SULPHURIC ACID PRODUCTION

1 GENERAL INFORMATION

Sulphuric acid is an important basic inorganic chemical, due to its various industrial applications. Most of the sulphuric acid is consumed by the fertiliser industry. Other important applications are the oil refining industry, the production of pigments, and the steel industry and extraction processes of the non-ferrous metal industry.

Sulphuric acid is furthermore used by the reference installation for the production of viscose fibre.

The reference installation is operating three sulphuric acid production lines using different technologies for the production. All three production plants work after the principle that sulphur or sulphur containing waste gases are burned.

Sulphur-containing gases generated during the spinning process are collected and recovered as the chemicals carbon disulphide and sulphuric acid. The coproduct sodium sulphate is produced from the input chemicals sulfuric acid and sodium hydroxide solution. (Source: Operator information 2016).

2 INDUSTRIAL PROCESSES USED

The production of viscose fibres includes the treatment of pulp in several process steps with carbon sulphide and a subsequent spinning step in sulphuric acid baths. The waste gases contain CS_2 and H_2S (strong odorous gases and weak odorous gases) and are combusted to avoid odour emissions. The thereof obtained H_2SO_4 is reused in the production process.

	Technology	Output H ₂ SO ₄	Output steam	Input	Input	Input	Conversion
				Liquid sulphur	Strong gas	s Weak gas	5
		t/d	GJ/d	t/h	m³/h	m³/h	%
Sulphuric acid production line 1	dry contact process	300	964 (45 bar)	4.1	-	-	99.9
Sulphuric acid production line 2	wet/dry con- tact process	72	203 (45 bar)	0.68	80	6,560	99.8
Sulphuric acid production line 3	TOPSOE	151	924 (45 bar)	0.69	850	24,600	99.9

Table 1: Information of the three sulphuric acid production lines 2015. (Source: Operator information 2016)

Another process used to produce sulphuric acid is the combustion of elemental sulphur. The resulting sulphur dioxide is converted in sulphur trioxide in a double contact process and finally absorbed in water for the formation of H_2SO_4 . Elemental sulphur is also added to strong odour gases if the sulphur concentration is not high enough.

The reference installation operates three sulphuric acid production lines as shown in Table 1.

Description sulphuric acid production line 1 – dry contact process

In production line 1 elemental sulphur is combusted for the formation of SO_2 , which is subsequently oxidised to SO_3 in a 4 layer double contact process with intermediate absorption after layer 3.

- Sulphur handling
systemsLiquid sulphur is pumped to the burner of the furnace from the sulphur storage
tank. All pipes and filters are double-walled and heated in order to avoid the so-
lidification of liquid sulphur before it is burned.
- **Sulphur furnace** The liquid sulphur (ca. 4,000 kg/h) is injected into the sulphur furnace with a pressurised atomiser burner. The combustion air is dried in a drying tower with concentrated H_2SO_4 in counter-flow.

The gas after the furnace contains approx. $10 - 11 \text{ vol}\% \text{ SO}_2$, the temperature in the furnace is approx. 1,070 °C. After the furnace the gas is cooled to approx. 460 °C in the waste heat boiler.

Contact tower – dry The conversion of SO₂ to SO₃ is carried out in the contact tower in 4 layers applying a vanadium pentoxide catalyst.

Since the conversion is an exothermic process, the gas temperature rises from approx. 460 °C to 600 C (layer 1). For shifting the process to the product side, the temperature is lowered after each layer by a heat exchanger to approx. 460 °C.

Acid unit After layer 3, the gas is cooled with boiler feed water to 225 °C and enters the intermediate absorber. SO₃ is removed from the gas stream resulting in concentrated sulphuric acid.

The gas which does not contain SO₃ anymore is heated to 420 °C with steam and conducted to the fourth layer. The remaining SO₂ is oxidised to SO₃ and, after heat exchange, conducted to the final absorber. In the final absorber, SO₃ is removed via concentrated, trickled H₂SO₄ in counter flow. The resulting sulphuric acid is stored in a 2,000 t tank or is pumped to the viscose production unit.

The exhaust gas is cleaned by cartridge filters to avoid sulphuric acid mist. The waste gas stream is 22,500 Nm³/h (source: operator information 2015).

