

INSTITUTE OF RISK RESEARCH OF THE ACADEMIC SENATE OF THE UNIVERSITY OF VIENNA

Cost Estimation of Implementing Safety Upgrading Measures for Khmelnitsky Unit 2 and Rovno Unit 4

P. HOFER W. KROMP E. SEIDELBERGER

Report to the Austrian Government

Vienna, October 1998

Risk Research Report Nr. 23

Contents

2B	COST ESTIMATION OF IMPLEMENTING SAFETY UPGRADING MEASURES FOR KHMELNITSKY UNIT 2 AND ROVNO UNIT 4	5
2B.1	Introduction	5
2B.1.1	Modernization Project Khmelnitsky Unit 2 and Rovno Unit 4: Cost and Schedu Estimates	
2B.1.2	Cost Structure of the K2/R4 Completion Project	5
2B.1.3	Approach	6
2B.2	Cost Estimation of Implementing the Safety Upgrading Measures for K2 and R4	6
2B.3	Cost Estimates of Modernization Measures of Operating WWER-1000/320 Reactors – Extracted from the MOHT EdF Modernization Programme	8
2B.4	Safety Measures Not Included in the Modernization Programme for K2/R4	4 16
2B.4.1	Safety issues which require more comprehensive safety measures than the M	P16
2B.4.2	Safety measures identified by MOHT-EdF not included in the MP	17
2B.5	Temelin – Example for a WWER-1000/320 Reactor Completion Project with Delay in Schedule and Costoverruns	18
2B.5.1	Date and cost of completion of Temelin construction	18
2B.5.2	Main causes of delay in the schedule	
2B.5.2.1	Process of prolongation of construction due to design changes	
2B.5.2.2 2B.5.2.3	Elimination of the causes of construction delay Individual dates for start up of Temelin NPP	
2B.5.2.4		
2B.5.3	Increase of cost of construction	
2B.5.3.1	Table providing cost comparison (all prices are given in million of Czech crowns)	
2B.5.3.2 2B.5.3.3		
2B.6	Conclusions	23
	Attachment Table 1: Costs of all modernization measures planned in the Modernization Programme for K2 and R4	24
	Table 2: Costs of all modernization measures planned in the Modernization Programme for R4	44

2B. COST ESTIMATION OF IMPLEMENTING SAFETY UPGRADING MEASURES FOR KHMELNITSKY UNIT 2 AND ROVNO UNIT 4

2B.1 Introduction

2B.1.1 Modernization Project Khmelnitsky Unit 2 and Rovno Unit 4: Cost and Schedule Estimates

There have been a number of cost estimates for completion, modernization, and commissioning of Khmelnitsky Unit 2 and Rovno Unit 4 (K2/R4). These estimates are listed below in chronological order:

- EBRD Study of Economic Aspects of Nuclear Generation and Safety Improvements in Eastern and Central Europe, June 1993, 0.92 billion USD
- USDOE/Minatom Study, July 1994, 0.98 billion USD
- Energoatom Project Presentation, August 1988, 1.25 billion USD
- In a project presentation to the EBRD the project sponsor estimated the overall project cost (see below).
- EBRD, September 1998, 1.725 billion USD
 EBRD estimated the cost of completing both units and providing support to the Ukraine Nuclear Regulatory Authority at 1.725 billion USD.

2B.1.2 Cost Structure of the K2/R4 Completion Project

In the project presentation of Energoatom: "Completion of Rovno Unit 4 and Khmelnitsky Unit 2", in August 1998 the following contributors to the overall project costs were listed:

- **Completion** the completion of the units according to the original design. This work includes outstanding construction work such as completion of plant installation; completion of partial installations; electrical wiring; instrumentation and control equipment; plant cleanin-less; and equipment commissioning and functional testing.
- **Rehabilitation** replacement of deteriorated equipment or its repair to the status good for operation. This work includes inspections to determine the equipment and civil works needing restoration to a state suitable for commissioning and startup, including repair and replacement tasks such as refurbishing, repainting, surface preservation, and repairs.
- **Modernization** upgrading of safety, quality of operation, and the availability of the units. This work includes the modernization programme, waste processing facilities at the plants; installation of a full-scope simulator at Khmelnitsky; and improvements to the switchyard at Rovno. The modernization programme includes 148 measures, 144 of which are common to the two units and two items each which are specific to Khmelnitsky Unit 2 or Rovno Unit 4. The modernization programme is intended to eliminate deviations from current Ukrainian national safety norms; to improve the reliability of safety-related equipment by upgrading the design quality, manufacture, and installation; and to improve operation quality.
- First Fuel Load
- Testing Commissioning
- Engineering Activities
- Project Management
- Licensing and Certification
- Miscellaneous Costs like customs, insurance, financial engineer for the banks.

2B.1.3 Approach

In chapter 2 of this report we will present cost estimates which were extracted from the last update of the Modernization Programme (MP) for K2/R4 (Rev. 2, Oct. 1996). The cost estimates cover only the modernization (safety upgradings, etc.) of the reactors. Other contributors to the total costs listed above (see 1.2) are not included. Considering the time development of cost estimates for K2/R4 (see 1.1) it should also be taken into account that the costs estimates for the modernization measures presented in the Modernization Programme are from the year 1996.

In chapter 3 these modernization costs are compared with the costs for implementing a modernization programme for operating WWER-1000 units. This modernization programme and the cost estimates were set up in 1995 by the consortium of MOHT-EdF.

Chapter 4 contains a list of modernization measures which are not included in the Modernization Programme for K2/R4. An implementation of these measures, which is highly recommended by the Institute of Risk Research, results in higher costs than those estimated in the MP. An evaluation of the costs for implementing these more comprehensive list of measures is beyond the scope of this report.

Chapter 5 is an extraction of the most recent report on the status of the completion project: Temelin NPP. This report demonstrates cost overruns and time delays.

2B.2 Cost Estimation of Implementing the Safety Upgrading Measures for K2 and R4

The following table have been extracted from the Modernization Programme for Khmelnitsky 2 and Rovno 4 (Rev. 2, Oct. 1996). Table 1 provides an overview on the costs for implementing the planned measures for different areas. Attachment 1 lists the costs of all measures which are planned to be implemented before and after start-up.

	K2: COSTS (USD96)	R4: COSTS (USD96)
10 GENERAL	2.000.000	2.000.000
11 REACTOR CORE AND FUEL HANDLING	1.359.430	1.359.430
12 COMPONENTS INTEGRITY	15.320.030	15.320.030
13 SYSTEMS	7.673.420	8.743.420
14 MONITORING AND CONTROL SYSTEMS	36.984.500	36.984.500
15 ELECTRICAL POWER SUPPLY	16.664.240	6.149.400
16 CONTAINMENT AND BUILDING STRUCTURES	1.993.400	1.993.400
17 INTERNAL HAZARDS	2.359.000	2.359.000
18 EXTERNAL HAZARDS	952.000	952.000
19 ACCIDENTS ANALYSIS	3.080.000	3.080.000
20 FUEL HANDLING	970.000	970.000
21 PRIMARY CIRCUIT	475.000	475.000
22 SECONDARY CIRCUIT	865.344	865.344
23 MONITORING AND CONTROL SYSTEM	105.000	105.000
24 ELECTRICAL POWER SYSTEM	19.610.219	11.568.019
25 REACTOR CORE AND FUEL	481.000	481.000
26 COMPONENTS INTEGRITY	14.350.300	14.350.300
27 SYSTEMS	785.000	785.000
28 CONTROL AND MONITORING SYSTEM	13.764.025	13.764.025
29 INTERNAL HAZARDS	1.742.900	1.742.900
30 OPERATION PROCEDURES	4.490.000	4.490.000
31 CONTROL	2.630.030	2.630.030
32 TEST AND DIAGNOSTICS	1.180.000	1.900.000
33 PERSONNEL PROTECTION AND RADIATION SAFETY	8.043.430	8.043.430
34 REPAIR AND MAINTENANCE	7.208.000	7.208.000
35 PHYSICAL PROTECTION	6.075.632	6.075.632
SUM	171.161.900	155.574.860
TOTAL SUM FOR K2 and R4: 326.736.760 USD96		

Table 1: Cost Estimation of Modernization K2/R4

2B.3 Cost Estimates of Modernization Measures of Operating WWER-1000/320 Reactors – Extracted from the MOHT EdF Modernization Programme

The following table was extracted from the MOHT-EdF generic modernization program: MOHT-EdF, "Generic Reference Programme for the Modernization of VVER 1000"-V320, MOHT (Atomenergoprojekt, OKB Gidropress, Kurchatov Institute, VNIIAES, Zarubejatomenergostroy, Rosenergoatom, et al.) and Electricité de France (EdF), Revision 5, January 1996.

The data presented in the table were extracted from a cost estimation of MOHT-EdF for modernization of two operating WWER-1000/320 units. The data for implementing modernization measures for reactors under construction were found to be incomplete and are not quoted here.

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
1. SAFETY	
1.1. Measures related to design and construction/installation	
1. (1.1.1.1) DECREASE IN DROP TIME OF CPS CONTROL RODS (see also 2.1.1.1.1A)	145,000
2. (1.1.1.2) REPLACEMENT OF ANALOG-DISCRETE TRANSDUCERS WITH UPGRADED UNITS, PROVIDING SIGNALLING FOR INTERLOCKING DEVICE ACTIVATION.	4,800,000
3. (1.1.1.3) MODERNIZATION OF ICIS INCLUDING REPLACEMENT OF IN CORE NEUTRON MEASURING CHANNELS (NMC) BY NFTMC AND DEVELOPMENT OF LOCAL DIAGNOSTICS SYSTEMS.	4,035,000
4. (1.1.1.4) PREVENTION OF DAMAGE OF MORE THAN ONE STEAM LINE TO EXCLUDE NUCLEAR-HAZARDOUS CONDITIONS	2,395,000
5. (1.1.1.5) DEVELOPMENT AND INTRODUCTION OF MEASURES EXCLUDING POSSIBILITY OF BREAK OF MORE THAN ONE STEAM LINE OR FEED WATER PIPING WITHIN CIVIL STRUCTURES OF REACTOR COMPARTMENT	155,400
6. (1.1.1.6) MEASUREMENT OF B-10 ISOTOPE CONCENTRATION	4,700,000
7. (1.1.1.7) NEUTRON FLUX MONITORING EQUIPMENT	3,750,000
8. (1.1.1.8) SET OF EQUIPMENT FOR DETERMINATION OF REACTIVITY EFFECTS AND EFFICIENCY OF CONTROL ROD CLUSTERS, USING IN-CORE AND EX-CORE NEUTRON DETECTORS, AND FOR ITS METROLOGICAL CERTIFICATION	63,000
9. (1.1.1.9) SEPARATION OF PRIMARY PULSE LINES TO I&C TRANSDUCERS	170,000
10. (1.1.1.10) CONTROL OF THE REACTOR CORE SUBCRITICALITY	44,000
11. (1.1.1.1) COMPACT STORAGE OF SPENT FUEL	13,536,800
12. (1.1.1.12) POST ACCIDENT MONITORING SYSTEM	250,000
13. (1.1.1.13) UPGRADING OF THE REACTOR POWER CONTROL SYSTEM	2,150,000
14. (1.1.1.14 AND 2.1.1.1.1B) IMPROVEMENT OF NOISE IMMUNITY OF CPS EQUIPMENT	152,000
15. (1.1.1.15.) SYSTEM OF SAFETY PARAMETERS PRESENTATION	4,030,000
16. (1.1.2.1.1) STANDARD SYSTEM OF REACTOR VESSEL RADIATION LOAD MONITORING	240,000

