassland remaining grassland (6)	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Land converted to Grassland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
2.1. Forest Land converted to Grassland	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
D. Wetlands (7)	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Wetlands remaining Wetlands	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
2. Land converted to Wetlands	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
2.1. Forest Land converted to Wetlands	area burned	ha	0,00	0,00	0,00	0,00	0,00	0,00	0,0	
Controlled Burning	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
Wildfires	area burned	ha	NO	NO	NO	NO	NO	NO	NO	
E. Settlements (7)	area burned	ha	NO	NO	NO	NO	NO	NO	N	
F. Other Land (8)	area burned	ha	NO	NO	NO	NO	NO	NO	N	
G. Other (please specify)	area burned	ha	0,00	0,00		0,00	0,00	0,00	0,0	
4			NO	NO		NO	NO	NO	N	

⁽¹⁾ Methodological guidance on burning can be found in sections 3.2.1.4 and 3.4.1.3 of the IPCC good practice guidance for LULUCF.

Documentation box:

Parties should provide detailed explanations on the Land Use, Land-Use Change and Forestry sector in Chapter 7: Land Use, Land-Use Change and Forestry (CRF sector 5) of the NIR. Use this documentation box to provide references to relevant sections of the additional information and/or further details are needed to understand the content of this table.

⁽²⁾ Parties should report both Controlled/Prescribed Burning and Wildfires emissions, where appropriate, in a separate manner.

⁽³⁾ For each category activity data should be selected between area burned or biomass burned. Units for area will be ha and for biomass burned kg dm. The implied emission factor will refer to the selected activity data with an automatic change in the uni

⁽⁴⁾ If CO₂ emissions from biomass burning are not already included in tables 5.A - 5.F, they should be reported here. This should be clearly documented in the documentation box and in the NIR. Double counting should be avoided. Parties that include all carbon stoc the carbon stock tables (5.A, 5.B, 5.C, 5.D, 5.E and 5.F), should report IE (included elsewhere) in this column.

⁽⁵⁾ Biomass burning on cropland remaining cropland is reported in the Agriculture sector.

⁽⁶⁾ Only includes emissions from controlled biomass burning on grasslands outside the tropics (prescribed savanna burning is reported under the Agriculture sector).

⁽⁷⁾ Parties do not have to prepare estimates for categories contained in appendices 3a.2, 3a.3 and 3a.4 of the IPCC good practice guidance for LULUCF, although they may do so if they wish.

⁽⁸⁾ Parties do not have to prepare estimates for this category contained in Chapter 3.7 of the IPCC good practice guidance for LULUCF, although they may do so if they wish. This land-use category is to allow the total of identified land area to match the

SUMMARY 1.A SUMMARY REPORT FOR NATIONAL GREENHOUSE GAS INVENTORIES (IPCC TABLE 7A) (Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND	Net CO ₂	CH ₄	N ₂ O	HF	Cs (1)	PFO	Cs ⁽¹⁾	S	F ₆	NO _x	CO	NMVOC	SO_2
SINK CATEGORIES	emissions/ removals			P	A	P	A	P	A				
	(Gg)			CO ₂ equivalent (Gg)				(G			g)		
5. Land Use, Land-Use Change and Forestry	⁽⁵⁾ -12772,55	0,00	0,00							0,00	0,00	0,00	0,00
A. Forest Land	(5) -13059,89	0,00	0,00							0,00	0,00		
B. Cropland	(5) 116,30	0,00	0,00							0,00	0,00		
C. Grassland	(5) 131,22	0,00	0,00							0,00	0,00		
D. Wetlands	(5) 2,86	0,00	0,00							0,00	0,00		
E. Settlements	(5) 14,28	0,00	0,00							0,00	0,00		
F. Other Land	(5) 22,67	0,00	0,00							0,00	0,00		
G. Other	(5) NE	NE	NE							NE	NE		

⁽⁵⁾ Note that for the purposes of reporting, the signs for removals are always (-) and for emissions (+).

SUMMARY 2 SUMMARY REPORT FOR CO₂ EQUIVALENT EMISSIONS (Sheet 1 of 1)

Austria 2003 2005

GREENHOUSE GAS SOURCE AND	CO ₂ (1)	CH ₄	N ₂ O	HFCs (2)	PFCs (2)	SF ₆ (2)	Total
SINK CATEGORIES		-	C	O ₂ equivalent (Gg))	-	
5. Land Use, Land-Use Change and Forestry ⁽¹⁾	-12772,55	0,00	0,00				-12772,55
A. Forest Land	-13059,89	0,00	0,00				-13059,89
B. Cropland	116,30	0,00	0,00				116,30
C. Grassland	131,22	0,00	0,00				131,22
D. Wetlands	2,86	0,00	0,00				2,86
E. Settlements	14,28	0,00	0,00				14,28
F. Other Land	22,67	0,00	0,00				22,67
G. Other	NE	NE	NE				0,00

⁽¹⁾ For CO₂ emissions from Land-Use Change and Forestry the net emissions/removals are to be reported. Note that for the purposes of reporting, the signs for removals are always (-) and for emissions (+).