Description sulphuric acid production line 2 – LURA 1

This H_2SO_4 production unit was built in order to eliminate H_2S and CS_2 from the strong odour gases which occur during the production of viscose. The strong gases contain 40 – 45 Vol% H_2S and 15 – 25 Vol% CS_2 . Dependent on the

availability of strong gases from the production process elemental sulphur is fed into the line to ensure a steady SO_2 concentration in the combustion gas. The conversion to sulphuric acid is carried out in a combined wet/dry contact process (Source: Operator information 2016).

Before entering the furnace, condensate in strong odour gases is separated. **Sulphur furnace** The strong gases and liquid sulphur are combusted at 1,100 °C to ensure a steady SO_2 concentration of 7 – 8 Vol%. After passing the heat recovery boiler the gas is fed into the contact tower.

The conversion of SO_2 to SO_3 is carried out in a 4 layer contact tower applying **Contact tower** a vanadium pentoxide catalyst.

Excess heat due to the chemical reaction is discharged after each layer with a heat exchanger.

The wet contact process is necessary as the gases contain water (if H_2S is burned H_2O is generated) and so H_2SO_4 is formed during the catalytic oxidation of SO_2 to SO_3 . Therefore, the gas enters the intermediate absorber after layer 3 with approx. 360 °C to avoid corrosion due to condensation of H_2SO_4 .

H₂SO₄ mist formed in the intermediate absorber is separated by mist filter.

The remaining SO_2 is oxidised to SO_3 in layer 4 by a dry contact process and removed as H_2SO_4 in the final absorber.

Both absorption towers (intermediate absorber after level 3 and final absorber **Absorption towers** after level 4) are filled with packing material. The gas stream is channelled in counter current to H_2SO_4 .

The formed H_2SO_4 is conducted continuously to tanks. It is reused in the spinning process.

 H_2SO_4 mist in the exhaust gas (6,500 Nm³/h) is abated by cartridge filters (Source: Operator information 2016).

Description sulphuric acid production line 3 – TOPSOE

The production line 3 is utilized, as production line 2, to abate H_2S and CS_2 generated in the production of viscose.

Therefore, strong odour gases from the spinning process and weak odour gases from the spinning vats (serves also as combustion air supply) are combusted in a furnace for the formation of SO₂. Before the weak gas enters the furnace, it is cleaned via a gas scrubber to remove remaining substances and solids from the spinning baths.

To ensure constant operating conditions (SO₂ and temperature), liquid sulphur is dosed. If necessary to reach the required reaction temperature, fuel oil extra light is co-combusted. The ignition burner uses natural gas.

The combustion gas is cooled in the waste heat boiler and the energy is used for the steam production.

The gas is conducted with 400 °C in the converter, which has 2 catalyst layers **SO**₂-converter for oxidising SO₂ to SO₃. After layer 1, the gas is cooled down by an intermediate cooler. Both layers are filled with TOPSOE-H₂SO₄-catalyst. **SO**₂-converter **SO**₂-converte

Subsequently the gas is cooled to approx. 290 °C in a process gas cooler. Water is dosed adequately for the formation of acid in terms of steam after the cooler. Condensation nuclei are added and the gas is conducted to the WSA-condenser.

WSA condenser The WSA condenser is a vertical tube falling film condenser/concentrator with tubes made of borosilicate, acid and shock resistant glass. The process gas flows up the tubes and is cooled by ambient air circulating on the outside of the tubes. Sulphuric acid condenses in the tubes and flows downward counter-current to the process gas. This contact with the hot process gas concentrates the acid to the desired concentration. The acid is collected (260 °C) cooled by adding already cooled down acid and delivered to the storage tanks with 35 °C. (http://www.sulphuric-acid.com/techmanual/Technology/wsa.htm)

The condenser is cooled with air. The generated hot air (230 °C) is used to preheat the boiler feed water.

To reduce the remaining SO_2 contamination in the exhaust air, a peroxide scrubber is installed. The total efficiency is about 99.9%. The exhaust gas volume is 21,000 Nm³/h.

3 CURRENT EMISSIOIN AND CONSUMPTION LEVELS

3.1 Air

 SO_2 and SO_3 (H₂SO₄ aerosols) are the major air emissions in the production of sulphuric acid.