¹ Comparison of average USD96 and USD95: 1 USD96 = 1.049 USD95

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
17. (1.1.2.1.2). TO MODERNIZE RADIATION MONITORING WITHIN THE SCOPE OF THE EXISTING PROGRAMME OF SURVEILLANCE SPECIMENS. TO PERFORM ANALYSIS OF THE RESULTS OF SURVEILLANCE SPECIMENS TESTS TAKING ACCOUNT OF REVISIONS OF RADIATION MONITORING CHARACTERISTICS.	380,000
18. (1.1.2.1.3). TO ELABORATE AND IMPLEMENT A NEW PROGRAMME OF SURVEILLANCE-SPECIMENS OF THE VESSEL MATERIAIL	670,000
19. (1.1.2.1.4). TO DEVELOP AND INTRODUCE THE STANDARD PROCEDURE FOR DETERMINATION OF THE CURRENT RESIDUAL RADIATION LIFE OF SAFE OPERATION OF THE REACTOR	70,000 E
20. (1.1.2.1.5) VERIFICATION OF THE DESIGN SERVICE LIFE OF THE REACTOR VESSEL	70,000
21. (1.1.2.2) STEAM DETECTOR FOR RPV HEAD	300,000
22. (1.1.2.3) ASSURANCE OF LONG-TERM REMOVAL OF REACTOR RESIDUAL HE	AT 5,634,800
23. (1.1.2.4) REDUNDANCY OF A GROUP SERVICE WATER SUPPLY FOR SEALING OF ECCS PUMPS	9 293,000
24. (1.1.2.5) MODERNIZATION IN-CORE INSTRUMENTATION FOR TEMPERATURE CONTROL	460,000
25. (1.1.2.6 AND 1.1.2.20) MODERNIZATION OF REACTOR VESSEL HEAD SEALING (MAIN SEALING AND SEALING OF PENETRATIONS)	220,000
26. (1.1.2.7) MEASURES THAT EXCLUDE UNAUTHORIZED OVERFILL OF A GROUP SERVICE WATER TANKS IN THE EVENT OF FAILURE OF CHECK VALVE	7 38,000
27. (1.1.2.8) IMPROVEMENT OF OPERATING RELIABILITY OF STEAM GENERATOF AND BLOWDOWN SYSTEM	RS 2,074,000
28. (1.1.2.9) IMPLEMENTATION OF THE "LEAK-BEFORE-BREAK" CONCEPT	25,150,000
29. (1.1.2.10 AND 1.2.2.1) HYDROGEN REMOVAL FROM THE REACTOR PLANT PRIMARY EQUIPMENT AND ANALYSES OF HYDROGEN SAFETY	573,000
30. (1.1.2.11A) ON-LINE DIAGNOSTICS SYSTEM FOR PRIMARY CIRCUIT OF NPPS IN SERVICE	
31. (1.1.2.11B) SYSTEM FOR PERIODICAL INSPECTION OF REACTOR EQUIPMENT (EXCEPT REACTOR VESSEL) AND PIPELINE METAL INTEGRITY	Г
32. (1.1.2.11B) SYSTEM FOR PERIODICAL INTERNAL IN-SERVICE INSPECTION OF RPV METAL INTEGRITY	Sum 30-32: 20,133,900
33. (1.1.2.12) FIRE PROTECTION SYSTEM	846,400
34. (1.1.2.13) PROTECTION OF PRIMARY CIRCUIT AGAINST COLD	10,500
35. (1.1.2.14 AND 1.1.2.15) ASSURANCE OF DESIGN LIFE OF THE REACTOR VESSEL – HEATING OF ECCS WATER	1,195,000
36. (1.1.2.16) ORGANIZATIONAL-ENGINEERING MEASURES FOR THE MANAGEMENT OF ACCIDENTS INVOLVING PRIMARY-TO-SECONDARY COOL/ LEAK UP TO DNOM 100 MM.	768,000 ANT
37. (1.1.2.17) UPDATING OF PRESSURISER PSD TO IMPLEMENT "FEED AND BLEE PROCEDURE	ED" 180,000
38. (1.1.2.18) SYSTEM TO ENSURE SPENT FUEL POND COOLING AT FALSE CLOS OF ISOLATING VALVE	SING 535,000
39. (1.1.2.19) SEPARATION OF THE MAIN CONTROL ROOM (MCR) AND RESERVE CONTROL ROOM (RCR) VENTILATION SYSTEMS	117,800

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
40. (1.1.2.21) EXTENSION OF THE TIME OF STEAM GENERATORS MAKE-UP (SAFETY UPGRADING FOR BEYOND-DESIGN ACCIDENTS)	52,500-751,500
41. (1.1.2.22) UPGRADING OF INFORMATION SYSTEMS AND CONTROL SYSTEMS TO PROVIDE AUTOMATIC AND/OR AUTOMATED DIAGNOSIS OF THE STATE OF HARDWARE	14,300,000
42. (1.1. 2.23) NPP LOCAL CRISIS CENTRE	6,400,000
43. (1.1.2.24) INCREASE OF BATTERIES DISCHARGE TIME.	175,000
44. (1.1.2.25) INTEGRATION OF GENERAL PLANT DIESEL GENERATOR	7,383,600
45. (1.1.2.26) CONTROL OF INDICATION OF POSITION OF THE MAIN VALVE OF THE PRESSURIZER	380,000
46. (1.1.2.27.1 AND 2.1.1.2.1) PROPOSALS FOR ARRANGING CONNECTIONS BETWEEN POWER UNITS BY 6 KV NETWORK PROVIDING FIRE PROTECTION OF ONE POWER UNIT WHEN FIRE OCCURS ON THE OTHER ONE.	5,100,000
47. (1.1.2.27.2) UPGRADE THE FIRE EMERGENCY DOORS	940,000
48. (1.1.2.27.3) REACTOR COOLANT PUMP FIRE DETECTION SYSTEM	600,000
49. (1.1.2.27.4) INSTALLATION OF FIRE GATE VALVES IN VENTILATION DUCTS.	885,000
50. (1.1.2.27.5) IMPROVEMENT OF FIRE SAFETY OF CABLE EQUIPMENT.	1,635,000
51. (1.1.2.27.6) ENHANCEMENT OF FIRE SAFETY OF DIESEL-GENERATORS OF RELIABLE POWER SUPPLY	44,000
52. (1.1.2.27.7) THE SMOKE REMOVAL SYSTEM	909,400
53. (1.1.2.27.8) THE GAS FIRE EXTINGUISHING SYSTEMS IN ROOMS WITH ELECTRONIC EQUIPMENT	466,400
54. (1.1.2.28) CABLE ROUTING AND PENETRATIONS.	1,750,000
55. (1.1.2.29 AND 2.1.1.6.2) IMPROVEMENT OF BRU-A RELIABILITY	100,000 + costs to be determined later
56. (1.1.2.30) PROVISION OF CONTROL OF EQUIPMENT MOVEMENT	347,000
57. (1.1.2.31 AND 2.1.1.4.1) UPDATING OF GTSN-195M RCP	1,343,500
58. (1.1.2.32 AND 2.1.1.9.2) REPLACEMENT OF INVERTERS	1,520,000
59. (1.1.2.33 AND 2.1.1.9.4) REPLACEMENT OF 6 KV BREAKERS	13,400,000
60. (1.1.2.34 AND 2.1.1.12.1) UPGRADING OF EMERGENCY AND SCHEDULED COOL DOWN PUMP TSNR800-230	455,000
61. (1.1.2.35 AND 2.1.1.12.2) UPGRADING OF SPRINKLER PUMP TSNSA700-140	395,000
62. (1.1.2.36 AND 2.1.1.12.3) UPGRADING OF EMERGENCY BORON INJECTION PUMP TSN150-110	395,000
63. (1.1.3.1) SYSTEM FOR CONTROL AND REMOVAL OF HYDROGEN	970,000
64. (1.1.3.2) INSPECTION OF INTEGRITY OF COLLECTORS AND HEAT EXCHANGING TUBES OF STEAM GENERATORS	580,000
65. (1.1.3.3) AUTOMATIC SYSTEM FOR RADIATION SITUATION MONITORING (ASKRO)	4,900,000
66. (1.1.3.4) PREVENTION OF RADIOACTIVITY RELEASE OUTSIDE THE CONTAINMENT DURING ENCLOSURE UNSEALING OF HEAT EXCHANGER OF RCP SELF-CONTAINED SYSTEM	51,800

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
67. (1.1.3.5) IMPROVEMENT OF RELIABILITY OF THE PROCEDURES OF REFUELLING	215,000
68. (1.1.3.6) REMOVAL OF RADIOACTIVE WASTE FROM THE REACTOR HALL	a) 530,000 b) 1,550,000
69. (1.1.3.7) IMPROVEMENT OF REFUELLING PROCEDURE RELIABILITY	540,000
70. (1.1.3.8) WITHDRAWAL OF DROPPED FUEL ASSEMBLY	590,000
1.2. Analysis and Expert Assessment	
71. (1.2.1.1 AND 1.2.2.3) QUALIFICATION OF EQUIPMENT	1,750,000
72. (1.2.1.2) FIRE SAFETY ENHANCEMENT	260,000
73. (1.2.1.3 AND 1.2.2.5) ANALYSIS OF NPP SEISMIC STABILITY	1,500,000
74. (1.2.1.4) TO COMPILE SAFETY ANALYSIS REPORT (SAR) WITH CONSIDERATION OF MEASURES IMPLEMENTED BEFORE UNIT COMMISSIONING	
75. (1.2.1.5) TO ELABORATE PROBABILISTIC SAFETY ANALYSIS (PSA) WITH CONSIDERATION OF MEASURES IMPLEMENTED BEFORE UNIT	
76. (1.2.1.6) OVERALL ANALYSIS OF INTERNAL FLOODING IN THE REACTOR BUILDINGS AND TURBINE HALL	12,000
77. (1.2.1.7) ANALYSIS OF FEASIBILITY OF INTRODUCTION OF ADDITIONAL SYSTEMS FOR MANAGEMENT OF BEYOND-DESIGN BASIS ACCIDENTS	
78. (1.2.1.8) STRENGTH RECALCULATION OF SAFETY RELEVANT PIPELINES	320,000
79. (1.2.1.9 AND 1.2.1.14) DESIGN ACCIDENT ANALYSIS	1,900,000
80. (1.2.1.10.) TO PERFORM THE ANALYSIS AND TO IMPLEMENT THE REQUIRED MEASURES FOR THE ELIMINATION OF INADVERTENT DECREASE OF ABSORBER CONCENTRATION IN THE PRIMARY CIRCUIT	200,000
81. (1.2.1.11) ASSESSMENT OF THE CONTAINMENT ABILITY TO WITHSTAND POSSIBLE AIRPLANE CRASH LOADS UP TO 20T	85,000
82. (1.2.1.12) ELABORATE DESIGN CRITERIA ON PROTECTION OF CONTAINMENT SHUT-OFF VALVES AGAINST INTERNAL MISSILES	25,000
83. (1.2.1.13) ADDITIONAL SAFETY ANALYSES FOR BEYOND-DESIGN BASIS ACCIDENTS	840,000
84. (1.2.1.15) MONITORING OF THE CORROSION-PROOF PROTECTION STATE FOR THE CONTAINMENT PRESTRESSING SYSTEM AT OPERATIONAT. NPPS EQUIPPED WITH WER-1000	90,000
85. (1.2.1.16 AND 1.2.2.7) SUBSTANTIATION OF REACTOR TOP HEAD RELIABILITY	575,000
86. (1.2.1.17A) EXPERIMENTAL-CALCULATIONAL ANALYSIS OF STRENGTH OF STRESS-RELIEVED COLLECTORS TO-MCP AND TO-PGV-IOOOM STEAM GENERATOR VESSEL WELDS	120,000
87. (1.2.1.17B) CALCULATION OF MAXIMUM PERMISSIBLE MOMENT ON THE WRENCH DURING THE REMOVAL OF STUD FROM THREADED FLANGE JOINTS OF STEAM GENERATOR	120,000
88. (1.2.1.18) ANALYSIS OF ULTIMATE STRENGTH OF THE CONTAINMENT STRUCTURE AND ITS PENETRATIONS DEPENDING ON INTERNAL PRESSURE	150,000
89. (1.2.1.19) TO PERFORM ANALYSIS AND TO IMPLEMENT, IF NECESSARY, MEASURES FOR SAFETY IMPROVEMENT OF CONNECTION OF SCHEDULE COOLDOWN LINE OVER THE PRIMARY CIRCUIT.	140,000
90. (1.2.1.20) LIST OF NUCLEAR-HAZARDOUS WORK	25,000

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹	
91. (1.2.1.21) IN ORDER TO CLASSIFY NPP COMPONENTS, SYSTEMS AND STRUCTURES AS TO THEIR EFFECT ON SAFETY	35,000	
92. (1.2.1.22) SEISMIC STABILITY CALCULATIONS FOR COMPONENTS OF THE DECONTAMINATION SYSTEM OF RADIOACTIVE AEROSOLS	15,000	
93. (1.2.1.23) TO PERFORM ADDITIONAL SUBSTANTIATION OF SVO-1 FILTER STRENGTH	85,000	
94. (1.2.1.24) CONSIDERATION OF POSSIBILITY OF IMPLEMENTING A "TUBE IN TUBE" STRUCTURE ("DOUBLE ENVELOPE") FOR PIPELINE TO REMOVE COOLANT FROM CONTAINMENT SUMP.	15,000	
95. (1.2.1.25) STUDIES TO SHORTEN THE CABLING LENGHT FROM DIESEL GENERATOR		
96. (1.2.1.26) DETERMINATION OF CRITERION FOR STEAM GENERATOR UTUBES PLUGGING	270,000	
97. (1.2.1.27) SAFETY ENGINEERING FACTOR	200,000	
98. (1.2.1.28) DESIGNING OF CONTAINMENT BUILDING. DESIGN CALCULATIONS	190,000	
99. (1.2.1.29) DESIGNING OF CONTAINMENT BUILDING. DESIGN AND PROCESS IMPROVEMENTS	70,000	
100. (1.2.1.30) SAFETY LIMITS FOR THE CONTAINMENT BUILDING. MONITORING OF THE BUILDING	150,000	
101. (1.2.1.31) SAFETY LIMITS FOR THE CONTAINMENT BUILDING. MONITORING SEQUENCE	115,000	
102. (1.2.2.2) PROBABILISTIC SAFETY ANALYSIS	8,645,000	
103. (1.2.2.4) DETERMINATION OF THE EFFECT OF A PRZ PULSE-SAFETY DEVICE (PSD) OPENING ON PRZ EQUIPMENT AND PIPELINES	60,000	
104. (1.2.2.6) PROBABILISTIC ASSESSMENT OF FIRE SAFETY	1,200,000	
105. (1.2.2.8, 1.3.5 AND 1.3.2.5.2C) DECREASE OF PRIMARY CIRCUIT LEAKS PROBABILITY	121,000	
106. (1.2.2.9) DRAW UP A LIST OF PERSONNEL ERRORS ON THE BASIS OF STATISTICAL DATA. REVISE DESIGN OPTIONS AND OPERATING PROCEDURES AS PER RESULTS OF ANALYSIS, IF NECESSARY	15,000	
107. (1.2.2.10) ANALYSIS OF EFFECT OF BUILDINGS AND STRUCTURES DISPLACEMENT ON SAFETY SYSTEMS OPERATION	120,000	
108. (1.2.2.11) ANALYSIS OF TIME DURING WHICH SPRAY PONDS MAINTAIN SERVICEABILITY IN THE CASE OF FAILURE OF A MAKE-UP SYSTEM FAILURE	135,000	
109. (1.2.2.12) SEVERE ACCIDENT ANALYSES FOR WER 1000 NPP'S	later	
110. (1.2.2.13) CORRECTION OF CRITERIA FOR INTRODUCTION OF THE EMERGENCY ACTION PLAN	100,000	
111. (1.2.2.14) PERFORM A COMPREHENSIVE ANALYSIS OF ACCIDENTS WITH PRIMARY LEAKS INVOLVING A POSSIBLE RADIOACTIVITY RELEASE BEYOND THE CONTAINMENT BOUNDARIES (CONTAINMENT BYPASS).	85,000	
1.3. Operating Upgrading		
112. (1.3.1.1 AND 1.3.1.2) DEVELOPMENT OF NORMAL AND OF STATEORIENTED REACTOR EMERGENCY PROCEDURES	8,020,000	
113. (1.3.1.3, 1.3.5.5 AND 1.3.5.6) MAINTENANCE AND REPAIR	1,769,800	
114. (1.3.2.1) STAFFING AND TRAINING	75,000	