SUMMARY 3 SUMMARY REPORT FOR METHODS AND EMISSION FACTORS USED (Sheet 1 of 1)

GREENHOUSE GAS SOURCE AND SINK	CO ₂		CH ₄		N ₂ O		HFCs		PFCs		SF ₆	
CATEGORIES	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor	Method applied	Emission factor
5. Land Use, Land-Use Change and Forestry												
A. Forest Land	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
B. Cropland	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
C. Grassland	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
D. Wetlands	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
E. Settlements	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
F. Other Land	T3	CS	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE

Use the following notation keys to specify the method applied:

D (IPCC default)T1a, T1b, T1c (IPCC Tier 1a, Tier 1b and Tier 1c, respectively)CR (CORINAIR)RA (Reference Approach)T2 (IPCC Tier 2)CS (Country Specific)T1 (IPCC Tier 1)T3 (IPCC Tier 3)OTH (Other)

If using more than one method within one source category, list all the relevant methods. Explanations regarding country-specific methods, other methods or any modifications to the default IPCC methods, as well as information regarding the use of different source category where more than one method is indicated, should be provided in the documentation box. Also use the documentation box to explain the use of notation OTH.

Use the following notation keys to specify the emission factor used:

D (IPCC default) CS (Country Specific) OTH (Other)
CR (CORINAIR) PS (Plant Specific)

Where a mix of emission factors has been used, list all the methods in the relevant cells and give further explanations in the documentation box. Also use the documentation box to explain the use of notation OTH.

Documentation box:

• Parties should provide the full information on methodological issues, such as methods and emission factors used, in the relevant sections of Chapters 3 to 9 (see section 2.2 of each of Chapters 3 - 9) of the NIR. Use this documentation box to provide r and further details are needed to understand the content of this table.

• Where a mix of methods/emission factors has been used within one source category, use this documentation box to specify those methods/emission factors for the various sub-sources where they have been applied.

• Where the notation OTH (Other) has been entered in this table, use this documentation box to specify those other methods/emission factors.

TABLE 7 SUMMARY OVERVIEW FOR KEY CATEGORIES (Sheet 1 of 1)

Austria 2003 2005

KEY CATEGORIES OF EMISSIONS AND REMOVALS	GAS	CRITERIA USED	FOR KEY CATEGOR	Y IDENTIFICATION	Key category	Key category	COMMENTS (1)
		L	T	Q	excluding LULUCF	including LULUCF ⁽¹⁾	
Specify key categories according to the national level of disaggregation used:							

Note: L = Level assessment; T = Trend assessment; Q = Qualitative assessment.

Documentation box:

Parties should provide the full information on methodologies used for identifying key categories and the quantitative results from the level and trend assessments (according to tables 7.1–7.3 of the IPCC good practice guidance and tables 5.4.1–5.4.3 of the IPCC good practice guidance for LULUCF) in Annex 1 to the NIR.

⁽¹⁾ The term "key categories" refers to both the key source categories as addressed in the IPCC good practice guidance and the key categories as addressed in the IPCC good practice guidance for LULUCF.

⁽²⁾ For estimating key categories Parties may chose the disaggregation level presented as an example in table 7.1 of the IPCC good practice guidance (page 7.6) and table 5.4.1 (page 5.31) of the IPCC good practice guidance for LULUCF, the level used in table Summary 1.A of the common reporting format or any other disaggregation level that the Party used to determine its key categories.