 SO_2 emissions are emitted due to an incomplete reaction of SO_2 into SO_3 on the catalyst. SO_2 , which is not converted into SO_3 , is hardly absorbed in water. SO_2 emissions are dependent on SO_2 content of the raw gases, the oxygen concentration, the reaction parameters (temperature) and the resulting conversion rate of the contact process.

In Table 2 emission limit values (ELV) are presented. Line 1 and line 2 have similar ELVS of 700 mg/Nm³ and 625 mg/Nm³ respectively. Line 3 has an emission limit value of 200 mg/Nm³.

The emissions have to be monitored continuously according to the figures presented in Table 2.

Table 2: Emission limit values for SO₂ of sulphuric acid production lines 1-3. (Source: Operator information 2016)

	Emission limit values ^{1), 2), 3)}	monitoring
line 1 dry contact process	700 mg/Nm³	continuous recorded as daily average
line 2 wet/dry contact process	625 mg/Nm³	continuous recorded as daily average
line 3 TOPSOE	200 mg/Nm ³	continuous, recorded as daily average

¹⁾ Ge20-13-01-310-2010, Ge20-13-01-372-2010

²⁾ Ge20-13-01-158-2010, Ge20-13-01-372-2010

³⁾ Ge20-13-01-315-2003

The distributions of the daily average values of SO₂ emissions for the 3 lines are presented in Table 3 and Figure 2. The daily averages were recorded during April and July 2016. According to the emission limit values the lowest emissions were obtained for line 3 (TOPSOE process with subsequent H₂O₂ scrubber) were the values were in the range of 120 - 160 mg/Nm³. For line 1 and 2 the majority of daily averages in the reference period were between 500 - 700 mg/Nm^3 .

Some measured values are higher than the emission limit values because the plant is operated at the upper capacity limit. For the emission limit value compliance, validated values (measured values minus the measurement uncertainty) are used. All validated values are below the emission limit value.

[mg/Nm³]	Line	1	[mg/Nm ³]	Line	2	[mg/Nm ³]	Line	3
	No. c	of values		No. c	of values		No. c	of values
500 - 600	18	16%	400 - 500	3	2%	75 – 100	0	0%
600 – 700	60	52%	500 - 600	8	7%	100 – 125	2	2%
700 – 800	37	32%	600 – 625	8	7%	125 – 150	119	98%
Total	115	100%	625 – 650	38	31%	150 – 175	0	0%
			650 – 700	64	53%	175 – 200	0	0%
			Total	121	100%	Total	121	100%

Table 3: Daily averages of SO₂ emissions to air. (Source: Operator information 2016)

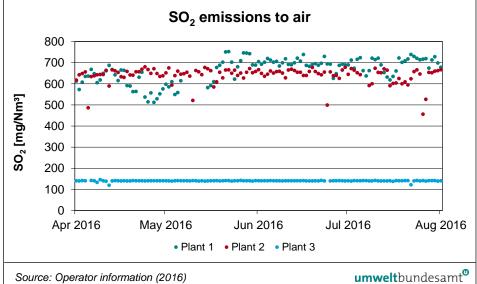


Figure 1: Daily averages of SO₂ emissions to air.

Table 4: Monthly averages of SO₂ emissions to air 2013 and 2014. (Source: Operator information 2016)

Source: Operator information (2016)

Month	line 1	line 2	line 3	line 1	line 2	line 3
		[mg/Nm ³]			[kg/h]	
Jan 2013	441	708	135	10.01	4.45	3.02
Feb 2013	453	697	161	10.11	4.30	2.82
Mar 2013	455	688	153	10.09	4.17	2.96
Apr 2013	520	694	170	11.33	4.10	2.98
May 2013	609	694	165	13.14	4.00	2.99
Jun 2013	492	558	155	11.04	3.66	2.99
Jul 2013	481	730	158	10.87	5.25	2.87