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
115. (1.3.2.2) SYSTEM (SET) FOR HUMAN RELIABILITY ASSURANCE DURING NPP OPERATION	490,000
116. (1.3.3.1) DEVELOPMENT OF A QUALITY ASSURANCE SYSTEM (3-5 YEAR PROGRAMME)	380,000
117. (1.3.4.1) SYSTEMS FOR ECCS HEAT EXCHANGERS MONITORING AND CLEANING FROM THE SERVICE WATER SIDE	250,000
118. (1.3.4.2) OPTIMIZATION OF METHODS AND FREQUENCY OF PRESSURIZER PSD INSPECTIONS	780,000
119. (1.3.4.3) REGISTRATION OF EMERGENCY EVENTS	530,000
120. (1.3.4.3 AND 2.1.1.8.1C) REVAMPING OF THE SYSTEM FOR SG LEVEL VARIATION	1,255,000
121. (1.3.4.5A) MULTICHANNEL SYSTEM FOR RECORDING AND ANALYZING ELECTRICAL TRANSIENTS DURING EMERGENCY SITUATIONS	135,000
122. (1.3.4.5B) STATIONARY AUTOMATIC MONITORING SYSTEM FOR THE MAIN ELECTRICAL EQUIPMENT	82,000
123. (1.3.4.6) RECORDING DEVICES IN THE MAIN CONTROL ROOM.	200,000
124. (1.3.4.7) UPDATING OF EMERGENCY LIGHTING (EMERGENCY EXITS DURING PERFORMANCE OF EMERGENCY WORK).	115,000
125. (1.3.4.8) IDENTIFICATION OF EMERGENCY POWER SUPPLY EQUIPMENT	200,000
126. (1.3.5.2A) ELABORATION OF TECHNOLOGICAL DESIGN DOCUMENTATION "RESTORATION OF THE CLADDING OF PGV-1000M STEAM GENERATORS SEALING SURFACES "	230,000
127. (1.3.5.2B) SPECIFICATION FOR TEMPORARY SEALING OF THE SG PRIMARY COLLECTOR WITH THE WATER-FILLED REACTOR REFUELLING POOL	235,000
128. (1.3.5.3) REPLACEMENT OF WIRING UNIT ELECTRICAL EQUIPMENT AND MODERNIZATION OF ELECTROTECHNICAL SYSTEMS	2,450,000
129. (1.3.5.4) IMPLEMENTATION METHODOLOGY TO DETERMINE THE CORRESPONDING REFERENCE ISOTOPES BETWEEN DAMAGED FUEL OPERATIONAL LIMIT AND PRIMARY COOLANT ACTIVITY	950,000
130. (1.3.5.7, 1.3.5.8, 2.3.1.2 AND 2.1.1.9.1) WRITING A SET OF DOCUMENTATION FOR MAINTENANCE AND REPAIR OF POWER TRANSFORMERS, MOTOR 6 KV, UKTS CUBICLES ETC	602,000
131. (1.3.6.1A, 1.3.6.1B AND 1.3.6.1C) OPTIMIZATION OF FUEL LOADS	240,000
132. (1.3.6.2) OPTIMIZATION OF POWER UNIT OPERATION UNDER TRANSIENTS WITH VARIATION OF LOAD	2,600,000
133. (1.3.6.3) OPTIMIZATION OF FUEL CYCLES MANAGEMENT FOR JOINT POWER UNITS	60,000
134. (1.3.7.1) REVISION OF THE LIST OF MEANS FOR PERSONNEL PROTECTION	30,000
135. (1.3.7.2) REVISION OF THE INSTRUCTIONS FOR PERFORMANCE OF RADIOLOGICALLY HAZARDOUS WORKS	40,000
136. (1.3.7.3) REVISION OF THE DUTY INSTRUCTIONS FOR THE RADIOLOGICAL SAFETY SERVICES	30,000
137. (1.3.7.4) IMPLEMENTATION OF PERSONAL DOSIMETERS WITH AUDIBLE AND VISUAL SIGNALLING	20,000
138. (1.3.7.5) MEASURES FOR IMPROVING THE QUALITY OF THE BREATHING DEVICES USED ON SITE	20,000

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
139. (1.3.8.1, 1.3.8.2, 1.3.8.3, 1.3.8.4 AND 2.1.1.10.1) WATER CHEMISTRY OF PRIMARY AND SECONDARY CIRCUITS	470,000
140. (1.3.9.1) DEVELOPMENT OF DATA SHEETS ON EQUIPMENT FAILURES	10,000
141. (1.3.9.2 AND 2.3.4.1) DEVELOPMENT OF "HISTORY OF NPP EQUIPMENT OPERATION" INFORMATION SYSTEM	100,000
142. (1.3.10.1) INSPECTIONS AND TESTS SPECIFICATION FOR REACTOR SYSTEMS AND EQUIPMENT IMPORTANT FOR SAFETY	310,000
143. (1.3.11.1) UPGRADING OF COMMUNICATIONS	500,000
2. AVAILABILITY	
2.1 Measures related to Design and Construction/Installation	
144. (2.1.1.1.1A) TO REPLACE THE CPS DRIVE AND POSITION INDICATOR WITH A DRIVE PROVIDING LARGE PULL FORCE AND A SERVICE LIFE OF AT LEAST 30 YEARS	10,660,000
145. (2.1.1.1.2A) MODERNIZATION OF I&C. PROCESS SIGNAL COMMUTATION DEVICES (UKTS)	20,000,000
146. (2.1.1.1.2B) MODERNIZATION OF I&C SYSTEMS. MECHANICAL PART	890,000
147. (2.1.1.1.2C) MODERNIZATION OF I&C SYSTEMS. ELECTRIC PART (CCS)	1,600,000
148. (2.1.1.1.2D) MODERNIZATION OF I&C SYSTEMS. SECONDARY INSTRUMENTS AND TRANSDUCERS	19,800,000
149. (2.1.1.1.2E) UPDATING OF SYSTEMS AND DEVELOPMENT OF BLOWDOWN PROCEDURE FOR MEASURING SET PULSE LINES IN TURBINE PLANT EQUIPMENT	43,000
150. (2.1.1.3.1) MODERNIZATION OF THE MAIN TURBINE CONDENSERS. STUDY OF TUBES DAMAGE AND DEVELOPMENT OF MEASURES TO IMPROVE OPERATIONAL RELIABILITY	10,320,000
151. (2.1.1.3.2) UPDATING OF THE GENERATOR PARAMETER MONITORING SYSTEM	203,000
152. (2.1.1.3.3) PERFORMANCE OF ANALYSIS AND DEVELOPMENT OF MEASURES TO DECREASE THE BEARING VIBRATION LEVEL IN TURBINE K1000-60/1500	132,000
153. (2.1.1.4.2) UPGRADING OF THE RCP MOTOR COOLING SYSTEM	100,000
154. (2.1.1.5.1) UPGRADING OF CONDENSER PUMP KSA 1500-240	95,000
155. (2.1.1.5.2) UPGRADING OF CONDENSATE PUMP KSVA 1500-120	130,000
156. (2.1.1.5.3) UPGRADING OF CONDENSATE PUMP KSVA 360-160	242,000
157. (2.1.1.5.4) UPGRADING OF CONDENSATE PUMP KSVA 630-125	190,000
158. (2.1.1.6.1) UPGRADING OF HIGH PRESSURE HEATERS OF PV-2500 TYPE 245	680,000
159. (2.1.1.6.3) UPDATING AND ELABORATION OF A SET OF nor:iTMF`NTATION ON FAST-ACTING ISOLATION VALVE OF BABCOCK TYPE 246	76,000
160. (2.1.1.6.4) UPDATING AND ELABORATION OF A SET OF DOCUMENTATION ON MAINTENANCE AND REPAIR OF THE 960-300/350-E TYPE ISOLATION THROTTLE VALVE	301,000
161. (2.1.1.7.1) UPDATING OF BOOSTER FEED WATER PUMP PTA3800-20	398,000
162. (2.1.1.7.2) UPDATING OF MAIN FEED WATER PUMP PTA 3750-75	703,000
163. (2.1.1.8.1A) DEVICE FOR ISOLATION OF DEFECTIVE STEAM GENERATORS FROM THE MAIN COOLANT PIPELINE (MCP)	65,000

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
164. (2.1.1.8.1B) DOCUMENTATION FOR TIGHTNESS CHECK OF SG HEAT EXCHANGING BUNDLE BY PNEUMO-AQUARIUM METHOD	5,000
165. (2.1.1.9.3.) REPLACEMENT OF 24 KV BREAKER	3,740,000
166. (2.1.1.10.1) UPGRADING OF CIRCULATING WATER PUMP 170 DPV12/22EG-1	340,000
167. (2.1.1.10.2) UPGRADING OF CIRCULATING WATER PUMP OPV10-185EG	275,000
168. (2.1.1.13.1) INTEGRATION OF LEAK CHECK SIPPING METHOD IN THE FUEL HANDLING MACHINE MAST (FHM)	
169. (2.1.2.1) COLLECTION OF BORON-CONTAMINATED WATER LEAKS FROM THE REACTOR CONTAINMENT	see item 1.3.8.4
170. (2.1.2.2) SYSTEM OF MECHANICAL ALIGNMENT FOR THE INTERNALS INSPECTION WELL	
171. (2.1.2.3) INFORMATION SYSTEM "TITAN-2"	25,920,000
172. (2.1.2.4) REPLACEMENT OF – 220 V DC SWITCHES	90,000
173. (2.1.2.5) SELECTIVITY OF PROTECTIVE DEVICES	80,000
174. (2.1.2.6) DETECTION OF GROUND FAULT IN 220 V D.C. MAINS	346,000
175. (2.1.2.7) UNINTERRUPTED ELECTRIC POWER SUPPLY OF COMPUTER CONTROL SYSTEM AND RADIOLOGICAL SAFETY MONITORING EQUIPMENT	54,500
176. (2.1.2.8) REMOVAL OF «LOUVRES» STEAM SEPARATOR FROM STEAM GENERATOR	10,000
2.2. Ananlysis and Expert Assessment	
177. (2.2.1) DYNAMIC UNIT STABILITY IMPROVEMENT	130,000
178. (2.2.2) SUBSTANTIATION OF SECONDARY PIPELINE STRENGTH WITHIN THE BOUNDARIES OF THE TURBINE HALL	135,000
179. (2.2.3) POWER DISTRIBUTION SYSTEM -ANALYSIS OF CHANGE OVER FROM MAIN -ELECTRICAL POWER SUPPLY TO STANDBY SUPPLY	65,000
180. (2.2.4) GROUNDING SYSTEM DESIGN	10,000
181. (2.2.5) ANALYSIS OF ROUTING OF THE TURBINE DRAINING AND BLEEDING PIPELINES	8,000
2.3. Operation Upgrading	
182. (2.3.1.1) ELABORATION OF THE DOCUMENTATION FOR MAINTENANCE AND REPAIR OF DRIVING TURBINE TYPE OKA-12A	51,000
183. (2.3.1.5) SCHEDULING OF THE PREVENTIVE REPLACEMENT OF THE GENERATOR AUXILIARY SYSTEM COMPONENTS	27,000
184. (2.3.2.1A AND 2.3.2.2) STATIONARY AUTOMATIC MONITORING SYSTEM PDA-1GMSM OF NPP UNIT	95,000
185. (2.3.2.1B) CONTROL SYSTEM OF INSULATION RESISTANCE OF GENERATOR VOLTAGE CIRCUITS GROUNDING	207,000
186. (2.3.2.1C) A SET OF TECHNICAL MEASURES TO ENHANCE THE FIRE AND EX- PLOSION SAFETY OF HYDROGEN COOLED TURBO-GENERATOR	80,000
187. (2.3.2.3) AUTOMATED INFORMATION-SERVICE SYSTEM FOR CONTROL AND DIAGNOSIS OF UKTS (ASKD) BLOCKS	95,000

MOHT-EDF Measures	Costs for 2 Rectors in USD95 ¹
188. (2.3.3.1) REVISION OF SERVICE MANUALS FOR EQUIPMENT AND TURBINE PLANT SYSTEM	800,000
189. (2.3.3.2) DEVELOPMENT OF SCHEDULED PULSE LINE BLOW DOWN IN THE TURBO-PLANT EQUIPMENT MEASURING SETS	40,000
190. (2.3.3.3) IMPROVEMENT OF IN-SERVICE INSPECTION OF TURBINE PIPELINE METAL	182,000
191. (2.3.3.4) CONTROL OF RESIDUAL LIFE OF NPP CABLES	1,600,000
ADDITIONAL MEASURES: REDUCTION OF PROBABILITY OF LEAKAGE FROM MAIN JOINT SEALS IMPROVING RELIABILITY OF AIR DUCT BEND	220,000 85,000
SUM:	314,338,100 USD95

2B.4 Safety Measures Not Included in the Modernization Programme for K2/R4

2B.4.1 Safety issues which require more comprehensive safety measures than the MP

The Institute of Risk Research has identified important safety relevant issues which require more comprehensive measures than those proposed in the Modernization Programme (MP) for Khmelnitsky 2 and Rovno 4 (Rev. 2, Oct. 1996).