5.F.2.1 One carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Dup to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessment the near future which will allow to provide figures for this sector. Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessment the near future which will allow to provide figures for this sector. Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessment to ensure the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil which are based on measured data. It is planned to carry out such reassessment to the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil which are based on measured data. It is planned to carry out such reassessment to the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil inventories in Austria. Therefore it is not possible to gi			Sources	s and sinks not reported (NE) ⁽¹⁾						
S.F. 2.1 Net carbon stock change in dead organic matter and soils Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soil which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en on the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en the C stock changes in the soils which are based on measured dath. It is planned to carry out such reassessments of the soil inventor	GHG	Sector ⁽²⁾	Source/sink category (2)		Explanation					
SF.2.1 One carbon stock change in dead organic matter and soils the net future which will allow to provide figures for this sector. Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil switch are based on measured data. It is planned to carry out such reassessment from the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil switch are based on measured data. It is planned to carry out such reassessment from the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil switch are based on measured data. It is planned to carry out such reassessment from the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil switch are based on measured data. It is planned to carry out such reassessment of the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil switch are based on measured data. It is planned to carry out such reassessment of the soil inventories in Austria. Therefore it is not possible to give on the C stock change in the soil which are based on measured data. It is planned to carry out such reassessment of the soil inventories in Austria. Therefore it is not possible to give on the C stock change in dead organic matter and soils Section 1	CO ₂									
S.E.2.1 Net carbon stock change in dead organic matter and soils the near future which will allow to provide figures for this sector. S.C.2.1		5.F.2.1	Ü	Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give estimate on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments in the near future which will allow to provide figures for this sector.						
S.D.2.1 Net carbon stock change in dead organic matter and soils on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessment the near future which will allow to provide figures for this sector. Very to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give enon the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria.		5.E.2.1		on the C stock changes in the soils which are based on measured data. It is planned to carry out such						
S.C.2.1 Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give e on the C stock changes in the soil which are based on measured data. It is planned to carry out such reassessments of the soil inventories in Austria. Therefore it is not possible to give en the C stock changes in the soils which are based on measured data. It is planned to carry out suc		5.D.2.1		on the C stock changes in the soils wh	tich are based on measured data. It is planned to carry out such reassessments in					
Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Net carbon stock change in dead organic matter and soils Up to now there were no reassessments of the soil inventories in Austria. Therefore it is not possible to give et on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassess on the near future which will allow to provide figures for this sector. CH ₄ Sources and sinks reported elsewhere (IE) ⁽⁵⁾ GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO ₂ Sources Land remaining Forest Land Wildfires Forest Land remaining Forest Land The share of yearly wildfires on total forest area is about 0,001%. Card stock change due to wildfires at forest land is included in figures of talk Sektor S.A.1. It is planned to provide estimates by the next submission.		5.C.2.1		on the C stock changes in the soils wh	ich are based on measured data. It is planned to carry out such reassessments in					
Net carbon stock change in dead organic matter and soils on the C stock changes in the soils which are based on measured data. It is planned to carry out such reassessment the near future which will allow to provide figures for this sector. At current no sufficient data available for estimating this emission source. Sources and sinks reported elsewhere (IE) ⁽³⁾ GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO ₂ 5.A.1 Wildfires Forest Land remaining Forest land Sektor 5.A.1. It is planned to provide estimates by the next submission. CH ₄ CH ₄		5.B.2.1		on the C stock changes in the soils which are based on measured data. It is planned to carry out such reasses						
Sources and sinks reported elsewhere (IE) Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation		5.A		on the C stock changes in the soils wh	tich are based on measured data. It is planned to carry out such reassessments in					
Sources and sinks reported elsewhere (IE) ⁽³⁾ GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO ₂ 5.A.1 Wildfires Forest Land remaining Forest land Sektor 5.A.1. It is planned to provide estimates by the next submission. CH ₄	CH ₄	5		At current no sufficient data availabe	for estimating this emission source.					
Sources and sinks reported elsewhere (IE) ⁽³⁾ GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO ₂ 5.A.1 Wildfires Forest Land remaining Forest land stock change due to wildfires at forest land is included in figures of take Sektor 5.A.1. It is planned to provide estimates by the next submission.	N ₂ O									
GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO2 5.A.1 Wildfires Forest Land remaining Forest land Sector 5.A.1. It is planned to provide estimates by the next submission. CH4		5		At current no sufficient data availabe	for estimating this emission source.					
GHG Source/sink category Allocation as per IPCC Guidelines Allocation used by the Party Explanation CO2 5.A.1 Wildfires Forest Land remaining Forest land Sektor 5.A.1. It is planned to provide estimates by the next submission. CH4			Sources at	nd sinks reported elsewhere (IE) ⁽³⁾						
5.A.1 Wildfires Forest Land remaining Forest land The share of yearly wildfires on total forest area is about 0,001%. Cart stock change due to wildfires at forest land is included in figures of tal Sektor 5.A.1. It is planned to provide estimates by the next submission. CH ₄	GHG	Source/sink category			Explanation					
stock change due to wildfires at forest land is included in figures of tal Sektor 5.A.1. It is planned to provide estimates by the next submission. CH ₄	CO ₂									
		5.A.1	Wildfires	Forest Land remaining Forest land	The share of yearly wildfires on total forest area is about 0,001%. Carbon stock change due to wildfires at forest land is included in figures of table 5.A Sektor 5.A.1. It is planned to provide estimates by the next submission.					
N_2O	CH ₄									
	N ₂ O									

⁽¹⁾ Clearly indicate sources and sinks which are considered in the IPCC Guidelines but are not considered in the submitted inventory. Explain the reason for excluding these sources and sinks, in order to avoid arbitrary interpretations. An entry should be made for each source/sink category for which the notation key NE (not estimated) is entered in the sectoral tables.

⁽²⁾ Indicate omitted source/sink following the IPCC source/sink category structure (e.g. sector: Waste, source category: Waste-Water Handling).

⁽³⁾ Clearly indicate sources and sinks in the submitted inventory that are allocated to a sector other than that indicated by the IPCC Guidelines. Show the sector indicated in the IPCC Guidelines and the sector to which the source or sink is allocated in the submitted inventory. Explain the reason for reporting these sources and sinks in a different sector. An entry should be made for each source/sink for which the notation key IE (included elsewhere) is used in the sectoral tables.

GREENHOUSE GAS SOURCE AND SINK CATEGORIES	Base year ⁽¹⁾	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	Change from 1990 ⁽¹⁾ to latest reported year
								(Gg)								(%)
CO ₂ (2)	-9.013,33	-9.013,33	-11.773,04	-8.434,82	-8.760,71	-7.639,93	-7.046,36	-5.191,59	-11.690,45	-12.707,10	-12.637,45	-13.645,91	-13.344,77	-11.310,96	-12.772,55	41,71
A. Forest Land	-9.271,23	-9.271,23	-12.084,65	-8.746,43	-9.072,33	-7.951,54	-7.357,97	-5.503,20	-11.977,78	-12.994,43	-12.924,78	-13.933,24	-13.632,10	-11.598,29	-13.059,89	40,86
B. Cropland	114,72	114,72	117,38	117,38	117,38	117,38	117,38	117,38	116,30	116,30	116,30	116,30	116,30	116,30	116,30	1,38
C. Grassland	115,69	115,69	144,25	144,25	144,25	144,25	144,25	144,25	131,22	131,22	131,22	131,22	131,22	131,22	131,22	13,42
D. Wetlands	1,96	1,96	3,57	3,57	3,57	3,57	3,57	3,57	2,86	2,86	2,86	2,86	2,86	2,86	2,86	45,45
E. Settlements	9,82	9,82	17,85	17,85	17,85	17,85	17,85	17,85	14,28	14,28	14,28	14,28	14,28	14,28	14,28	45,45
F. Other Land	15,71	15,71	28,56	28,56	28,56	28,56	28,56	28,56	22,67	22,67	22,67	22,67	22,67	22,67	22,67	44,32
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
CH ₄	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
A. Forest Land	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
B. Cropland	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
C. Grassland	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
D. Wetlands	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
E. Settlements	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
F. Other Land	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
N_2O	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
A. Forest Land	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	,
B. Cropland	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
C. Grassland	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
D. Wetlands	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
E. Settlements	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
F. Other Land	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	_
G. Other	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	NE	
Land Use, Land-Use Change and Forestry (2) (Gg CO ₂ equivalent)	-9.013,33	-9.013,33	-11.773,04	-8.434,82	-8.760,71	-7.639,93	-7.046,36	-5.191,59	-11.690,45	-12.707,10	-12.637,45	-13.645,91	-13.344,77	-11.310,96	-12.772,55	41,71

⁽¹⁾ The column "Base year" should be filled in only by those Parties with economies in transition that use a base year different from 1990 in accordance with the relevant decisions of the COP. For these Parties, this different base year is used to calculate change in the final column of this table.