Month	line 1	line 2	line 3	line 1	line 2	line 3		
		[mg/Nm³]			[kg/h]			
Aug 2013	481	708	159	10.82	5.08	2.98		
Sep 2013	476	711	173	10.93	5.16	3.05		
Oct 2013	508	722	165	11.37	5.40	2.96		
Nov 2013	384	719	152	8.51	5.41	2.98		
Dec 2013	360	728	157	8.31	5.50	2.96		
Jan 2014	375	725	147	8.73	5.45	2.98		
Feb 2014	381	716	140	8.91	5.34	2.99		
Mar 2014	336	716	164	7.91	5.35	2.98		
Apr 2014	262	713	144	6.25	5.14	2.98		
May 2014	305	649	166	7.05	4.93	1.45		
Jun 2014	293	708	143	6.78	5.16	3.03		
Jul 2014	336	708	145	7.64	5.17	3.04		
Aug 2014	336	702	159	7.08	5.15	3.02		
Sep 2014	392	711	157	7.70	5.18	3.07		
Oct 2014	290	716	147	6.31	5.19	3.00		
Nov 2014	288	716	160	5.87	5.25	2.88		
Dec 2014	279	716	132	5.89	5.28	2.97		

In Table 4 and Figure 2 monthly averages of SO₂ emissions for the three production lines over a period of two years (January 2013 – December 2014) are displayed. The monthly averages (MA) of line 1 (double contact dry process) are mostly in the range of 200 – 500 mg/Nm³ with only one value above 500 mg/Nm³. The range of monthly averages for line 2 (wet/dry contact process) for the two year period (2013 – 2014) is 600 – 700 mg/Nm³. The lowest monthly averages within the range of 100 – 200 mg/Nm³ were obtained for line 3 (TOPSOE process with subsequent H₂O₂ scrubber).

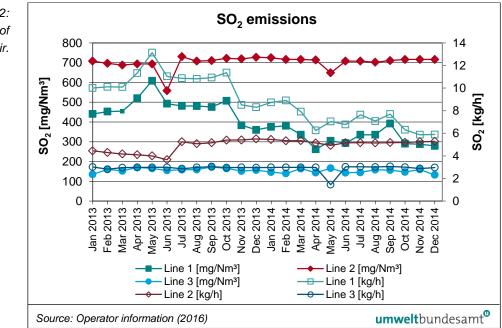


Figure 2: Monthly averages of SO_2 emissions to air.

The formation of SO_3 emissions takes place due to incomplete absorption. SO_3 emissions are monitored periodically 4 times a year for line 1 as well as line 2 and monthly for line 3. No measures are taken to reduce SO_3 emissions to air and no emission limit value is permitted.

SO₃ [mg/Nm³]	Minimum	Yearly Average	Maximum
Line 1	9.1	16.5	22.4
Line 2	12.2	21.2	26.3
Line 3	7.6	20.3	50.6

Table 5: SO₃ emissions to air for production lines 1,2 and 3. (Source: Operator information 2016)

Minimum and Maximum emission values represent averages over four hours. All emission values were obtained during 1 year (June 2015 – July 2016) and refer to standard conditions (0°C and 1,013 mbar) and dry gas.

Emission values for SO_3 are presented in Table 5 and range from $9.1 - 22.4 \text{ mg/Nm}^3$ for line 1. Line 2 has a similar range from $12.2 - 26.3 \text{ mg/Nm}^3$. Minimum values and yearly average for line 3 are also similar compared to the other production lines. The maximum value is 50.6 mg/Nm³ and therefore higher in relation to line 1 and 2.

Including the maximum averages, all SO₃ emission values are within the range of \leq 50 mg/Nm³.

The sulphuric acid production lines are fully enclosed, therefore no fugitive **Fugitive** emissions SO_2 and SO_3 occur.

3.2 Water

No waste water arises from the sulphuric acid production.

3.3 Waste

The first catalyst layers are exchanged every 5 to 10 years, the other layers every 10 to 15 years. The decision to exchange the catalyst is made depending on the catalysts reaction rate. In between the catalyst exchanges the catalyst beads are sieved to remove dust.

Used catalyst material is recycled in the metal industry.

3.4 Energy

The sulphuric acid production is an exothermic process. Excess heat is used to produce steam.

Fugitive emissions

4 **REFERENCES**

UMWELTBUNDESAMT (2001): Wiesenberger, H.; Kircher, J.: Stand der Technik in der Schwefelsäureerzeugung im Hinblick auf die IPPC-Richtlinie. Monographien, Bd. M-137. Umweltbundesamt, Wien.

UMWELTINSPEKTION (2015): Schwefelsäureproduktionsanlagen.