A solution of these safety relevant issues results in higher costs than those evaluated in the MP. An evaluation of the costs for implementing more comprehensive measures is beyond the scope of this report.

Important safety relevant issues not adequately addressed in the MP

AREA: 1. General

Preservation and Mothballing Qualification of Equipment Post-TMI Requirements (NUREG-0737)

AREA: 2. Reactor Core Issues

Control Rod Insertion Reliability/Fuel Assembly Deformation Xenon Oscillations and Power Density Control System

AREA: 3. Component Integrity Issues Reactor Pressure Vessel Embrittlement Steam Generator (SG) Collector Integrity and Non-Destructive Testing (NDT) Reactor Coolant Pump (RCP) Seals

AREA: 4. Systems Issues

ECCS Sump Screen Blocking SG Safety and Relief Valves Qualification for Two-Phase and Water Flow SG Feedwater Capacity ECCS Sump Capacity **AREA: 5. Instrumentation and Control Issues** Reactor Vessel Head Leak Monitoring System Instrumentation & Control Replacement AREA: 6. Electrical Power Supply Issues **Emergency Battery Discharge Time** Replacement of 6 kV Switchgear **AREA: 7. Containment Issues** Containment Structure and Containment Bypass Accidents Containment Ultimate Capacity Pneumatic Containment Isolation Valves **AREA: 8. nternal Hazards Issues** Fire Prevention Pipeline Break Impacts Inside the Reactor Building and Turbine Building **AREA: 9. External Hazards Issues** Extreme Weather Conditions, Low Temperatures Man-Induced External Hazards Seismicity and Geological Hazards AREA: 10. Accident Analysis Issues Probabilistic Safety Assessment (PSA) Rapid Reactivity Increase/Control Rod Ejection AREA: 11. Spent Fuel and Radioactive Waste Management Issues Spent Fuel Management Risks for WWER-1000 Reactors (Spent Fuel Pools Inside Containment) **AREA: 12. Operating Procedures Issues** Implementation of symptom-oriented emergency operating procedures (EOPs) **AREA: 13. Logistics and Infrastructure Issues** Financial and infrastructural preconditions for implementation of the MP **AREA: 14. Additional Safety Issues**

Attempted Application of Leak-Before-Break (LBB) to Secondary PipingComplete Loss of Heat Sink (Loss of ESW)

2B.4.2 Safety measures identified by MOHT-EdF not included in the MP

The MOHT-EDF consortium identified two groups of proposed upgrades based on PSA and severe accident insights for VVER-1000/320 reactors, most of which are **not** included in the K2/R4 upgrade programmes. The items recommended by MOHT are as follows (MOHT- EdF, "Generic Reference Programme for the Modernization of VVER 1000"-V320, MOHT (Atomenergoprojekt, OKB Gidropress, Kurchatov Institute, VNIIAES, Zarubejatomenergostroy, Rosenergoatom, et al.) and Electricité de France (EdF), Revision 5, January 1996: Part 1/A2, pp. 2-4; Part 3, pp. 132-139):

• Upgrade pressurizer relief valves for two-phase and water flow to allow for performing feed and bleed (i.e., removal of decay heat from the primary system by "bleeding" primary coolant from the pressurizer relief valves and providing makeup with the high pressure injection system). [Included in the upgrade programme as technical measure 13411, with implementation before startup; KIEP 1996:67-68.]

- Development and implementation of additional means of steam generator supply from reliable sources (due to the limited capacity of the emergency feedwater system, which in the basic design is limited to 8-10 hours of heat removal). [Included in the upgrade programme as technical measure 13311, but only **after** startup; KIEP 1996:63-64.]
- Provision of an additional common diesel generator. [Included in the upgrade programme as technical measure 24411, with implementation before startup; KIEP 1996:203-204.]
- Provision of an automated algorithm of protective actions in case of large primary-to-secondary leak.
- Upgrading of the suction pipelines of the primary circuit heat removal system to improve its reliability. [Included in the upgrade programme.]
- Introduction of a passive decay heat removal system (SPOT; consisting of a heat exchanger to dump steam to the environment via natural circulation with the primary circuit intact).
- Implementation of additional, higher pressure (15 bar), hydroaccumulators to provide for extended (several hours) passive injection in case of failure of active emergency core cooling system.
- Modernization of the area under the reactor vessel to accommodate core melt accidents, and provision of additional borated water inventory to flood the area under the reactor vessel in case of core melt.
- Implementation of filtered vented containment for severe accidents.
- Installation of passive hydrogen recombiners for severe accident hydrogen loads. [Included in the upgrade programme as technical measure 16211, but only analysis is included before startup; equipment installation is **after** startup; KIEP 1996:118-119.]
- Implementation of containment penetration room leakage collection system, processed through the filtered venting system.

2B.5 Temelin – Example for a WWER-1000/320 Reactor Completion Project with Delay in Schedule and Costoverruns

The following text has been extracted from a report which was presented by the Czech minister Karel Kühnl in August 1998:

2B.5.1 Date and cost of completion of Temelin construction

According to the current calculations, the cost of Temelin NPP construction will reach 98.6 billion Czech crowns and the date of completion of Unit 1 – fuel load to the reactor – was set to the end of August year 2000. If this date is met, the first Unit of Temelin NPP could be commercially operating in the beginning of May 2001.

The last official fuel load date accepted by the whole system of suppliers was September 1997 and the cost of Temelin NPP construction completion was given in the amount of 76.2 billion Czech crowns.

As of June 30, 1998, of the total budget of 98.6 billion crowns, 63.3 billion crowns was spent for the supplied equipment and work. Another 35.3 billion Czech crowns is still to be expended for the completion of construction.

2B.5.2 Main causes of delay in the schedule

The main cause for delays in completion of construction are the accepted changes in the design of Temelin NPP. These changes which are continuously being incorporated in the design of Temelin NPP are divided into three categories.

- a) System changes accepted with the objective to enhance technical, operational and safety level of the power plant. These changes were recommended by international institutions, by Czech State Office for Nuclear Safety and also by CEZ, a.s. experts. As an example we could mention substitution of the original instrumentation and control system for Westinghouse system.
- b) Changes which inevitably resulted from the changes of category one. Example is modification of electric parts, HVAC system or fundamentally more rigid requirements for implementation of cabling caused by a substitution of the instrumentation and control system.
- c) Changes caused by close down of production of certain equipment or change of production programme of some suppliers. Equipment not delivered for these reasons must have been substituted by another piece of equipment which is more modern but require a change in the original design.

2B.5.2.1 Process of prolongation of construction due to design changes

Each additional equipment or more modern equipment (with other parameters) must be incorporated in the power plant design, including a new design of instrumentation and control system provided by Westinghouse. A major part of the delay in the date of construction completion is therefore attributed to design work resulting from the changes described above.

One of the direct causes of delay of final date is the delay of cabling (design and physical cable pulling) which is impacted by a majority of changes and where it is most complicated to incorporate the changes.

Delay in cable pulling (stop of pulling for the reason of completion of the design change or its slow progress for the reason of complicated design) is directly reflected in the date of power plant completion (cabling is on so-called critical path of the construction schedule).

2B.5.2.2 Elimination of the causes of construction delay

The number of accepted changes which may provoke major intervention in the design, is strictly limited during the change proceedings in the scope of which it is assessed whether the proposed change is inevitably necessary for bringing of the power plant to a safe operation. If not, the change is rejected.

Year	Changes influenced by	Note
1990	Decision about substitution of cables for non-flammable and fire-superior cables	Impact on changes from 1996 to 1998 (cable supports, penetrations)
1991, 1992	Russian design – change of supplies – substitute deliveries	
1992, 1993	Enhancement of nuclear safety on the basis of international audits	IAEA, NUS Halliburton
1994, 1995	Calculations of strength and lifetime	
1994, 1995 – to this date	Substitution of instrumentation and control system – Westing- house	
1994-1996	Seismic calculations	
1994	Enhancement of fire protection in the Russian design zone, change of fire sections	
1995 to the beginning of 1998	Segregation and separation of cabling	End of extreme growth of the number of change proceedings- maximum at the turn of 96-97
1998	Extension of number of changes for Unit 2, civil completion, changes from start-up of the individual systems start to show their impact	

Main design changes implemented from 1990 to 1998

Note: Most significant increase of the number of design changes occurred in late 1996 when there were approximately 22 process changes a week. Most of them were important changes impacting the work schedule. In the second quarter of 1998 there were about 4 changes a week. These were less important changes resulted especially from testing during start-up of the individual systems.

2B.5.2.3 Individual dates for start up of Temelin NPP

Activity	Date
Preparedness of the instrumentation and control system for test of technology from the control room	June 30, 1999
Start of fuel loading (start of physical testing)	August 31, 2000
Start of complex testing – successful test of 144 hours is followed by commercial operation of unit	April 30, 2001

2B.5.2.4 Sources of possible jeopardising of the date of construction completion

- 1. Other changes in the power plant design (risk declines with a decreasing number of significant changes).
- 2. Possibility of delay of suppliers' work which are on the critical path of power plant construction completion (Westinghouse, Elektromontážní závody Praha).
- 3. Necessity of implementation of partial changes which might result from the results of tests conducted during commissioning of the power plant.
- 4. Other requirements of supervisory bodies which might prolong the approval proceedings for start of operation of the power plant.

2B.5.3 Increase of cost of construction

2B.5.3.1 Table providing cost comparison

(all prices are given in million of Czech crowns)

2 SR 95	3 SR 12/97	4 SR 03/98	5 Difference 98-95
2 108	3 128	3 655	1 547
39 963	41 799	54 799	14 836
13 718	14 990	16 462	2 744
15 533	16 347	21 061	5 528
4 943	1	2 603	- 2 340
76 265	76 265	98 580	22 315
71 322	76 264	95 977	24 655
	SR 95 2 108 39 963 13 718 15 533 4 943 76 265	SR 95 SR 12/97 2 108 3 128 39 963 41 799 13 718 14 990 15 533 16 347 4 943 1 76 265 76 265	SR 95 SR 12/97 SR 03/98 2 108 3 128 3 655 39 963 41 799 54 799 13 718 14 990 16 462 15 533 16 347 21 061 4 943 1 2 603 76 265 76 265 98 580

Column 2 shows division of total cost of the budget accepted in 1995.

Column 3 shows in which way the reserve of 1995 was used from 1995 to 1997.

Column 4 shows assumed total cost for completion of both Temelin NPP units (March 1998).

Column 5 shows the total increase of cost.

2B.5.3.2	Cost indirectly related to start of operation of Temelin NPP (million	on of CZK):
Liquidation	n of site facilities with a subsequent technical recultivation	2 169
Procurem	ent of fixed assets in reserve	
Total		2 509
Cost of liq	uidation of site facilities was not taken into account in the budget for 199	95.

Extension of supply SÚJB, IBP IAEA, OSART, NUS CEZ Westinghouse* Expertise	13.7 billion CZK (98) 2.3 billion CZK 1.9 billion CZK 2.8 billion CZK 6.3 billion CZK 0.4 billion CZK
Prolongation of construction	5.2 billion CZK
Price escalation	5.7 billion CZK
Total	24.6 billion CZK

2B.5.3.3 Causes and amount of budget increase as against year 1995

* This supply reflects all three causes of increase of budget, including the change of Czech crown exchange rate.

Causes of increase of budget for Temelin NPP construction are directly related with the described mechanism of its prolongation. Most significant increase of cost was caused by changes accepted for enhancement of safety and reliability of power plant operation and changes resulting therefrom. Extension of the supply by the additionally ordered pieces of equipment and work increased the total cost by an amount of 13.7 billion Czech crowns. The amount can be divided between companies and institutions which provoked the changes by their recommendation (IAEA, OSART) or requirement (SÚJB, IBP). To this category we can also include increase of the price of Westinghouse supply caused by additional changes in the design and prolongation of the construction. A number of changes which caused the increased of cost were provoked also by CEZ by its own decision to improve a certain part of power plant.