Documentation box:

• Parties should provide detailed explanations on emissions trends in Chapter 2: Trends in Greenhouse Gas Emissions and, as appropriate, in the corresponding Chapters 3 - 9 of the NIR. Use this documentation box to provide references to relevant sections if any additional information and further details are needed to understand the content of this table.

⁽²⁾ Fill in net emissions/removals as reported in table Summary 1.A. For the purposes of reporting, the signs for removals are always negative (-) and for emissions positive (+).

ANNEX 6: EXTRACTS FROM AUSTRIAN LEGISLATION

Extracts from Austrian legislation, which regulate monitoring, reporting and verification of emissions at plant level

Cement production

BGBI 1993/ 63 Verordnung für Anlagen zur Zementerzeugung

- § 5. Der Betriebsanlageninhaber hat
- kontinuierliche Messungen der Emissionskonzentrationen an Gesamtstaub, SO₂ und Stickstoffoxiden (berechnet als NO₂) der Ofenanlage entsprechend der Z 1 der Anlage zu dieser Verordnung durchzuführen ...

Zur Durchführung der Messungen gemäß Z 2 und 3 sind Anstalten des Bundes oder eines Bundeslandes, staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, heranzuziehen.

- § 6 Die Ergebnisse der Messungen gemäß § 5 sind in einem Messbericht festzuhalten, welcher
- 1. bei Messungen gemäß § 5 Z 1 die Messwerte in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes und die gemäß § 4 Abs. 1 zu führenden Aufzeichnungen über Grenzwertüberschreitungen,

zu enthalten hat. Der Messbericht ist mindestens fünf Jahre in der Betriebsanlage derart aufzubewahren, dass er den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden kann.

Anlage

(§ 5)

Emissionsmessungen

- 1. Kontinuierliche Messungen
- a) Die Datenaufzeichnung hat durch automatisch registrierende Messgeräte in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat.
- b) Registrierende Emissionsmessgeräte sind im Abnahmeversuch und alle drei Jahre durch einen Sachverständigen aus dem im § 5 letzter Satz angeführten Personenkreis zu kalibrieren.
- c) Jährlich ist eine Funktionskontrolle an registrierenden Emissionsmessgeräten durch Sachverständige aus dem im § 5 letzter Satz angeführten Personenkreis vorzunehmen.

Foundries

BGBI 1994/ 447 Verordnung für Gießereien

§ 5 (1) Der Betriebsanlageninhaber hat Einzelmessungen der Emissionskonzentration der im § 3 Abs. 1 angeführten Stoffe entsprechend der Z 1 lit. A bis c der Anlage 2 dieser Verordnung in

regelmäßigen, drei Jahre nicht übersteigenden Zeitabständen durchführen zu lassen (wiederkehrende Emissionsmessungen).

- (2) Der Betriebsanlageninhaber hat kontinuierliche Messungen der Emissionskonzentrationen ... entsprechend der Z2 der Anlage 2 zu dieser Verordnung durchzuführen.
- (3) Zur Durchführung der Messungen gemäß Abs. 1 sowie zur Funktionskontrolle und Kalibrierung von Messgeräten für Messungen gemäß Abs. 2 sind Anstalten des Bundes oder eines Bundeslandes, staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, oder akkreditierte Stellen im Rahmen des fachlichen Umfangs ihrer Akkreditierung (§ 11 Abs. 2 des Akkreditierungsgesetzes, BGBI Nr 468/ 1992) heranzuziehen.
- § 6 Die Ergebnisse der Messungen gemäß § 5 sind in einem Messbericht festzuhalten, welcher
- 1. bei Messungen gemäß § 5 Abs. 1 die Messwerte und die Betriebsbedingungen während der Messungen (Betriebszustand, Verbrauch an Brennstoff, Rohmaterial und Zuschlagstoffen),
- 2. bei Messungen gemäß § 5 Abs. 2 die Messwerte in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes und die gemäß § 4 Abs. 2 zu führenden Aufzeichnungen über Grenzwertüberschreitungen, zu enthalten hat. Der Messbericht ist mindestens drei Jahre, bei Messungen gemäß § 5 Abs. 1 jedenfalls bis zur jeweils nächsten Messung, in der Betriebsanlage derart aufzubewahren, dass er den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden kann.