Examples of extension of supplies: Requirements of SÚJB and other legislative requirements

Examples of the most important projects:

- preparation of independent verification and validation of safety software of instrumentation and control system of Westinghouse
- demonstration of safety and lifetime of steam generators and reactor pressure vessels
- preparation of safety evaluation of containment
- preparation of conclusive documentation of calculation of strength and lifetime

Recommendations of international and Czech bodies (Audit of company Halliburton NUS, recommendation of IAEA, OSART mission,). Examples of the most important ones are as follows:

- substitution of instrumentation and control system
- · building of the system of emergency accident facilities
- adding of filtration stations into the HVAC system
- preparation of probabilistic safety analysis
- preparation of analysis of design basis and beyond design basis accidents

Improvement based upon the decision of CEZ, a.s.

The most important improvements are as follows:

- implementation of group control of voltage
- preparation of analysis for modification of steam generators
- · preparation of programmes of controlled ageing of selected components
- · evaluation of calculations of strength and lifetime

Other causes of increase of budget are extra costs related to control of construction and preparation of power plant operation and increase of prices of supply of equipment and services which occurs as the time goes by.

Increase of cost of construction completion was also caused by exchange rate changes of Czech crown against USD (in 1995 the exchange rate was 28 CZK/USD, in 1998 it is 36 CZK/USD). As a consequence of that, the cost was increased by 2.5 billion Czech crowns and their hedging was not possible. This increase of cost is not given separately, it is contained in the cost contained in the Table.

2B.6 Conclusions

- 1. The cost estimates of the modernization measures to be implemented at K2/R4 NPPs were presented in the MP in the year 1996 and they cover only modernization upgradings.
- 2. The cost estimates quoted in the MP (327 million USD96) are in the same range as cost estimates for the modernization of operating WWER-1000 reactors (314 million USD95 or 330 million USD 96) presented by MOHT-EdF in 1995.
- 3. Significant safety issues, which have been identified by IRR (see above) are not adequately addressed in the K2/R4 Modernization and Upgrade Program. A comprehensive treatment of these issues is a precondition to reach the minimum acceptable safety level, formulated by IAEA in the INSAG-3 goals for core damage frequency and frequency of large releases or in NUSS codes. Implementation of measures to solve these issues and additional measures proposed by MOHT-EdF will result in higher costs than quoted in the present MP.
- 4. Technical and organisational problems in the Temelin completion project caused considerable costoverruns and time delays in this project. A similar development could be expected for K2/R4.
- 5. Up to now no information about cost estimates of completion and rehabilitation of K2/R4 is available. Attachment 1

Attachment – Table 1: Costs of all modernization measures planned in the Modernization Programme for K2 and R4

All costs quoted in this table are costs in USD 96.

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum	
		10 GENERAL			
	10.1	Components Qualit	fication		
11011 Develop mat	terials on equipment	qualification			
19 month	30 month			49 month	
	(correction required)				
400.000 USD96	1.600.000 USD96				2.000.000 USD96
			TOTAL	49	2.000.000
	11 REACT				
		tronic characteristic			
11111 Equip the re		h technical devices for		colity c	of reactor core
3			equipment have been taken into account in measures 14211 and 14221	3	
65.000					65.000
		11.2 Core structur	e	<u> </u>	
11211 Study of a n improve Xe	ew controll strategy and power distribution	and replacement of o	control rods:		
6	-			6	
130.000					130.000
		and replacement of one control rods efficient of the control rods efficient of the control rods of the controds of the control rods of the control			
6		During normal cyclic replacement of control rods.	During normal cyclic replacement of control rods.	6	
520.000					520.000
11221 To provide o	design drop time of C	PS control rods. Est	imate loads onto sup	portin	g frame of FA.
1	1	3	During preventive maintenance	5	
5.000	20.000	25.000	225.000		275.000
11222 To provide c	lesign drop time of C	PS control rods. Intr	oduce "heavy weigh	t" cont	rol rod of FA.
1	2	9	6	18	
		The cost of a compo- nent of the new heavy shafts; the price ig- nores the cost of the heavy CPS AR's.	(the cost deals with operation expenses)		
2.530	6.700	355.000	5.200		369.430
			TOTAL	38	1.359.430

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	12 (COMPONENTS INT	EGRITY		
	12	2.1 Primary circuit sy	/stem		
	neasures to protect protect protect protect protect and primar				
12	4	8	4	28	
		To be defined more exactly by result study	To be defined more exactly by result study corrected to finished		
3.000	5.300	20.000	5.830		34.130
	12.2 Safety	important systems	under pressure		
	rigid" embedding of s f reactor compartme		pipelines and		
1	8	6	4	19	
3.800	92.200	50.000	10.000		156.000
12221 To develop	and implement the n	ecessary means and	systems for realizati	on of l	BB concept.
10	16	4	6	36	
1.410.500	1.690.000	4.550.000	1.300.000		8.950.500
			•		
design and fluence) in following: -	accuracy on assessr introduce standard s order to estimate the calculational and exp	system for continous residual life of the re perimantal studies; –	-up by critical zones monitoring of radiati actor vessel. The sco development of the	ion loa ope of monito	d (accumulated the work is the pring methodol-
design and fluence) in following: - ogy; – deve operation; -	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys	nent of fluence build system for continous residual life of the re perimantal studies; – n and manufactoring stem for commercial	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive	ion loa ope of monito ra of tl	d (accumulated the work is the pring methodol-
design and fluence) in following: - ogy; – deve operation; - 18	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig	nent of fluence build system for continous residual life of the re perimantal studies; – n and manufactoring	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation.	ion loa ope of monito	d (accumulated the work is the pring methodol-
design and fluence) in following: - ogy; – deve operation; - 18	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys	nent of fluence build system for continous residual life of the re perimantal studies; – n and manufactoring stem for commercial	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive	ion loa ope of monito ra of tl	d (accumulated the work is the pring methodol-
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys	nent of fluence build system for continous residual life of the re perimantal studies; – n and manufactoring stem for commercial	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation:	ion loa ope of monito ra of tl	d (accumulated the work is the pring methodol-
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600	ion loa ope of monito ra of tl 34	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400	accuracy on assess introduce standard s order to estimate the calculational and exp lopment of the desig - turning over the sys 4 72.000	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600	ion loa ope of monito ra of tl 34	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400	accuracy on assess introduce standard s order to estimate the calculational and exp lopment of the desig - turning over the sys 4 72.000	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are included into the price	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pas The cost shown are included into the price	ion loa ope of monito ra of tl 34	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4 72.000 preheating up to 55° C	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are included into the price of the unit completion 0	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pass The cost shown are included into the price of the unit completion 0	ion loa ope of monito ra of th 34	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tank
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig - turning over the sys 4 72.000 preheating up to 55° C	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are included into the price of the unit completion 0	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pass The cost shown are included into the price of the unit completion 0	ion loa ope of monito ra of th 34	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tank
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4 72.000 preheating up to 55° C	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 C of water supplied to The cost shown are included into the price of the unit completion 0 C of water supplied t	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pas The cost shown are included into the price of the unit completion 0 o reactor by ECCS ac	on loa ope of monito ra of th 34 sive ac	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tank
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4 72.000 preheating up to 55° C	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 C of water supplied to The cost shown are included into the price of the unit completion 0 C of water supplied t	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pass The cost shown are included into the price of the unit completion 0 o reactor by ECCS ac 4 During maintenance	on loa ope of monito ra of th 34 sive ac	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tank
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement 0 12331 Implement 0 12341 To moderni with the pu - to develop	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4 72.000 preheating up to 55° C 0 preheating up to 20° (6	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are included into the price of the unit completion 0 C of water supplied t 12 160.000 within the scope of pre- epresentativeness of Iculational- and expe	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pas The cost shown are included into the price of the unit completion 0 o reactor by ECCS ac 4 During maintenance outage 250.000 esent programme of s test results of surve rimantal methods for	ion loa ope of monito ra of th 34 sive ad ctive pa 22 surveil illance	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tanks 0 art. 510.000 lance-specimens:
design and fluence) in following: - ogy; – deve operation; - 18 including 374,400 – experimental verifivcation 647.400 12321 Implement 0 12331 Implement 0 12341 To moderni with the pu - to develop	accuracy on assess introduce standard s order to estimate the calculational and exp elopment of the desig – turning over the sys 4 72.000 preheating up to 55° C 0 preheating up to 55° C 6 100.000 ze radiation control, v rpose of enhancing ro o and substantiate ca	nent of fluence build system for continous residual life of the re- perimantal studies; – n and manufactoring stem for commercial 12 751.000 c of water supplied to The cost shown are included into the price of the unit completion 0 C of water supplied t 12 160.000 within the scope of pre- epresentativeness of Iculational- and expe	-up by critical zones monitoring of radiati actor vessel. The sco development of the the system; – delive operation. Assembling during adjustment works. Pilot operation: 1 to 2 life times 15.600 reactor by ECCS pas The cost shown are included into the price of the unit completion 0 o reactor by ECCS ac 4 During maintenance outage 250.000 esent programme of s test results of surve rimantal methods for	ion loa ope of monito ra of th 34 sive ad ctive pa 22 surveil illance	d (accumulated the work is the pring methodol- ne NPP; – pilot 1.486.000 ccumulator tanks 0 art. 510.000 lance-specimens:

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
perform a c container a means for mulated by of surveilla	and introduce a new calculational- and exp issemblies and survei determination of irrad them in the moderniz nce-specimens and p o manufacture and as	erimental verification illance-specimens; – iation conditions of s zed container assem rogramme of tests; -	n and develop a design to develop and subs surveillance-specime blies; – to develop a - to develop a systen	gn of m tantiate ens and shedul n of arc	nodernization of e methods and d fluence accu- e of irradiation chiving test
	8	12		20	
			Assembling during adjustment works, tests – in line with programme (cost is included in operation expenses)		
	422.500	201.500			624.000
life of safe its operatio	and implement the s operation of the react n, indication of vessel s at reactors and mod	or vessel with regard radiation load monit	d for actual reactor st oring system, results	tate an of rad	d conditions of iation monitoring
3	3			6	
40.000	19.500				59.500
tual: – state vessel mate	e of station systems; erials; – test results o n load of vessel	 diagrams of fuel log 		ration;	 properties of
tual: – state vessel mate	e of station systems; · erials; – test results o	 diagrams of fuel log 	ading; – power genei	ration;	 properties of
tual: – state vessel mat of radiatior	e of station systems; - erials; - test results o load of vessel 9 80.200	 diagrams of fuel loa f surveillance-specir 	ading; – power gener nens; – indications o	ration; f moni [,] 9	- properties of toring system 80.200
tual: – state vessel mate of radiation 12371 Develop, m	e of station systems; - erials; - test results o load of vessel 9 80.200 anufacture and imple	- diagrams of fuel lo f surveillance-specir ment a set of equipn	ading; – power gener nens; – indications o	ration; f moni [,] 9	- properties of toring system 80.200
tual: – state vessel mate of radiation 12371 Develop, m	e of station systems; - erials; - test results o load of vessel 9 80.200	- diagrams of fuel lo f surveillance-specir ment a set of equipn	ading; – power gener nens; – indications o	ration; f moni [,] 9	- properties of toring system 80.200
tual: – state vessel mate of radiation 12371 Develop, m	e of station systems; - erials; - test results o load of vessel 9 80.200 anufacture and imple of gaskets of the main	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint.	ading; – power gener nens; – indications o nent for qualitative m	ration; f moni ⁻ 9 anufac	- properties of toring system 80.200
tual: – state vessel mate of radiation 12371 Develop, m	e of station systems; - erials; - test results o load of vessel 9 80.200 anufacture and imple of gaskets of the main	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint.	ading; – power gener nens; – indications o nent for qualitative m 2 (during adjustments	ration; f moni ⁻ 9 anufac	- properties of toring system 80.200
tual: – state vessel mat of radiatior 12371 Develop, m annealing o 12391 Perform mo	e of station systems; - erials; – test results o load of vessel 9 80.200 eanufacture and imple of gaskets of the main 11	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re	ading; – power gener nens; – indications o nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use o	ration; f moni 9 anufac 35	- properties of toring system 80.200 tture and 2.190.000
tual: – state vessel mat of radiatior 12371 Develop, m annealing o 12391 Perform mo	e of station systems; - erials; - test results of load of vessel 9 80.200 anufacture and imple of gaskets of the main 11 550.000 ore accurate strength	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re	ading; – power gener nens; – indications o nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use o	ration; f moni 9 anufac 35	- properties of toring system 80.200 ture and 2.190.000
tual: – state vessel mate of radiation 12371 Develop, m annealing of 12391 Perform mo for making	e of station systems; - erials; - test results o load of vessel 9 80.200 anufacture and imple of gaskets of the main 11 550.000 ore accurate strength decisions concerning	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re g the necessity of ap	ading; – power gener nens; – indications o nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use o propriate redesign.	ration; f monif 9 anufac 35 :alculat	- properties of toring system 80.200 ture and 2.190.000
tual: – state vessel mate of radiation 12371 Develop, m annealing of 12391 Perform mo for making	e of station systems; - erials; - test results of load of vessel 9 80.200 anufacture and imple of gaskets of the main 11 550.000 ore accurate strength decisions concerning 9 (in case of	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re the necessity of ap 12 (in case of	ading; – power gener nens; – indications o nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use o propriate redesign. 2 During preventive	ration; f monif 9 anufac 35 :alculat	- properties of toring system 80.200 tture and 2.190.000
tual: – state vessel mate of radiation	e of station systems; - erials; - test results o load of vessel 9 80.200 banufacture and imple of gaskets of the main 11 550.000 bre accurate strength decisions concerning 9 (in case of reconstruction)	- diagrams of fuel lo f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re g the necessity of ap 12 (in case of reconstruction)	ading; – power gener nens; – indications of nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use of propriate redesign. 2 During preventive maintenance 9.750	ration; f monif 9 anufac 35 :alculat	- properties of toring system 80.200 Eture and 2.190.000 tion results
tual: - state vessel mate of radiation 12371 Develop, m annealing of 12391 Perform mo for making 3 13.000 12411 Develop or	e of station systems; - erials; - test results o load of vessel 9 80.200 banufacture and imple of gaskets of the main 11 550.000 bre accurate strength decisions concerning 9 (in case of reconstruction)	- diagrams of fuel loa f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re g the necessity of ap 12 (in case of reconstruction) 9.750 12.4 Miscellaneou	ading; – power gener nens; – indications of nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use of propriate redesign. 2 During preventive maintenance 9.750	ration; f monif 9 anufac 35 alculat 26	- properties of toring system 80.200 eture and 2.190.000 tion results 110.500
tual: - state vessel mate of radiation 12371 Develop, m annealing of 12391 Perform mo for making 3 13.000 12411 Develop or	e of station systems; - erials; - test results on load of vessel 9 80.200 banufacture and imple of gaskets of the main 11 550.000 ore accurate strength decisions concerning 9 (in case of reconstruction) 78.000	- diagrams of fuel loa f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re g the necessity of ap 12 (in case of reconstruction) 9.750 12.4 Miscellaneou	ading; – power gener nens; – indications of nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use of propriate redesign. 2 During preventive maintenance 9.750	ration; f monif 9 anufac 35 alculat 26	- properties of toring system 80.200 eture and 2.190.000 tion results 110.500
tual: – state vessel mate of radiation 12371 Develop, m annealing of 12391 Perform mo for making 3 13.000 12411 Develop or circuit to st	e of station systems; - erials; - test results of load of vessel 9 80.200 anufacture and imple of gaskets of the main 11 550.000 ore accurate strength decisions concerning 9 (in case of reconstruction) 78.000	- diagrams of fuel loa f surveillance-specir ment a set of equipn joint. 22 1.380.000 calculations of the re g the necessity of ap 12 (in case of reconstruction) 9.750 12.4 Miscellaneou nical measures for ac	ading; – power gener nens; – indications of nent for qualitative m 2 (during adjustments works) 260.000 eactor air duct. Use of propriate redesign. 2 During preventive maintenance 9.750	ration; f monif 9 anufac 35 alculat 26	- properties of toring system 80.200 eture and 2.190.000 tion results 110.500

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
12431 To correct PNAE G 7 (strength calculations	of the reactor vessel	head to bring them	into a li	ine with
3	18			21	
26.000	104.000				130.000
	nd research, experim erion of SG U-tube plu		jeneering works are	require	d for determina-
3	9	3	3	18	
65.000	91.000	65.000	65.000		286.000
			TOTAL	303	15.320.030
		13 SYSTEMS			
	13	.1 Reactivity mainter	nance		
13111 Positioning	g of boron – 10 new m	onitoring points			
3	11	9	7	30	
10.000	116.000	512.000	100.000		738.000
	13.2 Primary	circuit coolant marg	jin maintenance		
13211 Analysis of	insulation material b	ehavior under LOCA	conditions.		
				0	
	to be defined				
					0
13213 Implementa under LOC	ation of selected tech	nical solution on NPI	Ps. Ensure residual h	neat ren	noval
	16	10	4	30	
	Schedule and cos after design o				
	430.000	3.900.000	450.000		4.780.000
	13	3.3 Primary circuit co	oling		
13311 Develop an	d implement addition	al facilities for steam	generator makeup f	rom re	liable supplies.
4	3	6	3	16	
		To be defined from result of detailed drawings	To be defined from result of detailed drawings		
7.800	18.940	100.000	20.000		146.740
13321 Replace ste documenta	eam generator safety ation.	valves with safety de	evices meeting require	rement	s of normative
	10	12	4	26	
	to be defined				
	135.680	1.140.000	100.000		1.375.680

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	13.4 Prim	ary circuit pressure	maintenance		
13411 To use the achieve "fe	pulse safety device o ed and bleed" proced	n the pressuriser to l lure in the primary ci	lower the primary pre rcuit.	essure	so as to
3	6			9	
		to be defined after technical project have been designed	to be defined after technical project have been designed		
13.000	220.000				233.000
		13.6 Auxilary syste	m		
13611 Implement	upgraded tightness d	liagnosis system for	ECCS heat exchange	ers.	
	22	4	2	28	
	150.000	150.000	100.000		400.000
			TOTAL	139	7.673.420
	14 MONITO	ORING AND CONTR	ROL SYSTEMS		
		14.1 Informationsys	tem		
	n temperature monito d temperature transdu			ith intro	oduction of
3	3	6	2	14	
			(during adjustment works)		
32.500	245.000	305.000	45.500		628.000
	14.2 Reac	tor control and prote	ection system		
	nt of existing NFMS h ce parameters, and m			nproved	d reliability,
3	4	12	6	25	
500.000	150.000	1.760.000	225.000		2.635.000
14221 Provide po metrologic	wer units with regular al support.	r facilities for reactivi	ity measurement con	nplete v	vith
3	6	6	6	21	
3.000	10.000	85.000	20.000		118.000
14231 Ensure the system.	partitioning impulse	lines to I & C safety s	system sensors for e	mergen	cy protection
6	8	6	2	22	
			(stage-by-stage during maintenance		
			outages)		

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
14241 Redesign o	f the system for meas	suring level in steam	generators.		
	3	6	2	11	
			(During preventive maintenance)		
	40.000	84.500	19.500		144.000
	and implement at NP			me uno	der the reactor
3	18	24	2	47	
			(During adjustment works)		
65.000	325.000	208.000	52.000		650.000
reactor core	e immerses in the coo of the development).	plant ("wet" of traditi	onal "dry" design ag	ainst tl	
	o ensure control and electronics; – measu				
		plant ("wet" of tradition	onal "dry" design ag	ainst tl	he degree of
	12	24	24	60	
	1.084.000	5.530.000	1.190.000		7.804.000
				•	
14271 To carry ou noise immu	t analysis of noise in Innity.	CPS circuits and to	develop measures or	n impro	ovement of
		CPS circuits and to	develop measures or 12	n impro 21	ovement of
noise immu	innity.		-	-	ovement of
noise immu	innity.		12 (with regard for the cost of implementa-	-	76.000
14281 To replace	annity. 3	3 32.000 ding their position in	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w	21	76.000
14281 To replace	3 3 30.000 the CPS drives, include	3 32.000 ding their position in	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w	21	76.000
14281 To replace	3 30.000 the CPS drives, include e and a service life of	3 32.000 ding their position in f not less than 30 yea	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w	21 hich ha	76.000
14281 To replace	3 30.000 the CPS drives, include e and a service life of 9	3 32.000 ding their position in f not less than 30 yea 15	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives wars. 6 130.000	21 hich ha	76.000 ave greater
A.000 14281 To replace pulling forc	3 30.000 the CPS drives, include e and a service life of 9	3 32.000 ding their position in f not less than 30 yea 15 6.900.000 14.3 Control syste	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w ars. 6 130.000 m	21 hich ha	76.000 ave greater 7.420.000
A.000 4.000 14281 To replace pulling forc	annity. 3 30.000 the CPS drives, include the a service life of 9 390.000 the a more reliable, NP	3 32.000 ding their position in f not less than 30 yea 15 6.900.000 14.3 Control syste	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w ars. 6 130.000 m	21 hich ha	76.000 ave greater 7.420.000
A.000 14281 To replace pulling forc	annity. 3 30.000 the CPS drives, include and a service life of 9 390.000 th a more reliable, NP K-1000-60/3000	3 32.000 ding their position in f not less than 30 yea 15 6.900.000 14.3 Control syste P-classified device o	12 (with regard for the cost of implementa- tion of measures) 10.000 dicators by drives w ars. 6 130.000 m f the electronic part	21 hich ha 30 turbine	76.000 ave greater 7.420.000
noise immu 3 4.000 14281 To replace pulling force 14321 Replace with system ref. 14331 Replace point	annity. 3 30.000 the CPS drives, include and a service life of 9 390.000 th a more reliable, NP K-1000-60/3000 3 50.000 wer unit control component of the component o	3 32.000 ding their position in f not less than 30 yea 15 6.900.000 14.3 Control syste P-classified device o 12 1.000.000 outer system (upper l	12 (with regard for the cost of implementation of measures) 10.000 dicators by drives wars. 6 130.000 m f the electronic part 3 50.000 level) with modern, h	21 hich ha 30 turbine 18	76.000 ave greater 7.420.000 e regulating 1.100.000 rformance
4.000 4.000 14281 To replace pulling forc 14321 Replace wit system ref.	annity. 3 30.000 the CPS drives, include and a service life of 9 390.000 th a more reliable, NP K-1000-60/3000 3 50.000 wer unit control component of the component o	3 32.000 ding their position in f not less than 30 yea 15 6.900.000 14.3 Control syste P-classified device o 12 1.000.000 outer system (upper l	12 (with regard for the cost of implementation of measures) 10.000 dicators by drives wars. 6 130.000 m f the electronic part 3 50.000 level) with modern, h	21 hich ha 30 turbine 18	76.000 ave greater 7.420.000 e regulating 1.100.000 rformance

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum	
		14.4 Monitoring sys	tem		
14411 Provide po ("black box	wer unit with data sto (").	rage equpment for b	eyond design-basis a	acciden	tal conditions
3	10	24	3	40	
60.000	200.000	1.000.000	60.000		1.320.000
14421 Replace an requiremen	d add sensors, transo its (operational exper	lucers, and seconda ience)	ry instruments that fa	ail to m	eet modern
	14	16	5	35	
	70.000	2.500.000	139.500		2.709.500
			TOTAL	362	36.984.500
	45 51				
		ECTRICAL POWER			
15111 Peplace LIE	SU. (Operational exp	Power generation a			
	5	6	4	15	
	40.000	3.500.000	370.000	10	3.910.000
15121 Increase st	orage capacity of bat		070.000		0.010.000
	6	4	5	15	
	61.440	757.200	80.000	10	898.640
15131 Perform an	alysis of additional so				0001010
4	6	3		10	
23.040	37.120				60.160
15132 Developme	nt of measures direct	ed to improvment of	existing SDGS reliat	oility.	
2	5	6	3	16	
8.000	42.000	1.000	2.000		53.000
	15.2 ELEC		ISTRIBUTION		
15211 Replace 6 k	V switches				
	3	2	3	8	
	67.600	1.080.000	80.000		1.227.600
15221 Exchange of	of sealed cable penetr	ations.			
	1	2	3	6	
	14.840	9.900.000	600.000		10.514.840
			TOTAL	70	16.664.240
	16 CONTAINM	IENT AND BUILDI	NG STRUCTURES		
	16.	1 Containment bypa	ss risk		
	sign solutions to preversion solutions to preversion of the section of the sectio		of independent MCP	• circuit	and
	5		4	9	
	12.000		58.400		70.400
	•			·I	

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
metal and w	d substanciate comp velds that allow to tin on their prevention fro	nely detect defects be	or non-destructive co eing developed and u	ontrol (underta	over base lke the
	3		13	16	
	To be defined				
	40.000		160.000		200.000
	analysis and calcula ase to the outside for		cumulations inside t	he read	ctor plant
20				20	
123.000					123.000
		16.2 Integrity			
16211 Installation compartme	of a hydrogen detect	ion and ignition syst	em within containme	ent rea	ctor
	6	15	4	25	
		(igniters) From 1996 (igniters) Sensors schould be purchased in Western Countries	During maintenance outage		
	100.000	1.350.000	150.000		1.600.000
	-	·	TOTAL	70	1.993.400
47444 Commonst fi	1	7 INTERNAL HAZA	ction		
requiremen	re safety analysis for ts.	all power unit rooms	s following AIEA proc	cedure	s and
6	24			30	
200.000	150.000				350.000
	e possibility of mainta ty of the reactor in th				
	24			24	
	150.000				150.000
17121 Replace co	mbustible petroleum	oil with incombustible	e lubricating fluids in	the lub	rication system.
	12	12	6	30	
	5.000	50.000	10.000		65.000
17131 Replaceme	nt of existing input s			rds.	
	2	2	10	14	
	15.000	65.000	15.000		95.000
17132 Coat the ca	bles bundles with fire				
		10	10	20	
		630.000	100.000		730.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
17141 Develop an requiremen	d implement, in the re ts for NPP equipmen	econstruction design t and instrumentation	, FAS equipment me n.	eting s	pecific
	6	12	6	24	
	Cost: design: 15.000 working docum.: 35.000				
	50.000	314.000	115.000		479.000
17151 Replace exi	sting fire resistant de	pors in the rooms co	ntaining safety syste	m train	s.
6	6			12	
		Schedule and cost have to be defined together with supplier of standard devices	Schedule and cost have to be defined together with supplier of standard devices		
10.000	30.000	75.000	20.000		135.000
17161 Install fire p	protection valves in a	ir conduits according	to normative docun	nentatio	on.
	4	10	2	16	
			(in stages during maintenance out- ages)		
	40.000	120.000	55.000		215.000
		17.2 Flooding protec	tion		
17211 Perform a c	omplete analysis of i	nternal flood in react	or compartment and	machi	ne hall rooms.
	12	15	4	31	
	(complete analysis)				
	90.000				90.000
	17.3 Hazards du	ue to pipes rupture a	nd flying fragments		
17311 Develop dra	aft design criteria for	shut-off valves prote	ection against interna	l missi	les.
	6			6	
	15.000				15.000
17321 Carry out s building, an	pecial analysis to det id probable conseque	ermine the extent of ences of secondary e	pipeline breaks impa effects.	ct insid	le the reactor
	9			9	
	35.000				35.000
			TOTAL	216	2.359.000
				1	
	18	BEXTERNAL HAZA	ARDS		
		18.1 Seismic			
18111 Additional i	nstrumental seismic		ophysical studies.		
				-	
	24			24	