Anlage 2

(§ 5)

Emissionsmessungen

- 1. Einzelmessungen
- a) Einzelmessungen sind für alle im § 3 Abs. 1 angeführten Stoffe bei jenem Betriebzustand durchzuführen, in dem nachweislich die Anlagen vorwiegende betrieben werden. Die Durchführung der Messungen hat nach den Regeln der Technik zu erfolgen.
- c) Die Abgasmessungen sind an einer repräsentativen Entnahmestelle im Kanalquerschnitt, die vor Aufnahme der Messungen zu bestimmen ist, vorzunehmen. Es sind innerhalb eines Zeitraumes von drei Stunden drei Messwerte als Halbstundenmittelwerte zu bilden, deren einzelne Ergebnisse zu beurteilen sind.
- 2. Kontinuierliche Messungen
- a) Die Datenaufzeichnung hat durch automatisch registrierende Messgeräte in Form von Halbstundenmittelwerte unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat.
- b) Registrierende Emissionsmessgeräte sind im Abnahmeversuch und alle drei Jahre durch einen Sachverständigen aus dem im § 5 Abs. 3 angeführten Personenkreis zu kalibrieren.
- c) Jährlich ist eine Funktionskontrolle an registrierenden Emissionsmessgeräten durch Sachverständige aus dem im § 5 Abs. 3 angeführten Personenkreis vorzunehmen.

Glass production

BGBI 1994/ 498 Verordnung für Anlagen zur Glaserzeugung

- § 5 (2) Zur Kontrolle der Einhaltung der im § 3 festgelegten Emissionsgrenzwerte sind unter Beachtung des § 4 jeweils mindestens drei Messwerte als Halbstundenmittelwerte zu bestimmen.
- (4) Die Durchführung der Emissionsmessungen hat nach den Regeln der Technik (z.B. nach den vom Verein deutscher Ingenieure herausgegebenen und beim Österreichischen Normungsinstitut, Heinestraße 38, 1021 Wien, erhältlichen Richtlinien VDI 2268, Blätter 1, 2 und 4, VDI 2462, Blätter 1 bis 5 und 8, und VDI 2456, Blätter 1, 2, 8 und 10) zu erfolgen.
- § 7 (1) Der Betriebsanlageninhaber hat in regelmäßigen, ein Jahr, bei Schmelzeinrichtungen gemäß § 3 Z 5 lit. D drei Jahre, nicht übersteigenden Zeitabständen Messungen zur Kontrolle der Einhaltung der im § 3 festgelegten Emissionsgrenzwerte entsprechend den §§ 4 bis 6 durchführen zu lassen.
- (2) Zur Durchführung der Messungen sind Anstalten des Bundes oder eines Bundeslandes, staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, oder akkreditierte Stellen im Rahmen des fachlichen Umfangs ihrer Akkreditierung (§ 11 Abs. 2 des Akkreditierungsgesetzes, BGBI Nr 468/ 1992) heranzuziehen.
- (3) Die Messwerte für die im § 3 angeführten Stoffe sowie der während der Messung herrschenden Betriebszustände sind zusammen mit den Kriterien, nach denen der Zeitraum für die Messung, der stärksten Emission festgelegt worden ist, in einem Messbericht festzuhalten. Im Messbericht sind auch die verwendeten Messverfahren zu beschreiben. Der Messbericht und sonstige zum Nachweis der Einhaltung der im § 3 festgelegten Emissionsgrenzwerte dienende Unterlagen sind bis zur nächsten Messung in der Betriebsanlage derart aufzubewahren, dass sie den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden können.

Iron and steel production

BGBI II 1997/ 160 Verordnung für Anlagen zur Erzeugung von Eisen und Stahl

- § 6 (1) Der Betriebsanlageninhaber hat, soweit die Absätze 3 und 4 nicht anderes bestimmen, Einzelmessungen der Emissionskonzentrationen der im § 3 Abs. 1 und im § 4 (mit Ausnahme des § 4 Abs. 3 lit. c) angeführten Stoffe entsprechend der Z 1 lit. a bis c der Anlage zu dieser Verordnung in regelmäßigen, drei Jahre nicht übersteigenden Zeitabständen, durchführen zu lassen (wiederkehrende Emissionsmessungen).
- (3) Der Betriebsinhaber hat, soweit Abs. 4 oder 5 nicht anderes bestimmt. Entweder kontinuierliche Messungen der Emissionskonzentrationen ... entsprechend der Z 2 der Anlage zu dieser Verordnung durchzuführen oder kontinuierliche Funktionsprüfungen der rauchgasund bzw. oder Abluftfilteranlagen von Einrichtungen gemäß § 4 durchzuführen, wenn sich durch diese Prüfungen mit hinreichender Sicherheit die Einhaltung der vorgeschriebenen Emissionsgrenzwerte für Staub festgestellt werden kann.
- § 6 (6) Zur Durchführung der Messungen gemäß Abs. 1 und 2 sowie zur Funktionskontrolle und Kalibrierung von Messgeräten für Messungen gemäß Abs. 3 sind akkreditierte Stellen im Rahmen des fachlichen Umfangs ihrer Akkreditierung (§ 11 Abs. 2 des Akkreditierungsgesetzes, BGBI Nr 468/ 1992), Anstalten des Bundes oder eines Bundeslandes,

staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, heranzuziehen.

- § 7 Die Ergebnisse der Messungen gemäß § 6 sind in einem Messbericht festzuhalten, der zu enthalten hat:
- 1. bei Messungen gemäß § 6 Abs. 1 und 2 die Messwerte und die Betriebsbedingungen während der Messungen (Betriebszustand, Verbrauch Brennstoff, Rohmaterial und Zuschlagstoffen),
- 2. bei Messungen gemäß § 6 Abs. 3 und 4 die Messwerte in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes,
- 3. bei Funktionsprüfungen gemäß § 6 Abs. 3 die gemessenen Parameter in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes.