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	18.2	Natural external con	nditions		
18211 Carry out ri design just	sk assessment, – def ification of building s	ine shock wave load tructures bearing ca	s and their impact or pacity considering fo	n buildi preign p	ng structures; procedures.
	5			5	
	30.000				30.000
	sk assessment, – def ification of building s				
	5			5	
	30.000				30.000
	nd analysis on possib stem at lower ambier		normal air condition	s inside	e the rooms
7	8			15	
60.000	102.000				162.000
	18.3	Main induced extern	al events		
18311 Carry out a and experie	nalysis of possibility ence.	of airplane crash wit	h the help of wertern	firms p	procedures
	4			4	
	30.000				30.000
	stimation of risc impa ternal events. Develo				
	to be defined				
					0
			TOTAL	53	952.000
	19	ACCIDENTS ANA	LYSIS		
	19	9.1 Design basis acc	ident		
	omplete list and scen the list of initiating e		s accidents consider	ing inte	ernational
	6			6	
	30.000				30.000
19112 Carry out a	nalysis of selected ac	cidents using mode	rn codes.		
	24			24	
	130.000				130.000
	f analysis of reactivity e primary circuit, and			ase of a	bsorber conce
	f analysis of reactivity			ase of a	bsorber conce
	f analysis of reactivity e primary circuit, and			1 1	bsorber conce
	f analysis of reactivity e primary circuit, and 24 120.000		ry measures.	1 1	
tration in th	f analysis of reactivity e primary circuit, and 24 120.000	d identifying necessa	ry measures. is accident	24	120.000
tration in th	f analysis of reactivity e primary circuit, and 24 120.000 19.2 Be	d identifying necessa	ry measures. is accident	24	120.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	19.3	Additional safety a	nalysis		
19311 Carry out, been review	based on elaborated in wed in Technical Repo	nitiating events list, a ort on Safety Substar	analysis of accidents ntiation (TO5).	that h	ave not
	24			24	
	140.000				140.000
	19.4	Probalistic safety a	nalysis		
the design-	obalistic safety analys basic accidents. Carr nd technical means to	y out R and D works	on substantiation an	nd impl	s, list of beyond ementation of
	48			48	
	(whole scope of PSA including R&D and the list of beyond de- sign-basic accidents). The price depends on the result of R&D program progress.				
	2.200.000				2.200.000
			TOTAL	174	3.080.000
		20 FUEL HANDLI			
	20 ent and introduction of	0.1 Fuel handling co f equipment and met	ntrol hodology for sipping		
	20	0.1 Fuel handling co f equipment and met	ntrol hodology for sipping		
conducted	20 ent and introduction of in the refuelling mach	0.1 Fuel handling co f equipment and met nine mast during fuel	ntrol hodology for sipping assembly transporta	ation (F	
26.000 20121 To develop	20 ent and introduction of in the refuelling mach 6	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly	ntrol hodology for sipping assembly transport 5 84.500	ation (F	FDRM method) 548.000
26.000 20121 To develop	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly	ntrol hodology for sipping assembly transport 5 84.500	ation (F	FDRM method) 548.000
26.000 20121 To develop of power s	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine.	ntrol hodology for sipping assembly transporta 5 84.500 placing procedures in	ation (F 17 n the e	FDRM method). 548.000
conducted 3 26.000 20121 To develop of power state 6 24.000	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000	ntrol hodology for sipping assembly transport 5 84.500 placing procedures in 3 10.000	ation (F 17 n the e 21	FDRM method). 548.000 vent of loss 205.000
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000	ntrol hodology for sipping assembly transport 5 84.500 placing procedures in 3 10.000	ation (F 17 n the e 21	FDRM method). 548.000 vent of loss 205.000
Conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool.	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr	ntrol hodology for sipping assembly transport 5 84.500 placing procedures in 3 10.000 ropped into the react	ation (F 17 n the e 21 or or in	FDRM method). 548.000 vent of loss 205.000
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool. 12	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting 6	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr 6	ntrol hodology for sipping assembly transports 5 84.500 placing procedures in 3 10.000 ropped into the reactor 3	ation (F 17 n the e 21 or or in	FDRM method). 548.000 vent of loss 205.000 to the spent
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool. 12	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting 6 74.000	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr 6	ntrol hodology for sipping assembly transports 5 84.500 placing procedures in 3 10.000 ropped into the reactor 3 17.000 TOTAL	ation (F	FDRM method). 548.000 vent of loss 205.000 to the spent 217.000
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool. 12	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting 6 74.000	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr 6 100.000	ntrol hodology for sipping assembly transport 5 84.500 placing procedures in 3 10.000 ropped into the react 3 17.000 TOTAL	ation (F	FDRM method). 548.000 vent of loss 205.000 to the spent 217.000
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool. 12 26.000	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting 6 74.000	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr 6 100.000	ntrol hodology for sipping assembly transports 5 84.500 placing procedures in 3 10.000 ropped into the reactor 3 17.000 TOTAL	ation (F 17 n the e 21 or or in 27 65	FDRM method). 548.000 vent of loss 205.000 to the spent 217.000 970.000
conducted 3 26.000 20121 To develop of power state 6 24.000 20131 To develop fuel pool. 12 26.000	20 ent and introduction of in the refuelling mach 6 340.000 equipment for compl upply to the refuelling 6 71.000 equipment for lifting 6 74.000	0.1 Fuel handling co f equipment and met nine mast during fuel 3 97.500 eting fuel assembly machine. 6 100.000 the fuel assembly dr 6 100.000	ntrol hodology for sipping assembly transports 5 84.500 placing procedures in 3 10.000 ropped into the reactor 3 17.000 TOTAL	ation (F 17 n the e 21 or or in 27 65	FDRM method). 548.000 vent of loss 205.000 to the spent 217.000 970.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
21114 Develop a p of TUH – 19	procedure for the detended of	ermination of allowat	ble defects in body co	ompone	ents
	6			6	
	41.500				41.500
	cumentation and car ion in supply of blocl			o increa	ise the time
		21	5	26	
		87.500	15.000		102.500
		21.2 Integrity			
distance be	trength analysis of w tween welds attachir nt protective jacket w	ng the thermal shield	to makeup nozzle pr	otectiv han 3h	e jacket, and th
	8			8	
	(cost of calculation)				
	31.000				31.000
			TOTAL	59	475.000
		22.1 Steam generate			
22111 Modernizat	ion of steam generate	ors blowdown.			
	6	12	4	22	
	The costs shown are included into the price of the unit completion for RNPP	The costs shown are included into the price of the unit completion for RNPP	The costs shown are included into the price of the unit completion for RNPP		
	121.344	140.000	100.000		361.344
		22.2 Other compone	ent		
	ilt-in air conditioners I experience).	that do not meet ope	erational requirement	s	
	6	7	6	19	
	50.000	135.000	90.000		275.000
	22.	4 Steam and water s	system		
			valves		
22441 Retrofit bal	anced (disk) steam g	enerator feed control	Turroo.		
22441 Retrofit bal	anced (disk) steam g	6	3	12	
22441 Retrofit bal		1		12	229.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	23 MONIT	ORING AND CONT	ROL SYSTEM		
	2	23.1 Diagnostic system	ems		
	ion of the system mo ation of diagnosis tas			ombine	d with
	3	12	6	21	
		(including software)			
	5.000	80.000	20.000		105.000
			TOTAL	21	105.000
	24 FI	ECTRICAL POWER	SYSTEM		
		24.1 Diagnostic facili			
	a multi-channel syste during emergency sit		recording and analys	sis of e	lectrical
2	6	3	6	17	
31.232	190.464	117.740	68.320		407.756
	ed monitoring syster I discharges.	n of turbine generato	or stator windings ins	sulation	state
8	5	6	6	25	
			(to be determined in distinct specifications)		
3.000	7.500	15.500	10.500		36.500
24122 Computeriz partial disc	ed monitoring syster harges.	n of 6 kV motors stat	or winding insulation	n condi	tion from
8	5	6	6	25	
			(to be determined in distinct specifications)		
1.500	2.050	24.000	9.000		36.550
24131 Develop a p	bermanent monitoring	system of generato	r voltage insulation.		
3	7	9	6	25	
1.500	4.500	16.850	8.000		30.850
	24.2	Electrical Power dist	tribution		
24211 Develop pro	ocedures and hardwa	re to assess residua	I lifetime of NPP cab	les.	
15	6	3	5	29	
226.600	90.620	400.000	50.000		767.220
24221 Fit addition	al self-contained eme	ergency lighting fixtu	res.		
3	3	2	3	11	
15.000	15.000	49.000	10.000		89.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	24.3 E	ectrical power outpu	ut systems		
24311 Carry out a	nalysis of external su	pply systems (powe	r grid).		
5	5			10	
67	76				143
	24.4 Electric	power generation an	d transformation		
	l implement a power a erator station.	nd Diesel-generator	station. Supply mak	e up pu	mps from
				0	
			From 1994		
					0
24421 High-voltag	e transformers buchi	ngs, replacement. (o	perational experienc	;e).	
	10	6	6	22	
	100.000	10.000.000	100.000		10.200.000
24441 Install grou	p 2 stand-by transfor	mers of plant service	es (PTCH-2).		
2	10	5	4	21	
30.200	512.000	6.000.000	1.500.000		8.042.200
			TOTAL	185	19.610.219
	25 R	EACTOR CORE AN	ND FUEL		
	25.	1 Neutronic design c	of core		
25111 To provide	transition of the powe	er units to the strate	gy of refuelling with	low neu	tron leakage.
9	3			12	
	(preliminary design)				
235.000	26.000				
					261.000
Work is pla factor takin and physic cations to t	components of engir nned in 2 phases. <i>Pha</i> g into account advan al parameters calcula echnical design of rea n of NPP safety.	ase 1: To perform an ced fuel manufacture tion. Engineering ma	alysis of component e technology and act argin factor. <i>Phase</i> 2	s of eng ual erro	documentation gineering safety ors of neutron uction of modifi
Work is pla factor takin and physic cations to t	nned in 2 phases. Pha g into account advan al parameters calcula echnical design of rea	ase 1: To perform an ced fuel manufacture tion. Engineering ma	alysis of component e technology and act argin factor. <i>Phase</i> 2	s of eng ual erro	documentation gineering safety ors of neutron uction of modifi
Work is pla factor takin and physic cations to t justificatior	nned in 2 phases. Pha g into account advan al parameters calcula echnical design of rea	ase 1: To perform an ced fuel manufacture tion. Engineering ma	alysis of component e technology and act argin factor. <i>Phase</i> 2	s of eng ual erro <i>:</i> Introdu facture,	documentation gineering safety ors of neutron uction of modifi
Work is pla factor takin and physic cations to t justification 12	nned in 2 phases. Pha g into account advan al parameters calcula echnical design of rea	ase 1: To perform an ced fuel manufacture tion. Engineering ma	alysis of component e technology and act argin factor. <i>Phase</i> 2	s of eng ual erro <i>:</i> Introdu facture,	documentatior jineering safety rs of neutron uction of modif and technical
Work is pla factor takin and physic cations to t justification 12	nned in 2 phases. <i>Ph</i> ag into account advan al parameters calcula echnical design of rea n of NPP safety.	ase 1: To perform an ced fuel manufacture tion. Engineering ma	alysis of component e technology and act argin factor. <i>Phase</i> 2 ntation on fuel manu TOTAL	s of enguero	documentation gineering safety rs of neutron action of modif and technical 220.000
Work is pla factor takin and physic cations to t justification 12	nned in 2 phases. Pha og into account advan al parameters calcula echnical design of rea of NPP safety.	ase 1: To perform an ced fuel manufacture tion. Engineering ma actor plant, documer	alysis of component e technology and act argin factor. <i>Phase</i> 2 ntation on fuel manu TOTAL EGRITY	s of enguero	documentation gineering safety rs of neutron action of modifi and technical 220.000
Work is pla factor takin and physic cations to t justification 12 220.000	nned in 2 phases. Pha og into account advan al parameters calcula echnical design of rea of NPP safety.	ase 1: To perform an ced fuel manufacture tion. Engineering ma actor plant, documer SOMPONENTS INT	alysis of component e technology and act argin factor. <i>Phase</i> 2 ntation on fuel manur TOTAL EGRITY tions	s of enguero	documentation gineering safety rs of neutron action of modifi and technical 220.000
Work is pla factor takin and physic cations to t justification 12 220.000	nned in 2 phases. <i>Pha</i> og into account advan al parameters calcula echnical design of rea n of NPP safety. 26 C	ase 1: To perform an ced fuel manufacture tion. Engineering ma actor plant, documer SOMPONENTS INT	alysis of component e technology and act argin factor. <i>Phase</i> 2 ntation on fuel manur TOTAL EGRITY tions	s of enguero	documentation gineering safety rs of neutron action of modifi and technical 220.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	t a system for contine (pH, Xe, H2) in norm			circuit	coolant
4	8	20	12	44	
50.000	45.000	3.500.000	194.000		3.789.000
		26.2 Miscellaneou	S		
26211 Carry out s	trength recalculations	s for safety-related p	ipings (according to	OPB-88	3).
5	15			20	,
28.000	532.000				560.000
26212 Following re	esults of above recalc	ulations, implement i	measures for addition	nal pipir	ng attachments
	19	6	2	27	•
	(including preparation of modified working drawings)	The period and costs are being made pre- cise by calculations.	The period and costs are being made pre- cise by calculations.		
	179.300	-			179.300
	1	<u> </u>	TOTAL	121	14.350.300
		27 SYSTEMS			
		7.1 Containment inte	arity		
27211 Perform the of the pene	analysis of the build			ialy in	the places
-	5				
	5			5	
	30.000			5	30.000
27212 Perform the	-	ence and adequacy c	of structures, includin		
27212 Perform the	30.000	ence and adequacy c	of structures, includin		
27212 Perform the	30.000 analysis of the exist	ence and adequacy c	of structures, includin	g mode	
27213 Develop the	30.000 analysis of the exist 5	ntainment state asse	essment during unit o	g mode 5 operatio	70.000
27213 Develop the	30.000 analysis of the exist 5 70.000 e procedure of the co	ntainment state asse	essment during unit o	g mode 5 operatio	70.000
27213 Develop the	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in	ntainment state asse	essment during unit o	g mode 5 operationstruct	70.000
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20	ntainment state assento account the cons	essment during unit of senescence of the co	g mode 5 operation nstruct 20	70.000 on and the as- ive materials.
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of	ntainment state assento account the cons	essment during unit of senescence of the co	g mode 5 operation nstruct 20	70.000 on and the as- ive materials.
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies	ntainment state assento account the cons	essment during unit of senescence of the co	g mode 5 operationstruct 20 models	70.000 on and the as- ive materials.
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies 10	ntainment state assento account the cons	essment during unit of senescence of the co	g mode 5 operationstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies 10	ntainment state assento account the cons	essment during unit cosenescence of the co ility using complete r	g mode 5 pperatic nstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes 85.000
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the construction fits life term taking in 20 600.000 culated groundings of ywertern companies 10 85.000	ntainment state assento account the cons	essment during unit of senescence of the co ility using complete r TOTAL	g mode 5 pperatic nstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes 85.000
27213 Develop the sessment o 27214 Prepare cal	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies 10 85.000	ntainment state assento account the cons	essment during unit of senescence of the co ility using complete r TOTAL	g mode 5 pperatic nstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes 85.000
27213 Develop the sessment o 27214 Prepare cal proposed b	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies 10 85.000	ntainment state assento account the consol of containment reliab	essment during unit of senescence of the co ility using complete r TOTAL	g mode 5 pperatic nstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes 85.000
27213 Develop the sessment o 27214 Prepare cal proposed b	30.000 analysis of the exist 5 70.000 procedure of the co of its life term taking in 20 600.000 culated groundings of y wertern companies 10 85.000 28 CONTR 28.1 Mo	ntainment state assento account the consol of containment reliab	essment during unit of senescence of the co ility using complete r TOTAL	g mode 5 pperatic nstruct 20 models	70.000 on and the as- ive materials. 600.000 and codes 85.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
28112 Develop and VVER-1000	d implement compute NPP´s.	erized network for dia	agnosis and monitor	ing at	
9	12	18	6	45	
60.000	297.888	595.791	148.878		1.102.557
28113 Develop and	d implement vibratior	n diagnosis system f	or reactor plants.		
3	9	9	6	27	
25.600	123.510	300.000	80.000		529.110
28114 Develop and	d implement system f	or detection of loose	e parts and inadequa	te fixin	g.
5	9	9	6	29	
25.600	332.800	486.400	153.600		998.400
28115 Develop and	d implement system f	or noise diagnosis c	of steam generators h	neaders	6.
3	6	6	4	19	
25.600	111.220	96.000	40.000		272.820
28116 Develop and	d implement system f	or primary coolant le	eakage detection.		
5	9	9	6	29	
38.400	467.200	627.200	217.600		1.350.400
28117 Develop and	d implement system f	or residual fatigue d	iagnosis.		
6	6	12	6	30	
60.000	304.500	364.000	129.100		857.600
28118 Develop and	d implement system f	or MCP vibration mo	onitoring and diagnos	sis.	
6	6	9	6	27	
25.600	111.220	1.013.000	86.000		1.235.820
28119 Develop and	d implement system f	or mode diagnosis.		J	
6	12	6	6	30	
25.600	345.000	371.200	140.800		882.600
28121 Develop and	d implement of in-cor	e noise diagnostic s	ystem.		
6	6	12	6	30	
60.000	231.200	439.075	272.867		1.003.142
28122 Develop and	d implement of syster	m for diagnostic of b	ack pressure valves		
6	12	12	6	36	
50.000	204.040	200.000	184.000		638.040
28123 Develop and	d implement of syster	m for diagnostic air-	operated valves.	J	
•	8	10	6	24	
	119.808	40.000	100.000		259.808
28124 Develop and	d implement of indus		1	oremise	
	3	5	4	12	
	73.728	400.000	110.000		583.728

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	2	28.4 Information sys	stem		
28411 Develop an parameters	d implement for each and critical safety fu	power unit a systen nctions (SPDS).	n displayingg general	lized sa	fety
	18	8	4	30	
	400.000	1.100.000	200.000		1.700.000
	28.5	Operators support	system		
	, at each power unit o erators in emergency		ower units, a Technica	al Supp	ort Center
	24	24	6	54	
	800.000	1.200.000	300.000		2.300.000
			TOTAL	434	13.764.025
	29	INTERNAL HAZ	ARDS		
		29.1 Fire prevention	on		
29111 Improve res resistance	sistance rate of turbin compound.	e hall steel structur	es by means of applic	cation o	of fire
	3	3	3	9	
	7.000	375.000	37.500		419.500
29112 Develop an outside the	d implement measure limits of turbine hall	es of automatic hydr on "fire" alarm actu	ogen dumping from g ation.	generate	or housing
6	12	12	6	36	
5.000	10.000	10.000	1.000		26.000
29121 Develop an personnel e	d implement the smolevacuation of reactor	ke prevention syster building (RB) which	m of room and corride freely connected wit	ors use h envire	d for ement.
6	9	10	2	27	
			stage by stage in preventive mainte- nance period. (in stages, during main- tenance outages)		
50.000	170.000	620.000	170.000		1.010.000
	<u> </u>		ning system in NPP ro	ooms co	ontaining
29131 Develop an	d implement design o rol systems and moni	toring and control s	yotomo.		
29131 Develop an		toring and control s	3	36	
29131 Develop an safety cont	rol systems and moni	C C	-	36	
29131 Develop an safety cont	rol systems and moni	18 development	-	36	287.400

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	30 O	PERATION PROCE	EDURES		
	30.1	Normal operation pro	ocedures		
30111 Improve teo and system	chnical instructions a is.	nd normal operation	procedures an react	or equi	pment
	24			24	
	550.000				550.000
30112 Improveme	nt of maintenance an	d repair procedures	for reactor equipmer	t and s	ystems.
	24			24	
	975.000				975.000
30121 Providing, i	n the technical desig	n for reactor unit, a l	ist of neclear-hazard	ous wo	rks.
	4			4	
	25.000				25.000
30131 To assure h cooldown a	nydrogen removal fro and "cold" shutdown.	m the primary circuit	equipment in the pr	ocess o	of the
2	10	12	2	26	
			during adjustment works		
26.000	221.000	78.000	65.000		390.000
	and implement methological element defects and				operational
	6			6	
	50.000				50.000
	30.2 A	ccident operation p	ocedures		
30211 Develop em	nergency procedures	based on approach-	oriented at core state	Э.	
	36			36	
	2.500.000				2.500.000
			TOTAL	120	4.490.000
		31 CONTROL			
	31.1 Use of	operation experience	e and data base		
	d implement an informent operation".	nation system "Com	puter-aided history o	of	
6	15	6	4	31	
30	300.000	50.000	100.000		450.030
	31.2	Quality assurance p	program		
	and implement the "I living cycle stages.	NPP Quality Assuran	ce Programm" which	n would	include
	40			40	

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing		Sum
	31.3	3 Documents develo	pment		
31351 To develop electrical w	the programme and i iring out unit equipm	methodology (techni ent to have worked o	cal process) for repla out its service life.	acemen	t of
3	6			9	
32.000	351.000				383.000
			TOTAL	80	2.630.030
	32	TEST AND DIAGNO	OSTICS		
		1 Periodic test progr			
32111 Improve op	eration procedure for				
	12			12	
	160.000				160.000
32112 Improve ver	ification and testing	procedure of safety-	related reactor system	ms.	
-	18			18	
	160.000				160.000
	32.2 Mc	onitoring and diagnos	stic system	<u> </u>	
	oposals of diagnosis nt prestressing syste		bles of SPZO (CN30)		
	7	8	3	18	
	(analysis)				
	30.000	350.000	30.000		410.000
32241 Develop me	easures to improve ex	cisting containment	state monitoring.		
	13			13	
	80.000				80.000
32251 Develop and	d implement equipme	nt for containment va	cuum tests. Justify a	nd worl	k out a progran
	15			15	
	370.000				370.000
			TOTAL	76	1.180.000
	33 PERSONNEL F	PROTECTION AND	RADIATION SAFE	TY	
	33	.1 Wastes and disch	arges		
for their bu	equipment for transp rial at the NPP site (w fuel cooling pond ra	ith compacting). This	s measure will help to	om the r o free tl	eactor and he storage
12	6	6	3	27	
38.000	90.000	117.000	20.000		265.000
for their bu	equipment for transp rial at the NPP site (w fuel cooling pond ra	ithout compacting).	This measure will he	om the r lp to fre	eactor and the storage
12	6	6	3	27	
38.000	78.000	117.000	20.000		253.000
	1		I		

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum	
	33.2	Monitoring system e	quipment		
	e function of the exis o NTD requirements.		tion monitoring syste	em AKI	P5-03
1	2	6	2	11	
10.000	20.000	400.000	30.000		460.000
	radiation protection			ystem	ensuring
2	4	24	4	34	
20.000	100.000	2.000.000	150.000		2.270.000
	lard devices to monit alues. For piping loc remotely.				
4	6	10	6	26	
		Schedule and cost are too be defined with participation of standard devices supplier	Schedule and cost are too be defined with participation of standard devices supplier		
19.200	46.080	150.000	80.000		295.280
33231 Developmen	nt and implementatio	n of automatic radiat	ion monitoring syste	m.	
4	10	12	8	34	
150	220.000	3.680.000	600.000		4.500.150
			TOTAL	159	8.043.430
	34 RI	EPAIR AND MAINT			
		34.1 Metal inspecti	on		
reactor ves	purchase and imple sel metal: – Set of ins by means of ultrason	spection systems for	reactor vessel and c	ore ba	rrel internal
		18		18	
		7.000.000			7.000.000
	3	4.2 Equipment and t	ools		
pressuriser loading to e the case of	stands and methodo pulse safety devices quipment and pipelir the main valve fit fail account operating ex	without real pressur nes and to eliminate ure. To optimize the	e increasing in orden non-design primary p	to red bressur	luce additional re decrease in
3	6			9	
		to be defined after technical project have been designed	to be defined after technical project have been designed		
13.000	195.000				208.000

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum		
35 PHYSICAL PROTECTION						
35.1 NPP physical protection						
35111 Implementation of access management system.						
2	6	6	5	19		
49.152	276.480	4.000.000	1.750.000		6.075.632	
			TOTAL	19	6.075.632	

Table 2: Costs of all modernization measuresplanned in the Modernization Programme for R4

The planned measures and costs in the Modernization Programme for R4 (Rev. 2, Oct. 1996) are identical to K2, except the following 4 modifications:

The following 2 measures are not included in the Modernization Programme for R4	4:

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum		
15.2 Electrical Power distribution						
15221 Exchange of sealed cable penetrations.						
	1 (month)	2	3	6		
	14.840 (USD96)	9.900.000	600.000		10.514.840	
24.4 Electric power generation and transformation						
24441 Install group 2 stand-by transformers of plant services (PTCH-2).						
2	10	5	4	21		
30.200	512.000	6.000.000	1.500.000		8.042.200	

Two new measures are planned for R4:

Preliminary developments	Main design and specifications	Equipment supplies	Construction assembling and testing	Sum		
13.5						
13521 Installation of hermetic valves Dia 1600 for localizing groups of repairing ventilation.						
	2 (month)	6	2	10		
	20.000 (USD96)	1.000.000	50.000		1.070.000	
32.2 Monitoring and Diagnostic System						
32211 The indication of the position of the gate of main IPU KD valve have to be installed in the control room.						
	6	6	7	19		
	90.000	260.000	370.000		720.000	