Der Messbericht ist mindestens drei Jahre, bei Messungen gemäß § 6 Abs. 1 und 2 jedenfalls bis zur jeweils nächsten Messung, in der Betriebsanlage derart aufzubewahren, dass er den behördlichen Organen zur Einsicht vorgewiesen werden kann.

Anlage

(§ 6)

Emissionsmessungen

- 1. Einzelmessungen
- a) Einzelmessungen sind für alle im § 3 Abs. 1 und 3 und im § 4 angeführten Stoffe bei jenem Betriebszustand durchzuführen, in dem nachweislich die Anlagen vorwiegend betrieben werden. Die Durchführung der Messungen hat nach den Regeln der Technik zu erfolgen.
- 2. Kontinuierliche Messungen
- a) Die Datenaufzeichnung hat durch ein automatisch registrierendes Messgerät in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90% zu betragen. Als Bezugszeitraum gilt ein Monat.
- b) Das registrierende Messgerät ist im Abnahmeversuch und alle drei Jahre durch einen Sachverständigen aus dem im § 6 Abs. 5 angeführten Personenkreis zu kalibrieren.
- c) Jährlich ist eine Funktionskontrolle des registrierenden Messgerätes durch einen Sachverständigen aus dem im § 6 Abs. 5 angeführten Personenkreis vorzunehmen.

Sinter plants

BGBI II 1997/ 163 Verordnung für Anlagen zum Sintern von Eisenerzen

- § 5 (1) Der Betriebanlageninhaber hat Einzelmessungen der Emissionskonzentration der im § 3 Abs. 1 Z 2 lit. a und b und Z 3 angeführten Stoffe entsprechend der Z 1 in der Anlage zu dieser Verordnung in regelmäßigen, drei Jahre nicht übersteigenden Zeitabständen, durchzuführen zu lassen (wiederkehrende Emissionsmessungen).
- (2) Der Betriebanlageninhaber hat kontinuierliche Messungen der Emissionskonzentrationen von Staub, Stickstoffoxiden und Schwefeldioxid entsprechend der Z 2 der Anlage dieser Verordnung durchzuführen.

- (3) Zur Durchführung der Messungen gemäß Abs. 1 sowie zur Funktionskontrolle und Kalibrierung von Messgeräten für Messungen gemäß Abs. 2 sind akkreditierte Stellen im Rahmen des fachlichen Umfangs ihrer Akkreditierung (§ 11 Abs. 2 des Akkreditierungsgesetzes, BGBI Nr 468/ 1992), Anstalten des Bundes oder eines Bundeslandes, staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, heranzuziehen.
- § 6 Die Ergebnisse der Messungen gemäß § 5 sind in einem Messbericht festzuhalten, der zu enthalten hat:
- 1. bei Messungen gemäß § 5 Abs. 1 die Messwerte und die Betriebsbedingungen während der Messungen (Betriebszustand, Verbrauch an Brennstoff und Einsatzmaterial),
- 2. bei Messungen gemäß § 5 Abs. 2 die Messwerte in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes.

Der Messbericht ist mindestens drei Jahre, bei Messungen gemäß § 5 Abs. 1 jedenfalls bis zur jeweils nächsten Messung, in der Betriebsanlage derart aufzubewahren, dass er den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden kann.

<u>Anlage</u>

(§5)

Emissionsmessungen

- 1. Einzelmessungen
- a) Einzelmessungen sind für die im § 3 Abs. 1 Z 2 lit. a und b und Z 3 angeführten Stoffe bei jenem Betriebszustand durchzuführen, in dem nachweislich die Anlagen vorwiegend betrieben werden. Die Durchführung der Messungen hat nach den Regeln der Technik zu erfolgen.
- 2. Kontinuierliche Messungen
- a) Die Datenaufzeichnung hat durch ein automatisch registrierendes Messgerät in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat.
- b) Das registrierende Messgerät ist im Abnahmeversuch und alle drei Jahre durch einen Sachverständigen aus dem im § 5 Abs. 3 angeführten Personenkreis zu kalibrieren. Die Kalibrierung hat nach den Regeln der Technik zu erfolgen.
- c) Jährlich ist eine Funktionskontrolle des registrierenden Messgerätes durch einen Sachverständigen aus dem im § 5 Abs. 3 angeführten Personenkreis vorzunehmen.

Combustion plants

BGBI II 1997/ 331 Feuerungsanlagen-Verordnung

Emissionsmessungen

§ 4 (1) Der Betriebsanlageninhaber hat Emissionsmessungen sowie die Bestimmung des Abgasverlustes entsprechend der Anlage 1 zu dieser Verordnung durchzuführen bzw. durchführen zu lassen.

- (2) Zur Durchführung der Emissionseinzelmessungen sowie zur Bestimmung des Abgasverlustes ist ein Sachverständiger aus dem im § 2 Abs. 2 zweiter Satz genannten Personenkreis heranzuziehen.
- § 5 (1) Der Betriebsanlageninhaber hat, sofern in dieser Verordnung nicht anderes bestimmt ist,
- 1. kontinuierliche Messungen der Emissionskonzentrationen, abhängig von der jeweiligen Brennstoffwärmeleistung und dem eingesetzten Brennstoff, entsprechende der folgenden Tabelle durchzuführen

Brennstoff	Staub	СО	SO ₂	NO _x	
fest	> 10	> 10	> 30	> 30	MW
flüssig	> 10	> 10	> 50	> 30	MW
gasförmig	-	> 10	-	> 30	MW

Prüfungen

Erstmalige Prüfung

- § 23 (1) Feuerungsanlagen sind anlässlich ihrer Inbetriebnahme einer erstmaligen Prüfung zu unterziehen.
- (2) Die erstmalige Prüfung hat in der Erbringung des Nachweises zu bestehen, dass die Feuerungsanlage den Anforderungen dieser Verordnung entspricht.

Wiederkehrende Prüfungen

§ 25 (1) Feuerungsanlagen sind jährlich zu prüfen. Bei dieser jährlichen Prüfung sind die Feuerungsanlagen hinsichtlich jener Anlagenteile, die für die Emissionen oder deren Begrenzung von Bedeutung sind, zu besichtigen und auf etwaige Mängel zu kontrollieren... Weiters sind jährlich die Ergebnisse der gemäß § 5 durchgeführten kontinuierlichen Messungen zu beurteilen.

Prüfbescheinigung

§ 27 Das Ergebnis jeder Prüfung muss in einer Prüfbescheinigung festgehalten sein, die insbesondere festgestellte Mängel sowie Vorschläge zu deren Behebung zu enthalten hat. Die Prüfbescheinigung ist im Original in der Betriebsanlage zumindest fünf Jahre so aufzubewahren, dass sie den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden kann.

Anlage 1

(§§ 4 und 25)

Emissionsmessungen

- 1. Die Messungen sind
- 1.3 für gasförmige Emissionen nach den Regeln der Technik, oder nach einem diesen Verfahren gleichwertigen Verfahren durchzuführen.
- 2. Die Messstellen sind so festzulegen, dass eine repräsentative und messtechnisch einwandfreie Emissionsmessung gewährleistet ist.

3. Einzelmessungen

3.2 Die Einzelmessungen sind an einer repräsentativen Entnahmestelle im Kanalquerschnitt vorzunehmen. Es sind innerhalb eines Zeitraumes von drei Stunden drei messwerte als Halbstundenmittelwerte zu bilden.

4. Kontinuierliche Messungen

- 4.1 Die Datenaufzeichnung hat durch automatisch registrierende Messgeräte in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat. Die Messergebnisse müssen mit dem einzuhaltenden Grenzwert vergleichbar sein.
- 4.2 Registrierende Emissionsmessgeräte sind im Abnahmeversuch und mindestens alle drei Jahre durch einen Sachverständigen aus dem im § 2 Abs. 2 zweiter Satz angeführten Personenkreis zu kalibrieren. Die Kalibrierung hat nach den Regeln der Technik (z.B. nach den vom Verein Deutscher Ingenieure herausgegebenen und beim Österreichischen Normungsinstitut, Heinestraße 38, 1021 Wien, erhältlichen Richtlinien VDI 2066, Blatt 4 und Blatt 6, und VDI 3950, Blatt 1E) zu erfolgen.
- 4.3 Jährlich ist eine Funktionskontrolle an registrierenden Emissionsmessgeräten durch Sachverständige aus dem im § 2 Abs. 2 zweiter Satz angeführten Personenkreis vorzunehmen.

Non-ferrous metal production

BGBI II 1998/ 1 Verordnung zur Erzeugung von Nichteisenmetallen

- § 6 (1) Der Betriebsanlageninhaber hat Einzelmessungen der Emissionskonzentration der im § 3 Abs. 1 und im § 4 angeführten Stoffe entsprechend der Z 1 lit. a bis c der Anlage zu dieser Verordnung in regelmäßigen, drei Jahre nicht übersteigenden Zeitabständen durchführen zu lassen (wiederkehrende Emissionsmessungen).
- (2) Der Betriebsanlageninhaber hat kontinuierliche Messungen ... entsprechend der Z 2 der Anlage zu dieser Verordnung reingasseitig (im Kamin) durchzuführen.
- (3) Zur Durchführung der Messungen gemäß Abs. 1 sowie zur Funktionskontrolle und Kalibrierung von Messgeräten für Messungen gemäß Abs. 2 sind akkreditierte Stellen im Rahmen des fachlichen Umfangs ihrer Akkreditierung (§ 11 Abs. 2 des Akkreditierungsgesetzes, BGBI Nr 468/ 1992), Anstalten des Bundes oder eines Bundeslandes, staatlich autorisierte Anstalten, Ziviltechniker oder Gewerbebetreibende, jeweils im Rahmen ihrer Befugnisse, heranzuziehen.
- § 7 Die Ergebnisse der Messungen gemäß § 6 sind in einem Messbericht festzuhalten, der zu enthalten hat:
- 1. bei Messungen gemäß § 6 Abs. 1 die Messwerte und die Betriebsbedingungen während der Messungen (Betriebszustand, Verbrauch an Brennstoff, Rohmaterial und Zuschlagstoffen),
- 2. bei Messungen gemäß § 6 Abs. 2 die Messwerte in Form von Aufzeichnungen eines kontinuierlich registrierenden Messgerätes und die gemäß § 5 Abs. 2 zu führenden Aufzeichnungen über Grenzwertüberschreitungen.

Der Messbericht ist mindestens drei Jahre, bei Messungen gemäß § 6 Abs. 1 jedenfalls bis zur jeweils nächsten Messung, in der Betriebsanlage derart aufzubewahren, dass er den behördlichen Organen jederzeit zur Einsicht vorgewiesen werden kann.

Anlage

(§ 6)

Emissionsmessungen

- 1. Einzelmessungen
- a) Einzelmessungen sind für alle im § 3 Abs. 1 und 4 angeführten Stoffe bei jenem Betriebszustand durchzuführen, in dem nachweislich die Anlagen vorwiegend betrieben werden. Die Durchführung der Messungen hat nach den Regeln der Technik zu erfolgen.
- 2. Kontinuierliche Messungen
- a) Die Datenaufzeichnung hat durch ein automatisch registrierendes Messgerät in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle zu erfolgen. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat.
- b) Das registrierende Messgerät ist im Abnahmeversuch und alle drei Jahre durch einen Sachverständigen aus dem im § 6 Abs. 3 angeführten Personenkreis zu kalibrieren.
- c) Die Wartung des registrierende Messgerätes ist durch einen Sachverständigen aus dem im § 6 Abs. 3 angeführten Personenkreis mindestens einmal jährlich vornehmen zu lassen.

Steam boilers

<u>BGBI 1988/ 380 idF (BGBI 1993/ 185, BGBI I 1997/ 115, BGBI I 1998/ 158)</u> Luftreinhaltegesetz für Kesselanlagen

Überwachung

- § 7 (1) Die in Betrieb befindlichen Dampfkesselanlagen ... sind einmal jährlich durch einen befugten Sachverständigen auf die Einhaltung der Bestimmungen dieses Bundesgesetzes zu überprüfen. Die Überprüfung umfasst die Besichtigung der Anlage und deren Komponenten, soweit sie für die Emissionen oder deren Begrenzung von Bedeutung sind, verbunden mit der Kontrolle vorhandener Messergebnisse oder Messregistrierungen.
- § 8 (1) Die Behörde hat im Genehmigungsbescheid festzulegen, ob und in welchem Umfange Abnahmemessungen sowie wiederkehrende Emissionsmessungen an der Dampfkesselanlage durchzuführen sind. Emissionsmessungen sind ferner durchzuführen, wenn der befugte Sachverständige anlässlich einer Überprüfung gemäß § 7 Grund zur Annahme hat, dass die einzuhaltenden Emissionsgrenzwerte im Betrieb überschritten werden.

Pflichten des Betreibers

§ 10 (3) Der Betreiber hat der Behörde oder dem hierzu beauftragten Sachverständigen während der Betriebszeit den Zutritt zu der Anlage zu gestatten und Einsicht in alle die Emissionen der Dampfkesselanlage betreffenden Aufzeichnungen zu gewähren, die in einem Dampfkesselanlagenbuch zusammenzufassen sind.

<u>BGBI 1989/ 19 idF (BGBI 1990/ 134, BGBI 1994/ 785, BGBI II 1997/ 324)</u> Luftreinhalteverordnung für Kesselanlagen

Emissionseinzelmessungen

- § 2 a (1) Die Durchführung der Emissionsmessungen hat nach den Regeln der Technik zu erfolgen.
- (2) Die in Anlage 7 wiedergegebene ÖNORM M 9415-1, Ausgabe Mai 1991, und die in Anlage 8 wiedergegebene ÖNORM 9415-3, Ausgabe Mai 1991, sind verbindlich anzuwenden.
- § 3 (1) Emissionseinzelmessungen sind für jede Schadstoffkomponente bei jenem feuerungstechnisch stationären Betriebzustand durchzuführen, bei dem nachweislich die Anlage vorwiegend betrieben wird.
- (2) Für die Durchführung der Emissionseinzelmessungen ist die in Anlage 9 wiedergegebene ÖNORM M 9415-2, Ausgabe Mai 1991, verbindlich anzuwenden.

Kontinuierliche Emissionsmessungen

- § 4 (3) Kontinuierliche Emissionsmessungen der Massekonzentration einer Emission (§ 8 Abs. 1 LRG-K) haben i der Regel in Halbstundenmittelwerten zu erfolgen.
- (5) Die Messstellen sind auf Grund des Gutachtens eines befugten Sachverständigen (§ 7 Abs. 2 LRG-K) von der Behörde derart festzulegen, dass eine repräsentative und messtechnisch einwandfreie Emissionsmessung gewährleistet ist.
- § 5. Für kontinuierliche Emissionsmessungen hat die Datenaufzeichnung zu erfolgen:
- 1. Durch automatisch registrierende Messgeräte in Form von Halbstundenmittelwerten unter Angabe von Datum, Uhrzeit und Messstelle. Die Verfügbarkeit der Daten hat mindestens 90 % zu betragen. Als Bezugszeitraum gilt ein Monat.
- 3. Die Auswertung der Messdaten aus registrierenden Messgeräten hat mittels Auswertegeräten zu erfolgen, die dafür geeignet sind und die dem Stand der Technik entsprechen.
- 5. Registrierende Emissionsmessgeräte und Auswertegeräte sind im Abnahmeversuch und danach alle drei Jahre durch einen Sachverständigen zu kalibrieren. Die Kalibrierung hat nach den geltenden einschlägigen technischen Regelwerken zu erfolgen.
- 6. Jährlich ist eine Funktionskontrolle an registrierenden Emissionsmessgeräten durch Sachverständige vorzunehmen.
- § 7 (1) Der Betreiber hat während des Betriebes der Anlage an den Messgeräten mindestens einmal wöchentlich zu kontrollieren, ob der Nullpunkt einjustiert ist und die erforderliche Messfunktion gegeben ist.
- (2) Die Messgeräte und alle dazuhörenden Komponenten sind mindestens alle drei Monate zu warten. Hierüber hat der Betreiber Aufzeichnungen zu führen.
- (3) Der Sachverständige hat im Rahmen der Überwachung die Aufzeichnungen gemäß Abs. 2 zu kontrollieren und in begründeten Fällen die Richtigkeit der Anzeige der Messgeräte zu überprüfen.